信号转导淋巴细胞激活分子(SLAM)受体家族(SLAMF)是CD2超家族的一组受体,它是由许多造血细胞上表达的几个成员组成的。CD48作为信号淋巴细胞激活分子家族的成员,是一种糖基磷脂酰肌醇(GPI)锚定的细胞表面蛋白,参与免疫细胞的黏附和激活等作用。CD48最初是在病毒诱导的B细胞上发现的,经研究发现其结合CD2和其他分子,但它在小鼠和人类系统中的高亲和力配体是CD244 (2B4),同时还发现CD48也与一些外源性配体相作用。本文主要介绍CD48结构及其与不同配体之间作用,以及讨论了CD48在哮喘、系统性红斑狼疮、炎症性肠病、血液系统及肝恶性肿瘤等疾病中作用的研究。 The signal transduction lymphocyte activating molecule (SLAM) receptor family (SLAMF) is a group of receptors of the CD2 superfamily, which is composed of several members expressed on many hematopoietic cells. As a member of the family of signal lymphocyte activating molecules, CD48 is a cell surface protein anchored by glycosylphosphatidylinositol (GPI), which participates in the adhesion and activation of immune cells. CD48 was originally found in virus-induced B cells. It was found that it binds CD2 and other molecules, but its high affinity ligand in mouse and human system is CD244 (2B4). It is also found that CD48 also interacts with some exogenous ligands. This paper mainly introduces the structure of CD48 and its interaction with different ligands, and discusses the role of CD48 in asthma, systemic lupus erythematosus, inflammatory bowel disease, hematological system and liver malignant tumors.
The signal transduction lymphocyte activating molecule (SLAM) receptor family (SLAMF) is a group of receptors of the CD2 superfamily, which is composed of several members expressed on many hematopoietic cells. As a member of the family of signal lymphocyte activating molecules, CD48 is a cell surface protein anchored by glycosylphosphatidylinositol (GPI), which participates in the adhesion and activation of immune cells. CD48 was originally found in virus-induced B cells. It was found that it binds CD2 and other molecules, but its high affinity ligand in mouse and human system is CD244 (2B4). It is also found that CD48 also interacts with some exogenous ligands. This paper mainly introduces the structure of CD48 and its interaction with different ligands, and discusses the role of CD48 in asthma, systemic lupus erythematosus, inflammatory bowel disease, hematological system and liver malignant tumors.
詹雁吉,钟 玲. CD48与配体的相互作用及疾病中的研究进展The Interaction between CD48 with Ligands and the Research Progress in Diseases[J]. 生物医学, 2024, 14(02): 289-297. https://doi.org/10.12677/hjbm.2024.142032
参考文献References
Dragovich, M.A.and Mor, A. (2018) The SLAM Family Receptors: Potential Therapeutic Targets for Inflammatory and Autoimmune Diseases. Autoimmunity Reviews, 17, 674-682. https://doi.org/10.1016/j.autrev.2018.01.018
Calpe, S., Wang, N., Romero, X., Berger, S.B., Lanyi, A., Engel, P., et al. (2008) The SLAM and SAP Gene Families Control Innate and Adaptive Immune Responses. Advances in Immunology, 97, 177-250. https://linkinghub.elsevier.com/retrieve/pii/S0065277608000047 https://doi.org/10.1016/S0065-2776(08)00004-7
Cannons, J.L., Tangye, S.G. and Schwartzberg, P.L. (2011) SLAM Family Receptors and SAP Adaptors in Immunity. Annual Review of Immunology, 29, 665-705. https://doi.org/10.1146/annurev-immunol-030409-101302
Thorley-Lawson, D.A., Schooley, R.T., Bhan, A.K. and Nadler, L.M. (1982) Epstein-Barr Virus Superinduces a New Human B Cell Differentiation Antigen (B-LAST 1) Expressed on Transformed Lymphoblasts. Cell, 30, 415-425. https://doi.org/10.1016/0092-8674(82)90239-2
Staunton, D.E., Fisher, R.C., LeBeau, M.M., Lawrence, J.B., Barton, D.E., Francke, U., et al. (1989) Blast-1 Possesses a Glycosyl-Phosphatidylinositol (GPI) Membrane Anchor, Is Related to LFA-3 and OX-45, and Maps to Chromosome 1q21-23. Journal of Experimental Medicine, 169, 1087-1099. https://doi.org/10.1084/jem.169.3.1087
McArdel, S.L., Terhorst, C. and Sharpe, A.H. (2016) Roles of CD48 in Regulating Immunity and Tolerance. Clinical immunology (Orlando, Fla.), 164, 10-20. https://doi.org/10.1016/j.clim.2016.01.008
Smith, G.M., Biggs, J., Norris, B., Anderson-Stewart, P. and Ward, R. (1997) Detection of a Soluble Form of the Leukocyte Surface Antigen CD48 in Plasma and Its Elevation in Patients with Lymphoid Leukemias and Arthritis. Journal of Clinical Immunology, 17, 502-509. https://doi.org/10.1023/A:1027327912204
Metz, C.N., Brunner, G., Choi-Muira, N.H., Nguyen, H., Gabrilove, J., Caras, I.W., et al. (1994) Release of GPI-Anchored Membrane Proteins by a Cell-Associated GPI-Specific Phospholipase D. The EMBO Journal, 13, 1741-1751. https://doi.org/10.1002/j.1460-2075.1994.tb06438.x
Elishmereni, M., Fyhrquist, N., Singh Gangwar, R., Lehtimäki, S., Alenius, H. and Levi-Schaffer, F. (2014) Complex 2B4 Regulation of Mast Cells and Eosinophils in Murine Allergic Inflammation. Journal of Investigative Dermatology, 134, 2928-2937. https://doi.org/10.1038/jid.2014.280
Munitz, A., Bachelet, I., Finkelman, F.D., Rothenberg, M.E. and Levi-Schaffer, F. (2007) CD48 Is Critically Involved in Allergic Eosinophilic Airway Inflammation. American Journal of Respiratory and Critical Care Medicine, 175, 911-918. https://doi.org/10.1164/rccm.200605-695OC
Gangwar, R.S., Minai-Fleminger, Y., Seaf, M., Gutgold, A., Shikotra, A., Barber, C., et al. (2017) CD48 on Blood Leukocytes and in Serum of Asthma Patients Varies with Severity. Allergy, 72, 888-895. https://doi.org/10.1111/all.13082
Tissot, C., Rebouissou, C., Klein, B. and Mechti, N. (1997) Both Human α/β and γ Interferons Upregulate the Expression of CD48 Cell Surface Molecules. Journal of Interferon & Cytokine Research, 17, 17-26. https://doi.org/10.1089/jir.1997.17.17
Pahima, H., Zaffran, I., Ben-Chetrit, E., Jarjoui, A, Gaur, P., Manca, M.L., et al. (2022) COVID-19 Patients Are Characterized by Dysregulated Levels of Membrane and Soluble CD48. Annals of Allergy, Asthma & Immunology, 208, Article 161.04. https://doi.org/10.4049/jimmunol.208.Supp.161.04
Wu, Y., Kuang, D.M., Pan, W.D., Wan, Y.L., Lao, X.M., Wang, D., et al. (2013) Monocyte/Macrophage-Elicited Natural Killer Cell Dysfunction in Hepatocellular Carcinoma Is Mediated by CD48/2B4 Interactions. Hepatology, 57, 1107-1116. https://doi.org/10.1002/hep.26192
Hosen, N., Ichihara, H., Mugitani, A., Aoyama, Y., Fukuda, Y., Kishida, S., et al. (2012) CD48 as a Novel Molecular Target for Antibody Therapy in Multiple Myeloma. British Journal of Haematology, 156, 213-224. https://doi.org/10.1111/j.1365-2141.2011.08941.x
Chiba, M., Shimono, J., Ishio, T., Takei, N., kasahara, K., Ogasawara, R., et al. (2022) Genome-Wide CRISPR Screens Identify CD48 Defining Susceptibility to NK Cytotoxicity in Peripheral T-Cell Lymphomas. Blood, 140, 1951-1963. https://doi.org/10.1182/blood.2022015646
Mardomi, A., Mohammadi, N., Khosroshahi, H.T. and Abediankenari, S. (2020) An Update on Potentials and Promises of T Cell Co-Signaling Molecules in Transplantation. Journal of Cellular Physiology, 235, 4183-4197. https://doi.org/10.1002/jcp.29369
Dong, Z., Cruz-Munoz, M.E., Zhong, M.C., Chen, R., Latour, S. and Veillette, A. (2009) Essential Function for SAP Family Adaptors in the Surveillance of Hematopoietic Cells by Natural Killer Cells. Nature Immunology, 10, 973-980. https://doi.org/10.1038/ni.1763
Claus, M., Urlaub, D., Fasbender, F. and Watzl, C. (2019) SLAM Family Receptors in Natural Killer Cells-Mediators of Adhesion, Activation and Inhibition via cis and Trans Interactions. Clinical Immunology, 204, 37-42. https://doi.org/10.1016/j.clim.2018.10.011
Nichols, K.E., Harkin, D.P., Levitz, S., Krainer, M., Kolquist, K.A., Genovese, C., et al. (1998) Inactivating Mutations in an SH2 Domain-Encoding Gene in X-Linked Lymphoproliferative Syndrome. Proceedings of the National Academy of Sciences of the United States of America, 95, 13765-13770. https://doi.org/10.1073/pnas.95.23.13765
Pahima, H., Puzzovio, P.G. and Levi-Schaffer, F. (2019) 2B4 and CD48: A Powerful Couple of the Immune System. Clinical Immunology, 204, 64-68. https://doi.org/10.1016/j.clim.2018.10.014
Taniguchi, R.T., Guzior, D. and Kumar, V. (2007) 2B4 Inhibits NK-Cell Fratricide. Blood, 110, 2020-2023. https://doi.org/10.1182/blood-2007-02-076927
Mathew, S.O., Kumaresan, P.R., Lee, J.K., Huynh, V.T. and Mathew, P.A. (2005) Mutational Analysis of the Human 2B4 (CD244)/CD48 Interaction: Lys 68 and Glu 70 in the V Domain of 2B4 Are Critical for CD48 Binding and Functional Activation of NK Cells. The Journal of Immunology, 175, 1005-1013. https://doi.org/10.4049/jimmunol.175.2.1005
Claus, M., Wingert, S. and Watzl, C. (2016) Modulation of Natural Killer Cell Functions by Interactions between 2B4 and CD48 in cis and in Trans. Open Biology, 6, Article 160010. https://doi.org/10.1098/rsob.160010
Tufa, D.M., Yingst, A.M., Trahan, G.D., Shank, T., Jones, D., Shim, S., et al. (2020) Human Innate Lymphoid Cell Precursors Express CD48 That Modulates ILC Differentiation through 2B4 Signaling. Science Immunology, 5, eaay4218. https://doi.org/10.1126/sciimmunol.aay4218
Assarsson, E., Kambayashi, T., Schatzle, J.D., Cramer, S.O., von Bonin, A., Jensen, P.E., et al. (2004) NK Cells Stimulate Proliferation of T and NK Cells through 2B4/CD48 Interactions. The Journal of Immunology, 173, 174-180. https://doi.org/10.4049/jimmunol.173.1.174
Lee, K.M., Bhawan, S., Majima, T., Wei, H., Nishimura, M.I., Yagita, H., et al. (2003) Cutting Edge: The NK Cell Receptor 2B4 Augments Antigen-Specific T Cell Cytotoxicity through CD48 Ligation on Neighboring T Cells. The Journal of Immunology, 170, 4881-4885. https://doi.org/10.4049/jimmunol.170.10.4881
Kis-Toth, K. and Tsokos, G.C. (2014) Engagement of SLAMF2/CD48 Prolongs the Time Frame of Effective T Cell Activation by Supporting Mature Dendritic Cell Survival. The Journal of Immunology, 192, 4436-4442. https://doi.org/10.4049/jimmunol.1302909
Elishmereni, M., Bachelet, I., Nissim Ben-Efraim, A.H., Mankuta, D. and Levi-Schaffer, F. (2013) Interacting Mast Cells and Eosinophils Acquire an Enhanced Activation State in vitro. Allergy, 68, 171-179. https://doi.org/10.1111/all.12059
Matsui, T., Connolly, J.E., Michnevitz, M., Chaussabel, D., Yu, C.I., Glaser, C., et al. (2009) CD2 Distinguishes Two Subsets of Human Plasmacytoid Dendritic Cells with Distinct Phenotype and Functions. The Journal of Immunology, 182, 6815-6823. https://doi.org/10.4049/jimmunol.0802008
Evans, E.J., Castro, M.A.A., O’Brien, R., Kearney, A., Walsh, H., Sparks, L.M., et al. (2006) Crystal Structure and Binding Properties of the CD2 and CD244 (2B4)-Binding Protein, CD48. Journal of Biological Chemistry, 281, 29309-19320. https://doi.org/10.1074/jbc.M601314200
Dustin, M.L., Sanders, M.E., Shaw, S. and Springer, T.A. (1987) Purified Lymphocyte Function-Associated Antigen 3 Binds to CD2 and Mediates T Lymphocyte Adhesion. Journal of Experimental Medicine, 165, 677-692. https://doi.org/10.1084/jem.165.3.677
Van Der Merwe, P.A., McPherson, D.C., Brown, M.H., Barclay, A.N., Cyster, J.G., Williams, A.F., et al. (1993) The NH2-Terminal Domain of Rat CD2 Binds Rat CD48 with a Low Affinity and Binding Does not Require Glycosylation of CD2. European Journal of Immunology, 23, 1373-1377. https://doi.org/10.1002/eji.1830230628
Li, B., Lu, Y., Zhong, M.C., Qian, J., Li, R., Davidson, D., et al. (2022) cis Interactions between CD2 and Its Ligands on T Cells Are Required for T Cell Activation. Science Immunology, 7, eabn6373. https://doi.org/10.1126/sciimmunol.abn6373
Qin, L., Chavin, K.D., Lin, J., Yagita, H. and Bromberg, J.S. (1994) Anti-CD2 Receptor and Anti-CD2 Ligand (CD48) Antibodies Synergize to Prolong Allograft Survival. Journal of Experimental Medicine, 179, 341-346. https://doi.org/10.1084/jem.179.1.341
Whitelock, J.M. and Iozzo, R.V. (2005) Heparan Sulfate: A Complex Polymer Charged with Biological Activity. Chemical Reviews, 105, 2745-2764. https://doi.org/10.1021/cr010213m
Ianelli, C.J., DeLellis, R. and Thorley-Lawson, D.A. (1998) CD48 Binds to Heparan Sulfate on the Surface of Epithelial Cells. Journal of Biological Chemistry, 273, 23367-23375. https://doi.org/10.1074/jbc.273.36.23367
Baorto, D.M., Gao, Z., Malaviya, R., Dustin, M.L., van der Merwe, A., Lublin, D.M., et al. (1997) Survival of FimH-Expressing Enterobacteria in Macrophages Relies on Glycolipid Traffic. Nature, 389, 636-639. https://doi.org/10.1038/39376
Möller, J., Lühmann, T., Chabria, M., Hall, H. and Vogel, V. (2013) Macrophages Lift off Surface-Bound Bacteria Using a Filopodium-Lamellipodium Hook-and-Shovel Mechanism. Scientific Reports, 3, Article No. 2884. https://doi.org/10.1038/srep02884
Muñoz, S., Hernández-Pando, R., Abraham, S.N. and Enciso, J.A. (2003) Mast Cell Activation by Mycobacterium Tuberculosis: Mediator Release and Role of CD48. The Journal of Immunology, 170, 5590-5596. https://doi.org/10.4049/jimmunol.170.11.5590
Gangwar, R.S. and Levi-Schaffer, F. (2016) sCD48 Is Anti-Inflammatory in Staphylococcus Aureus Enterotoxin B-Induced Eosinophilic Inflammation. Allergy, 71, 829-839. https://doi.org/10.1111/all.12851
Hamid, Q. and Tulic, M. (2009) Immunobiology of Asthma. Annual Review of Physiology, 71, 489-507. https://doi.org/10.1146/annurev.physiol.010908.163200
Ip, W.K., Wong, C.K., Wang, C.B., Tian, Y.P. and Lam, C.W.K. (2005) Interleukin-3,-5, and Granulocyte Macrophage Colony-Stimulating Factor Induce Adhesion and Chemotaxis of Human Eosinophils via p38 Mitogen-Activated Protein Kinase and Nuclear Factor κB. Immunopharmacology and Immunotoxicology, 27, 371-393. https://doi.org/10.1080/08923970500240925
Klaman, L.D. and Thorley-Lawson, D.A. (1995) Characterization of the CD48 Gene Demonstrates a Positive Element that Is Specific to Epstein-Barr Virus-Immortalized B-Cell Lines and Contains an Essential NF-Kappa B Site. Journal of Virology, 69, 871-881. https://doi.org/10.1128/jvi.69.2.871-881.1995
Ha, S.G., Ge, X.N., Bahaie, N.S., Kang, B.N., Rao, A., Rao, S.P., et al. (2013) ORMDL3 Promotes Eosinophil Trafficking and Activation via Regulation of Integrins and CD48. Nature Communications, 4, Article No. 2479. https://doi.org/10.1038/ncomms3479
Munitz, A., Bachelet, I., Fraenkel, S., Katz, G., Mandelboim, O., Simon, H.U., et al. (2005) 2B4 (CD244) Is Expressed and Functional on Human Eosinophils. The Journal of Immunology, 174, 110-118. https://doi.org/10.4049/jimmunol.174.1.110
Chen, R., Relouzat, F., Roncagalli, R., Aoukaty, A., Tan, R., Latour, S., et al. (2004) Molecular Dissection of 2B4 Signaling: Implications for Signal Transduction by SLAM-Related Receptors. Molecular and Cellular Biology, 24, 5144-5156. https://doi.org/10.1128/MCB.24.12.5144-5156.2004
Zhang, T., Fang, Q., Liu, P., Wang, P., Feng, C. and Wang, J. (2022) Heme Oxygenase 1 Overexpression Induces Immune Evasion of Acute Myeloid Leukemia against Natural Killer Cells by Inhibiting CD48. Journal of Translational Medicine, 20, Article No. 394. https://doi.org/10.1186/s12967-022-03589-z
Siegel, R.L., Miller, K.D., Fuchs, H.E. and Jemal, A. (2021) Cancer Statistics, 2021. CA: A Cancer Journal for Clinicians, 7, 7-33. https://doi.org/10.3322/caac.21654
Umemoto, T., Johansson, A., Ahmad, S.A.I., Hashimoto, M., Kubota, S., Kikuchi, K., et al. (2022) ATP Citrate Lyase Controls Hematopoietic Stem Cell Fate and Supports Bone Marrow Regeneration. The EMBO Journal, 41, e109463. https://onlinelibrary.wiley.com/doi/10.15252/embj.2021109463 https://doi.org/10.15252/embj.2021109463
Bald, T., Krummel, M.F., Smyth, M.J. and Barry, K.C. (2020) The NK Cell-Cancer Cycle: Advances and New Challenges in NK Cell-Based Immunotherapies. Nature Immunology, 21, 835-847. https://doi.org/10.1038/s41590-020-0728-z
O’Shea, J.J., Holland, S.M. and Staudt, L.M. (2013) JAKs and STATs in Immunity, Immunodeficiency, and Cancer. The New England Journal of Medicine, 368, 161-170. https://doi.org/10.1056/NEJMra1202117
Stark, G.R. and Darnell, J.E. (2012) The JAK-STAT Pathway at Twenty. Immunity, 36, 503-514. https://doi.org/10.1016/j.immuni.2012.03.013
Morichika, K., Karube, K., Kayo, H., Uchino, S., Nishi, Y., Nakachi, S., et al. (2019) Phosphorylated STAT 3 Expression Predicts Better Prognosis in Smoldering Type of Adult T-Cell Leukemia/Lymphoma. Cancer Science, 110, 2982-2991. https://doi.org/10.1111/cas.14114
Maeda, M., Tanabe-Shibuya, J., Miyazato, P., Masutani, H., Yasunaga, J.I, Usami, K., et al. (2020) IL-2/IL-2 Receptor Pathway Plays a Crucial Role in the Growth and Malignant Transformation of HTLV-1-Infected T Cells to Develop Adult T-Cell Leukemia. Frontiers in Microbiology, 11, Article 356. https://doi.org/10.3389/fmicb.2020.00356
Keszei, M., Latchman, Y.E., Vanguri, V.K., Brown, D.R., Detre, C., Morra, M., et al. (2011) Auto-Antibody Production and Glomerulonephritis in Congenic Slamf1-/- and Slamf2-/-[B6.129] but not in Slamf1-/- and Slamf2-/-[BALB/c.129] Mice. International Immunology, 23, 149-158. https://doi.org/10.1093/intimm/dxq465
Koh, A.E., Njoroge, S.W., Feliu, M., Cook, A., Selig, M.K., Latchman, Y.E., et al. (2011) The SLAM Family Member CD48 (Slamf2) Protects Lupus-Prone Mice from Autoimmune Nephritis. Journal of Autoimmunity, 37, 48-57. https://doi.org/10.1016/j.jaut.2011.03.004
Balada, E., Castro-Marrero, J., Pujol, A.P., Torres-Salido, M.T., Vilardell-Tarrés, M. and Ordi-Ros, J. (2011) Enhanced Transcript Levels of CD48 in CD4 T Cells from Systemic Lupus Erythematosus Patients. Immunobiology, 216, 1034-1037. https://doi.org/10.1016/j.imbio.2011.03.004
Karampetsou, M.P., Comte, D., Kis-Toth, K., Kyttaris, V.C. and Tsokos, G.C. (2017) Expression Patterns of Signaling Lymphocytic Activation Molecule Family Members in Peripheral Blood Mononuclear Cell Subsets in Patients with Systemic Lupus Erythematosus. PLOS ONE, 12, e0186073. https://doi.org/10.1371/journal.pone.0186073
Moran, M. and Miceli, M.C. (1998) Engagement of GPI-Linked CD48 Contributes to TCR Signals and Cytoskeletal Reorganization. Immunity, 9, 787-796. https://doi.org/10.1016/S1074-7613(00)80644-5
Krishnan, S., Nambiar, M.P., Warke, V.G., Fisher, C.U., Mitchell, J., Delaney, N., et al. (2004) Alterations in Lipid Raft Composition and Dynamics Contribute to Abnormal T Cell Responses in Systemic Lupus Erythematosus. The Journal of Immunology, 172, 7821-7831. https://doi.org/10.4049/jimmunol.172.12.7821
Abadía-Molina, A.C., Ji, H., Faubion, W.A., Julien, A., Latchman, Y., Yagita, H., et al. (2006) CD48 Controls T-Cell and Antigen-Presenting Cell Functions in Experimental Colitis. Gastroenterology, 130, 424-434. https://doi.org/10.1053/j.gastro.2005.12.009
Luan, H.H., Wang, A., Hilliard, B.K., Carvalho, F., Rosen, C.E., Ahasic, A.M., et al. (2019) GDF15 Is an Inflammation-Induced Central Mediator of Tissue Tolerance. Cell, 178, 1231-1244. E11. https://doi.org/10.1016/j.cell.2019.07.033
Uhlen, M., Zhang, C., Lee, S., Sjöstedt, E., Fagerberg, L., Bidkhori, G., et al. (2017) A Pathology Atlas of the Human Cancer Transcriptome. Science, 357, eaan2507. https://doi.org/10.1126/science.aan2507
Wang, Z., He, L., Li, W., Xu, C., Zhang, J., Wang, D., et al. (2021) GDF15 Induces Immunosuppression via CD48 on Regulatory T Cells in Hepatocellular Carcinoma. The Journal for ImmunoTherapy of Cancer, 9, e002787. https://doi.org/10.1136/jitc-2021-002787
Nishikawa, A., Suzuki, K., Kassai, Y., Gotou, Y., Takiguchi, M., Miyazaki, T., et al. (2016) Identification of Definitive Serum Biomarkers Associated with Disease Activity in Primary Sjögren’s Syndrome. Arthritis Research & Therapy, 18, Article 106. https://doi.org/10.1186/s13075-016-1006-1