新型冠状病毒SARS-CoV-2的主蛋白酶(Main Protease, Mpro),也称为3-糜蛋白酶样蛋白酶(3CLpro),在病毒复制的过程中发挥核心作用。Mpro的结构和功能在 β-冠状病毒中相对保守,在人体内没有同源蛋白,因此是抗病毒药物开发的关键靶点。本研究完成了SARS-CoV-2 Mpro的原核表达与纯化,获得具有高纯度和高均一性的蛋白质样品。利用气相扩散坐滴法开展了Mpro的结晶筛选,获得单晶体后将其浸泡在由谷胱甘肽包裹的金团簇纳米材料溶液中,成功解析了仅有第156位半胱氨酸结合一个金离子的一个新型X射线衍射晶体结构。结构分析发现,Mpro蛋白的Cys156结合金离子后Asp153~Cys156区域的构象发生了~0.6 Å的偏移,推测该构象变化进一步通过变构效应抑制Mpro的生物功能,为新冠病毒的纳米型抑制剂的研发提供了新的信息。 The main protease (Mpro) of the novel coronavirus SARS-CoV-2, also known as 3C-like protease (3CLpro), plays a central role in the virus replication process. The structure and function of Mproare relatively conserved in β-coronaviruses and there is no homologous protein in human, making it a key target for antiviral drug development. In this study, we successfully completed the prokaryotic expression and purification of SARS-CoV-2 Mpro, obtaining a high-purity and high-homo- geneity protein sample. Crystallization screening of Mprowas carried out using the vapor-diffusion sitting-drop method. After obtaining single crystals, they were soaked in a solution of the nano-materialglutathione-protected Au clusters, resulting in a novel X-ray diffraction crystal structure with only one cysteine at position 156 binding to one Au(I) ion. Structural analysis revealed a ~0.6 Å displacement in the conformation of the Asp153~Cys156 region of the Mproprotein upon binding of the Cys156 to the gold ion, suggesting that this conformational change further inhibits the biological function of Mprothrough an allosteric effect, providing new information for the development of novel coronavirus inhibitors.
SARS-CoV-2,M
pro,金团簇,蛋白质表达与纯化,X射线晶体结构, SARS-CoV-2
M
pro
Gold Cluster
Protein Expression and Purification
X-ray Crystal Structure
摘要
The main protease (Mpro) of the novel coronavirus SARS-CoV-2, also known as 3C-like protease (3CLpro), plays a central role in the virus replication process. The structure and function of Mproare relatively conserved in β-coronaviruses and there is no homologous protein in human, making it a key target for antiviral drug development. In this study, we successfully completed the prokaryotic expression and purification of SARS-CoV-2 Mpro, obtaining a high-purity and high-homogeneity protein sample. Crystallization screening of Mprowas carried out using the vapor-diffusion sitting-drop method. After obtaining single crystals, they were soaked in a solution of the nano-materialglutathione-protected Au clusters, resulting in a novel X-ray diffraction crystal structure with only one cysteine at position 156 binding to one Au(I) ion. Structural analysis revealed a ~0.6 Å displacement in the conformation of the Asp153~Cys156 region of the Mproprotein upon binding of the Cys156 to the gold ion, suggesting that this conformational change further inhibits the biological function of Mprothrough an allosteric effect, providing new information for the development of novel coronavirus inhibitors.
Keywords:SARS-CoV-2, Mpro, Gold Cluster, Protein Expression and Purification, X-ray Crystal Structure
离心沉淀的菌体用悬菌缓冲液(20 mM Tris-HCl pH 8.0,20 mM咪唑,500 mM NaCl)悬起。随后使用高压破碎仪破碎菌体,利用镍亲和层析柱纯化目的蛋白,具体操作如下:使用漂洗缓冲液(20 mM Tris-HCl pH 8.0,300 mM NaCl,50 mM咪唑)进行漂洗,去除杂蛋白;使用洗脱缓冲液(20 mM Tris-HCl pH 8.0,300 mM NaCl,300 mM咪唑)将目的蛋白从柱子上洗脱下来。向洗脱的蛋白溶液加入TEV (Tobacco Etch Virus,烟草蚀纹病毒)酶,添加比例约为15:1 (蛋白与TEV酶的摩尔比),在组分为20 mM Tris-HCl pH8.0,100 mM NaCl,1 mM DTT (Dithiothreitol,二硫苏糖醇)溶液中4℃条件下过夜透析,以切除目的蛋白上的His标签。透析后的样品反挂镍柱进一步纯化,具体操作如下:用反挂缓冲液(20 mM Tris-HCl pH 8.0,300 mM NaCl,50 mM咪唑)平衡柱子,把透析后无His标签的样品中NaCl、咪唑浓度调节到与反挂缓冲液相同,利用镍亲和层析柱去掉样品溶液中含有His标签的TEV酶和未被酶切的目的蛋白。将流穿样品浓缩到500 μL,用Superdex 200 10/300分子筛进行纯化(缓冲液为20 mM Tris-HCl pH7.5,150 mM NaCl,1 mM DTT)。将Mpro蛋白样品浓缩到10 mg/mL,速冻后于−80℃条件下保存,利用SDS-PAGE电泳鉴定蛋白表达与纯化的结果。
2.2.2. 晶体生长
利用坐滴扩散法,使用PEG/Ion、PEGRx、Classics、Screen、Index、Natrix、SaltRx等晶体筛选试剂盒进行结晶条件的筛选。最终在PEG/Ion试剂盒的1号条件(0.2 M NaF, 20% PEG3350, pH 7.3)下生长出了晶体。但是初筛获得的晶体体积较小,不符合X射线衍射标准,因此对该条件进行了一定程度上的优化,包括浓度和pH的微调,最终优化获得适合X射线衍射的单晶体。
将金团簇浓缩至浓度为100 mM,使用添加了1 mM TCEP的蛋白结晶池液稀释金团簇至10 mM。添加TCEP的目的是为了防止蛋白晶体氧化。将Mpro晶体浸泡在含有金团簇的结晶池液中24 hr,使金团簇和晶体中的蛋白质分子充分互作。
刘雪静,赵文聪,高欣欣,陈思旭,张博涛,王君帅,李朝阳,温一帆,高 靓,曹 鹏. SARS-CoV-2主蛋白酶的表达、纯化和一种新型晶体结构的研究Expression and Purification of SARS-CoV-2 Main Protease and Study of Novel Crystal Structure [J]. 生物医学, 2024, 14(02): 229-239. https://doi.org/10.12677/hjbm.2024.142025
参考文献References
Zhou, P., Yang, X.L., Wang, X.G., Hu, B., Zhang, L., Zhang, W., Si, H.R., Zhu, Y., Li, B., Huang, C.L., Chen, H.D., Chen, J., Luo, Y., Guo, H., Jiang, R.D., Liu, M.Q., Chen, Y., Shen, X.R., Wang, X., Zheng, X.S., Zhao, K., Chen, Q.J., Deng, F., Liu, L.L., Yan, B., Zhan, F.X., Wang, Y.Y., Xiao, G.F. and Shi, Z.L. (2020) Addendum: A Pneumonia Outbreak Associated with a New Coronavirus of Probable Bat Origin. Nature,588, E6. https://doi.org/10.1038/s41586-020-2951-z
Kreier, F. (2022) Deltacron: The Story of the Variant That Wasn’t. Nature,602, 19. https://doi.org/10.1038/d41586-022-00149-9
Khailany, R.A., Safdar, M. and Ozaslan, M. (2020) Genomic Characterization of a Novel SARS-CoV-2. Gene Reports,19, Article ID: 100682. https://doi.org/10.1016/j.genrep.2020.100682
Su, S., Wong, G., Shi, W.F., Liu, J., Lai, A.C.K., Zhou, J.Y., Liu, W.J., Bi, Y.H. and Gao, G.F. (2016) Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses. Trends in Microbiology,24, 490-502. https://doi.org/10.1016/j.tim.2016.03.003
Ye, Z.W., Yuan, S.F., Yuen, K.S., Fung, S.Y., Chan, C.P. and Jin, D.Y. (2020) Zoonotic Origins of Human Coronaviruses. International Journal of Biological Sciences,16, 1686-1697. https://doi.org/10.7150/ijbs.45472
Lee, J., Kenward, C., Worrall, L.J., Vuckovic, M., Gentile, F., Ton, A.T., Ng, M., Cherkasov, A., Strynadka, N.C.J. and Paetzel, M. (2022) X-Ray Crystallographic Characterization of the SARS-CoV-2 Main Protease Polyprotein Cleavage Sites Essential for Viral Processing and Maturation. Nature Communications,13, Article No. 5196. https://doi.org/10.1038/s41467-022-32854-4
Fan, K.Q., Wei, P., Feng, Q., Chen, S.D., Huang, C.K., Ma, L., Lai, B., Pei, J.F., Liu, Y., Chen, J.G. and Lai, L.H. (2004) Biosynthesis, Purification, and Substrate Specificity of Severe Acute Respiratory Syndrome Coronavirus 3C-Like Proteinase. Journal of Biological Chemistry,279, 1637-1642. https://doi.org/10.1074/jbc.M310875200
Zhao, Y., Zhu, Y., Liu, X., Jin, Z.M., Duan, Y.K., Zhang, Q., Wu, C.Y., Feng, L., Du, X.Y., Zhao, J.Y., Shao, M.L., Zhang, B., Yang, X.N., Wu, L.J., Ji, X.Y., Guddat, L.W., Yang, K.L., Rao, Z.H. and Yang, H.T. (2022) Structural Basis for Replicase Polyprotein Cleavage and Substrate Specificity of Main Protease from SARS-CoV-2. Proceedings of the National Academy of Sciences of the United States of America,119, e2117142119. https://doi.org/10.1073/pnas.2117142119
Klemm, T., Ebert, G., Calleja, D.J., Allison, C.C., Richardson, L.W., Bernardini, J.P., Lu, B.G.C., Kuchel, N.W., Grohmann, C., Shibata, Y., Gan, Z.Y., Cooney, J.P., Doerflinger, M., Au, A.E., Blackmore, T.R., Van Noort, G.J.V., Geurink, P.P., Ovaa, H., Newman, J., Riboldi-Tunnicliffe, A., Czabotar, P.E., Mitchell, J.P., Feltham, R., Lechtenberg, B.C., Lowes, K.N., Dewson, G., Pellegrini, M., Lessene, G. and Komander, D. (2020) Mechanism and Inhibition of the Papain-Like Protease, PLpro, of SARS-CoV-2. EMBO Journal,39, e106275. https://doi.org/10.15252/embj.2020106275
Milligan, J.C., Zeisner, T.U., Papageorgiou, G., Joshi, D., Soudy, C., Ulferts, R., Wu, M., Lim, C.T., Tan, K.W., Weissmann, F., Canal, B., Fujisawa, R., Deegan, T., Nagaraj, H., Bineva-Todd, G., Basier, C., Curran, J.F., Howell, M., Beale, R., Labib, K., Reilly, N.O. and Diffley, J.F.X. (2021) Identifying SARS-CoV-2 Antiviral Compounds by Screening for Small Molecule Inhibitors of Nsp5 Main Protease. Biochemical Journal,478, 2499-2515. https://doi.org/10.1042/BCJ20210197
Li, X. and Song, Y.C. (2023) Structure and Function of SARS-CoV and SARS-CoV-2 Main Proteases and Their Inhibition: A Comprehensive Review. European Journal of Medicinal Chemistry,260, Article ID: 115772. https://doi.org/10.1016/j.ejmech.2023.115772
Stobart, C.C., Sexton, N.R., Munjal, H., Lu, X.T., Molland, K.L., Tomar, S., Mesecar, A.D. and Denison, M.R. (2013) Chimeric Exchange of Coronavirus Nsp5 Proteases (3CLpro) Identifies Common and Divergent Regulatory Determinants of Protease Activity. Journal of Virology,87, 12611-12618. https://doi.org/10.1128/JVI.02050-13
Lu, X.T., Lu, Y.Q. and Denison, M.R. (1996) Intracellular and in Vitro-Translated 27-KDa Proteins Contain the 3C-Like Proteinase Activity of the Coronavirus MHV-A59. Virology,222, 375-382. https://doi.org/10.1006/viro.1996.0434
Zhang, L.L., Lin, D.Z., Sun, X.Y.Y., Curth, U., Drosten, C., Sauerhering, L., Becker, S., Rox, K. and Hilgenfeld, R. (2020) Crystal Structure of SARS-CoV-2 Main Protease Provides a Basis for Design of Improved α-Ketoamide Inhibitors. Science,368, 409-412. https://doi.org/10.1126/science.abb3405
Xiong, M.Y., Su, H.X., Zhao, W.F., Xie, H., Shao, Q. and Xu, Y.C. (2021) What Coronavirus 3C-Like Protease Tells Us: From Structure, Substrate Selectivity, to Inhibitor Design. Medicinal Research Reviews,41, 1965-1998. https://doi.org/10.1002/med.21783
Goyal, B. and Goyal, D. (2020) Targeting the Dimerization of the Main Protease of Coronaviruses: A Potential Broad-Spectrum Therapeutic Strategy. ACS Combinatorial Science,22, 297-305. https://doi.org/10.1021/acscombsci.0c00058
Costanzi, E., Kuzikov, M., Esposito, F., Albani, S., Demitri, N., Giabbai, B., Camasta, M., Tramontano, E., Rossetti, G., Zaliani, A. and Storici, P. (2021) Structural and Biochemical Analysis of the Dual Inhibition of MG-132 against SARS-CoV-2 Main Protease (Mpro/3CLpro) and Human Cathepsin-L. International Journal of Molecular Sciences,22, Article 11779. https://doi.org/10.3390/ijms222111779
Su, H.L., Zhou, F., Huang, Z.R., Ma, X.H., Natarajan, K., Zhang, M.C., Huang, Y. and Su, H.B. (2021) Molecular Insights into Small-Molecule Drug Discovery for SARS-CoV-2. Angewandte Chemie International Edition,60, 9789-9802. https://doi.org/10.1002/anie.202008835
Bergamaschi, G., Metrangolo, P. and Dichiarante, V. (2022) Photoluminescent Nanocluster-Based Probes for Bioimaging Applications. Photochemical & Photobiological Sciences,21, 787-801. https://doi.org/10.1007/s43630-021-00153-4
Qian, H.F., Zhu, M.Z., Wu, Z.K. and Jin, R.C. (2012) Quantum Sized Gold Nanoclusters with Atomic Precision. Accounts of Chemical Research,45, 1470-1479. https://doi.org/10.1021/ar200331z
Yuan, Q., Wang, Y.L., Zhao, L.N., Liu, R., Gao, F.P., Gao, L. and Gao, X.Y. (2016) Peptide Protected Gold Clusters: Chemical Synthesis and Biomedical Applications. Nanoscale,8, 12095-12104. https://doi.org/10.1039/C6NR02750D
Negishi, Y., Nobusada, K. and Tsukuda, T. (2005) Glutathione-Protected Gold Clusters Revisited: Bridging the Gap Between Gold(I)-Thiolate Complexes and Thiolate-Protected Gold Nanocrystals. Journal of the American Chemical Society,127, 5261-5270. https://doi.org/10.1021/ja042218h
Zhou, C., Hao, G.Y., Thomas, P., Liu, J.B., Yu, M.X., Sun, S.S., Oz, O., Sun, X.K. and Zheng, J. (2013) Near-Infrared Emitting Radioactive Gold Nanoparticles with Molecular Pharmacokinetics. Angewandte Chemie International Edition,51, 10118-10122. https://doi.org/10.1002/anie.201203031
Zhou, C., Sun, C., Yu, M.X., Qin, Y.P., Wang, J.G., Kim, M. and Zheng, J. (2010) Luminescent Gold Nanoparticles with Mixed Valence States Generated from Dissociation of Polymeric Au(I) Thiolates. The Journal of Physical Chemistry C,114, 7727-7732. https://doi.org/10.1021/jp9122584
Kao, H.W., Lin, Y.Y., Chen, C.C., Chi, K.H., Tien, D.C., Hsia, C.C., Lin, W.J., Chen, F.D., Lin, M.H. and Wang, H.E. (2014) Biological Characterization of Cetuximab-Conjugated Gold Nanoparticles in a Tumor Animal Model. Nanotechnology,25, Article ID: 295102. https://doi.org/10.1088/0957-4484/25/29/295102
Zeng, C.J., Li, T., Das, A., Rosi, N.L. and Jin, R.C. (2013) Chiral Structure of Thiolate-Protected 28-Gold-Atom Nanocluster Determined by X-Ray Crystallography. Journal of the American Chemical Society,135, 10011-10013. https://doi.org/10.1021/ja404058q
Shiang, Y.C., Huang, C.C., Chen, W.Y., Chen, P.C. and Chang, H. T. (2012) Fluorescent Gold and Silver Nanoclusters for the Analysis of Biopolymers and Cell Imaging. Journal of Materials Chemistry,22, 12972-12982. https://doi.org/10.1039/c2jm30563a
He, Z.S., Ye, F., Zhang, C.Y., Fan, J.D., Du, Z.Y., Zhao, W.C., Yuan, Q., Niu, W.C., Gao, F.P., He, B., Cao, P., Zhao, L.A., Gao, X.J., Gao, X.F., Sun, B., Dong, Y.H., Zhao, J.C., Qi, J.X., Liang, X.J., Jiang, H.D., Gong, Y., Tan, W.J. and Gao, X.Y. (2022) A Comparison of Remdesivir versus Gold Cluster In COVID-19 Animal Model: A Better Therapeutic Outcome of Gold Cluster. Nano Today,44, Article ID: 101468. https://doi.org/10.1016/j.nantod.2022.101468
Kabsch, W. (2010) XDS. Structural Biology,66, 125-132. https://doi.org/10.1107/S0907444909047337
Narayanan, A., Narwal, M., Majowicz, S.A., Varricchio, C., Toner, S.A., Ballatore, C., Brancale, A., Murakami, K.S. and Jose, J. (2022) Identification of SARS-CoV-2 Inhibitors Targeting Mpro and PLpro Using In-Cell-Protease Assay. Communications Biology,5, Article No. 169. https://doi.org/10.1038/s42003-022-03090-9
McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C. and Read, R.J. (2007) Phaser Crystallographic Software. Journal of Applied Crystallography,40, 658-674. https://doi.org/10.1107/S0021889807021206
Emsley, P. and Cowtan, K. (2004) Coot: Model-Building Tools for Molecular Graphics. Structural Biology,60, 2126-2132. https://doi.org/10.1107/S0907444904019158
Adams, P.D., Afonine, P.V., Bunkóczi, G., Chen, V.B., Davis, I.W., Echols, N., Headd, J.J., Hung, L.W., Kapral, G.J., Grosse-Kunstleve, R.W., McCoy, A.J., Moriarty, N.W., Oeffner, R., Read, R.J., Richardson, D.C., Richardson, J.S., Terwilliger, T.C. and Zwart, P.H. (2010) PHENIX: A Comprehensive Python-Based System for Macromolecular Structure Solution. Acta Crystallogr. Structural Biology,66, 213-221. https://doi.org/10.1107/S0907444909052925
Murshudov, G.N., Skubák, P., Lebedev, A.A., Pannu, N.S., Steiner, R.A., Nicholls, R.A., Winn, M.D., Long, F. and Vagin, A.A. (2011) REFMAC5 for the Refinement of Macromolecular Crystal Structures. Structural Biology,67, 355-367. https://doi.org/10.1107/S0907444911001314
Jin, Z.M., Du, X.Y., Xu, Y.C., Deng, Y.Q., Liu, M.Q., Zhao, Y., Zhang, B., Li, X.F., Zhang, L.K., Peng, C., Duan, Y.K., Yu, J., Wang, L., Yang, K.L., Liu, F.J., Jiang, R.D., Yang, X.L., You, T., Liu, X.C., Yang, X.N., Bai, F., Liu, H., Liu, X., Guddat, L.W., Xu, W.Q., Xiao, G.F., Qin, C.F., Shi, Z.L., Jiang, H.L., Rao, Z.H. and Yang, H.T. (2020) Structure of Mpro From SARS-CoV-2 and Discovery of Its Inhibitors. Nature,582, 289-293. https://doi.org/10.1038/s41586-020-2223-y
Salinas, G., Gao, W., Wang, Y., Bonilla, M., Yu, L., Novikov, A., Virginio, V.G., Ferreira, H.B., Vieites, M., Gladyshev, V.N., Gambino, D. and Dai, S.D. (2017) The Enzymatic and Structural Basis for Inhibition of Echinococcus Granulosus Thioredoxin Glutathione Reductase by Gold(I). Antioxidants & Redox Signaling,27, 1491-1504. https://doi.org/10.1089/ars.2016.6816