本综述总结了酪蛋白的基本信息,包括分子结构、水解产物及作用等;概括了酪蛋白水凝胶的合成和表征方法;举证了酪蛋白水凝胶最新研究方向和目前的应用领域,包括药物载体及控释、伤口敷料、骨再生及心脏组织工程。本综述指出了酪蛋白在水凝胶领域特性和潜力,并讨论了进一步研究的挑战和未来方向。 This review summarizes the basic information of casein, including its molecular structure, hydrolysis products, and functions; outlines the synthesis and characterization methods of casein hydrogels; highlights the latest research directions and current applications of casein hydrogels, including drug delivery and release, wound dressings, bone regeneration, and cardiac tissue engineering. This review points out the characteristics and potential of casein in the field of hydrogels, and discusses the challenges and future directions for further research.
This review summarizes the basic information of casein, including its molecular structure, hydrolysis products, and functions; outlines the synthesis and characterization methods of casein hydrogels; highlights the latest research directions and current applications of casein hydrogels, including drug delivery and release, wound dressings, bone regeneration, and cardiac tissue engineering. This review points out the characteristics and potential of casein in the field of hydrogels, and discusses the challenges and future directions for further research.
邵炫明,黄 卫. 酪蛋白水凝胶在生物医学中的应用Application of Casein Hydrogel in Biomedicine[J]. 生物医学, 2024, 14(02): 306-312. https://doi.org/10.12677/hjbm.2024.142034
参考文献References
Glab, T.K. and Boratynski, J. (2017) Potential of Casein as a Carrier for Biologically Active Agents. Topics in Current Chemistry, 375, Article No. 71. https://doi.org/10.1007/s41061-017-0158-z
Rafiee Tari, N., Arranz, E. and Corredig, M. (2019) Effect of Protein Composition of a Model Dairy Matrix Containing Various Levels of Beta-Casein on the Structure and Anti-Inflammatory Activity of in Vitro Digestates. Food & Function, 10, 1870-1879. https://doi.org/10.1039/C8FO01860J
Yvette, C.L., Nicolaas, E.P.D., Martin, J. and Peter, B.S. (2005) Casein and Soy Protein Meals Differently Affect Whole-Body and Splanchnic Protein Metabolism in Healthy Humans. The Journal of Nutrition, 135, 1080-1087. https://doi.org/10.1093/jn/135.5.1080
Pereira, P.C. (2014) Milk Nutritional Composition and Its Role in Human Health. Nutrition, 30, 619-627. https://doi.org/10.1016/j.nut.2013.10.011
Politis, I. and Chronopoulou, R. (2008) Milk Peptides and Immune Response in the Neonate. Advances in Experimental Medicine and Biology, 606, 253-269. https://doi.org/10.1007/978-0-387-74087-4_10
Fiat, A.M., Migliore-Samour, D., Jollès, P., Drouet, L., Sollier, C.B.D. and Caen, J. (1993) Biologically Active Peptides from Milk Proteins with Emphasis on Two Examples Concerning Antithrombotic and Immunomodulating Activities. Journal of Dairy Science, 76, 301-310. https://doi.org/10.3168/jds.S0022-0302(93)77351-8
Hejel, P., Kocsis, R., Helyes, K., et al. (2021) Bioactive Peptides in Milk Literature Review. Magyar Allatorvosok Lapja, 143, 47-55.
Jauhiainen, T. and Korpela, R. (2007) Milk Peptides and Blood Pressure. The Journal of Nutrition, 137, 825S-829S. https://doi.org/10.1093/jn/137.3.825S
Phelan, M., Aherne, A., FitzGerald, R.J. and O’Brien, N.M. (2009) Casein-Derived Bioactive Peptides: Biological Effects, Industrial Uses, Safety Aspects and Regulatory Status. International Dairy Journal, 19, 643-654. https://doi.org/10.1016/j.idairyj.2009.06.001
Wada, Y. and Lönnerdal, B. (2014) Bioactive Peptides Derived from Human Milk Proteins-Mechanisms of Action. The Journal of Nutritional Biochemistry, 25, 503-514. https://doi.org/10.1016/j.jnutbio.2013.10.012
Daniloski, D., McCarthy, N.A., Vasiljevic, T., et al. (2021) Bovine β-Casomorphins: Friends or Foes? A Comprehensive Assessment of Evidence from in Vitro and ex Vivo Studies. Trends in Food Science and Technology, 116, 681-700. https://doi.org/10.1016/j.tifs.2021.08.003
Cruz-Huerta, E., Garcia-Nebot, M.J., Miralles, B., Recio, I. and Amigo, L. (2015) Case in Ophosphopeptides Released After Tryptic Hydrolysis versus Simulated Gastrointestinal Digestion of a Casein-Derived By-Product. Food Chemistry, 168, 648-655. https://doi.org/10.1016/j.foodchem.2014.07.090
刘微, 王振元, 张婉舒, 等. 人乳β-酪蛋白单体二级结构及胶束微观结构的研究[J]. 中国乳品工业, 2014(42): 4-7.
Kibangou, I.B., Bouhallab, S., Henry, G., et al. (2005) Milk Proteins and Iron Absorption: Contrasting Effects of Different Caseinophosphopeptides. Pediatric Research, 58, 731-734. https://doi.org/10.1203/01.PDR.0000180555.27710.46
Du, X., Li, L.X., Behboodi-Sadabad, F., Welle, A., Li, J.S., Heissler, S., et al. (2017) Bio-Inspired Strategy for Controlled Dopamine Polymerization in Basic Solutions. Polymer Chemistry, 8, 2145-2151. https://doi.org/10.1039/C7PY00051K
Huppertz, T., Gazi, I., Luyten, H., et al. (2017) Hydration of Casein Micelles and Caseinates: Implications for Casein Micelle Structure. International Dairy Journal, 74, 1-11. https://doi.org/10.1016/j.idairyj.2017.03.006
Horne, D.S. (2008) Casein Micelle Structure and Stability. In: Thompson, A., Boland, M. and Singh, H., Eds., Milk Proteins, Academic Press, Cambridge, 133-162. https://doi.org/10.1016/B978-0-12-374039-7.00005-2
Qin, L., Dong, H., Mu, Z., Zhang, Y. and Dong, G. (2015) Preparation and Bioactive Properties of Chitosan and Casein Phosphopeptides Composite Coatings for Orthopedic Implants. Carbohydrate Polymers, 133, 236-244. https://doi.org/10.1016/j.carbpol.2015.06.099
许健宇. 粘韧蛋白质水凝胶的制备及性能研究[D]: [硕士学位论文]. 长春: 长春工业大学, 2019.
薛高飞, 王伟国, 白天, 叶美丹. 蛋白质基水凝胶的制备及应用研究进展[J]. 功能材料与器件学报, 2021, 27(5): 396-407.
Reiter, M., Reitmaier, M., Haslbeck, A., Kulozik, U., et al. (2023) Acid Gelation Functionality of Casein Micelles in Concentrated State: Influence of Calcium Supplementation or Chelation Combined with Enzymatic Stabilization. Food Hydrocolloids, 143, Article ID: 108927. https://doi.org/10.1016/j.foodhyd.2023.108927
Tan, J. and Joyner, H.S. (2019) Characterizing and Modeling Wear-Recovery Behaviors of Acid-Induced Casein Hydrogels. Wear, 424, 33-39. https://doi.org/10.1016/j.wear.2019.02.003
Raak, N. and Corredig, M. (2022) Kinetic Aspects of Casein Micelle Cross-Linking by Transglutaminase at Different Volume Fractions. Food Hydrocolloids, 128, Article ID: 107603. https://doi.org/10.1016/j.foodhyd.2022.107603
De Kruif, C.G., et al. (2015) Water Holding Capacity and Swelling of Casein Hydrogels. Food Hydrocolloids, 44, 372-379. https://doi.org/10.1016/j.foodhyd.2014.10.007
Wei, Y., et al. (2016) Structure Formation in PH-Sensitive Hydrogels Composed of Sodium Caseinate and N, O-Carboxymethyl Chitosan. International Journal of Biological Macromolecules, 89, 353-359. https://doi.org/10.1016/j.ijbiomac.2016.04.081
Xu, J., Fan, Z.W., Duanb, L.J. and Gao, G.H. (2018) A Tough, Stretchable, and Extensively Sticky Hydrogel Driven by Milk Protein. Polymer Chemistry, 9, 2617-2624. https://doi.org/10.1039/C8PY00319J
王广宇. 酪蛋白/壳聚糖复合水凝胶的制备及性能研究[D]: [硕士学位论文]. 长春: 长春工业大学, 2022.
杨羽西. 酪蛋白基双网络纳米复合水凝胶的制备及其性能研究[D]: [硕士学位论文]. 西安: 陕西科技大学, 2022.
刘成杰. 酪蛋白纳米球的制备及其细胞摄取研究[D]: [博士学位论文]. 南京: 南京大学, 2010.
Ranadheera, C.S., et al. (2016) Utilizing Unique Properties of Caseins and the Casein Micelle for Delivery of Sensitive Food Ingredients and Bioactives. Trends in Food Science & Technology, 57, 178-187. https://doi.org/10.1016/j.tifs.2016.10.005
Simao, A.R., et al. (2020) PH-Responsive Hybrid Hydrogels: Chondroitin Sulfate/Casein Trapped Silica Nanospheres for Controlled Drug Release. International Journal of Biological Macromolecules, 148, 302-315. https://doi.org/10.1016/j.ijbiomac.2020.01.093
Wang, X., et al. (2021) Synthesis of Casein-γ-Polyglutamic Acid Hydrogels by Microbial Transglutaminase-Mediated Gelation for Controlled Release of Drugs. Journal of Biomaterials Applications, 36, 237-245. https://doi.org/10.1177/08853282211011724
Hadizadeh, F., et al. (2019) Casein-Based Hydrogel Carrying Insulin: Preparation, in Vitro Evaluation and in Vivo Assessment. Journal of Pharmaceutical Investigation, 49, 635-641. https://doi.org/10.1007/s40005-018-00422-y
Li, N.N., Fu, C.P. and Zhang, L.M. (2014) Using Casein and Oxidized Hyaluronic Acid to Form Biocompatible Composite Hydrogels for Controlled Drug Release. Materials Science & Engineering: C, 36, 287-293. https://doi.org/10.1016/j.msec.2013.12.025
Wang, J., et al. (2022) Casein Micelles Embedded Composite Organohydrogel as Potential Wound Dressing. International Journal of Biological Macromolecules, 211, 678-688. https://doi.org/10.1016/j.ijbiomac.2022.05.081
Zhu, Q., et al. (2023) White-Light Crosslinkable Milk Protein Bioadhesive with Ultrafast Gelation for First-Aid Wound Treatment. Biomaterials Research, 27, Article ID: s40824-023-00346-1. https://doi.org/10.1186/s40824-023-00346-1
Garcia, L.V., et al. (2023) Antiseptic-Loaded Casein Hydrogels for Wound Dressings. Pharmaceutics, 15, Article 334. https://doi.org/10.3390/pharmaceutics15020334
Lee, M.S., et al. (2023) Rationally Designed Bioactive Milk-Derived Protein Scaffolds Enhanced New Bone Formation. Bioactive Materials, 20, 368-380. https://doi.org/10.1016/j.bioactmat.2022.05.028
Dragusin, D.M., et al. (2011) Casein—Nanosized Nucleator for in Vitro Mineralization. Optoelectronics and Advanced Materials: Rapid Communications, 5, 1320-1324.
Dumitrescu, G.D., et al. (2022) Development of New Hybrid Casein-Loaded PHEMA-PEGDA Hydrogels with Enhanced Mineralisation Potential. Materials, 15, Article 840. https://doi.org/10.3390/ma15030840
Gong, Y., et al. (2019) Development of CaCO3 Microsphere-Based Composite Hydrogel for Dual Delivery of Growth Factor and Ca to Enhance Bone Regeneration. Biomaterials Science, 7, 3614-3626. https://doi.org/10.1039/C9BM00463G
Sali, S.S., et al. (2021) Biodegradable Methacrylated Casein for Cardiac Tissue Engineering Applications. Journal of Materials Chemistry B, 9, 1557-1567. https://doi.org/10.1039/D0TB02496A