海上风电作为我国“十四五”规划的重要目标之一,垂直轴风力机(VAWT)在近海风场上有很大的优势。在目前众多学者的研究之中,为拉近VAWT与HAWT的差距,提升VAWT的性能,对VAWT的空气动力学研究很充分,但大型化VAWT的安全性和可靠性也成为备受关注的问题。本文从VAWT空气动力学和结构动力学两方面展开对VAWT力学性能研究的阐述,针对VAWT叶片结构动力学研究的不足提出了相应的观点。 Offshore wind power is one of the important goals of China’s 14th Five Year Plan, and vertical axis wind turbines (VAWT) have great advantages in offshore wind farms. In the current research of many scholars, in order to narrow the gap between VAWT and HAWT and improve the performance of VAWT, there is sufficient research on the aerodynamics of VAWT. However, the safety and reliability of large-scale VAWT have also become a highly concerned issue. This article elaborates on the mechanical performance research of VAWT from two aspects: aerodynamics and structural dynamics, and proposes corresponding views on the shortcomings of VAWT blade structural dynamics research.
Offshore wind power is one of the important goals of China’s 14th Five Year Plan, and vertical axis wind turbines (VAWT) have great advantages in offshore wind farms. In the current research of many scholars, in order to narrow the gap between VAWT and HAWT and improve the performance of VAWT, there is sufficient research on the aerodynamics of VAWT. However, the safety and reliability of large-scale VAWT have also become a highly concerned issue. This article elaborates on the mechanical performance research of VAWT from two aspects: aerodynamics and structural dynamics, and proposes corresponding views on the shortcomings of VAWT blade structural dynamics research.
张 涵,唐清春,黄健友. 垂直轴风力发电机力学性能研究综述A Review of Research on the Mechanical Performance of Vertical Axis Wind Turbines[J]. 机械工程与技术, 2024, 13(02): 144-153. https://doi.org/10.12677/met.2024.132018
参考文献References
Jiu, W., Marnoto, T., Mat, S., et al. (2015) Darrieus Vertical Axis Wind Turbine for Power Generation I: Assessment of Darrieus VAWT Configurations. Renewable Energy, 75, 50-67. https://doi.org/10.1016/j.renene.2014.09.038
许国东, 叶杭冶, 解鸿斌. 风电机组技术现状及发展方向[J]. 中国工程科学, 2018, 20(3): 44-50.
Tjiu, W., Marnoto, T., Mat, S., et al. (2015) Darrieus Vertical Axis Wind Turbine for Power Generation II: Challenges in HAWT and the Opportunity of Multi-Megawatt Darrieus VAWT Development. Renewable Energy, 75, 560-571. https://doi.org/10.1016/j.renene.2014.10.039
徐辉. 海上风电推动能源转型的战略选择与实践思考[J]. 能源, 2020(12): 78-82.
Trevo, J.P. (2005) Edward Golding’s Iinfluence on Wind Power. Wind Engineering, 29, 513-530. https://doi.org/10.1260/030952405776234553
Michael, B., Andrew, S. and Maurizio, C. (2014) Offshore Floating Vertical Axis Wind Turbines, Dynamics Modelling State of the Art. Part I: Aerodynamics. Renewable and Sustainable Energy Reviews, 39, 1214-1225. https://doi.org/10.1016/j.rser.2014.07.096
REN (2011) Renewables 2011: Global Status Report. Environmental Policy Collection.
Global Wind Energy Council (2019) Global Wind Report 2018 Annual Market Update. https://www.energy.gov/eere/wind/2018-wind-market-reports
Global Wind Energy Council (2020) Global Wind Report 2019 Annual Market Update. https://gwec.net/?s=Global Wind Report 2019 Annual Market Update
Sayer, F., Buerkner, F., Buchholz, B., et al. (2013) Influence of a Wind Turbine Service Life on the Mechanical Properties of the Material and the Blade. Wind Energy, 16, 163-174. https://doi.org/10.1002/we.536
Hunter, P.C. (2009) Multi-Megawatt Vertical Axis Wind Turbine. Hamburg Offshore Wind Conference, Hamburg,
姚英学, 汤志鹏. 垂直轴风力机应用概况及其展望[J]. 现代制造工程, 2010(3): 136-139, 144.
杨益飞, 潘伟, 朱熀秋. 垂直轴风力发电机技术综述及研究进展[J]. 中国机械工程, 2013, 24(5): 703-709.
Lam, H.F. and Peng, H.Y. (2016) Study of Wake Characteristics of a Vertical Axis Wind Turbine by Two-and Three-Dimensional Computational Fluid Dynamics Simulations. Renewable Energy, 90, 386-398. https://doi.org/10.1016/j.renene.2016.01.011
Rolin, V.F. and Porté-Agel, F. (2018) Experimental Investigation of Vertical-Axis Wind-Turbine Wakes in Boundary Layer Flow. Renewable Energy, 118, 1-13. https://doi.org/10.1016/j.renene.2017.10.105
Kadum, H., Friedman, S., Camp, E.H. and Cal, R.B. (2018) Development and Scaling of a Vertical Axis Wind Turbine Wake. Journal of Wind Engineering and Industrial Aerodynamics, 174, 303-311. https://doi.org/10.1016/j.jweia.2018.01.004
Almohammadi, K.M., Ingham, D.B., Ma, L. and Pourkashanian, M. (2015) Modeling Dynamic Stall of a Straight Blade Vertical Axis Wind Turbine. Journal of Fluids & Structures, 57, 144-158. https://doi.org/10.1016/j.jfluidstructs.2015.06.003
Wang, Q. and Zhao, Q. (2018) Rotor Airfoil Profile Optimization for Alleviating Dynamic Stall Characteristics. Aerospace Science and Technology, 72, 502-515. https://doi.org/10.1016/j.ast.2017.11.033
Jain, S. and Saha, U.K. (2020) On the Influence of Blade Thickness-to-Chord Ratio on Dynamic Stall Phenomenon in H-Type Darrieus Wind Rotors. Energy Conversion and Management, 218, Article ID: 113024. https://doi.org/10.1016/j.enconman.2020.113024
Sangwan, J. and Sengupta, T.K. (2017) Investigation of Compressibility Effects on Dynamic Stall of Pitching Airfoil. Physics of Fluids, 29, Article ID: 076104. https://doi.org/10.1063/1.4995457
Rezaeiha, A., Montazeri, H. and Blocken, B. (2018) Characterization of Aerodynamic Performance of Vertical Axis Wind Turbines: Impact of Operational Parameters. Energy Conversion and Management, 169, 45-77. https://doi.org/10.1016/j.enconman.2018.05.042
Xh, A., Ma, A., Psm, A., et al. (2020) Analysis of the Effect of Freestream Turbulence on Dynamic Stall of Wind Turbine Blades. International Journal of Heat and Fluid Flow, 85, Article ID: 108668.
Pablo, O., Thorsten, S. and Luis, R. (2018) Effect of Blade Cambering on Dynamic Stall in View of Designing Vertical Axis Turbines. Journal of Fluids Engineering, 140, Article ID: 061104. https://doi.org/10.1115/1.4039235
Leknys, R.R., Arjomandi, M., Kelso, R.M., et al. (2019) Dynamic Stall Flow Structure and Forces on Symmetrical Airfoils at High Angles of Attack and Rotation Rates. Journal of Fluids Engineering, 141, Article ID: 051104. https://doi.org/10.1115/1.4041523
Hau, N.R., Lin, M., Ingham, D., et al. (2020) A Critical Analysis of the Stall Onset in Vertical Axis Wind Turbines. Journal of Wind Engineering and Industrial Aerodynamics, 204, Article ID: 104264. https://doi.org/10.1016/j.jweia.2020.104264
Brianhand Kelly, G. and Cashman, A. (2017) Numerical Simulation of a Vertical Axis Wind Turbine Airfoil Experiencing Dynamic Stall at High Reynolds Numbers.Computers & Fluids, 149, 12-30. https://doi.org/10.1016/j.compfluid.2017.02.021
Yen, J. and Ahmed, N.A. (2013) Enhancing Vertical Axis Wind Turbine by Dynamic Stall Control Using Synthetic Jets. Journal of Wind Engineering and Industrial Aerodynamics, 114, 12-17. https://doi.org/10.1016/j.jweia.2012.12.015
Zhu, H., Hao, W., Li, C., et al. (2020) Effect of Flow-Deflecting-Gap Blade on Aerodynamic Characteristic of Vertical Axis Wind Turbines. Renewable Energy, 158, 370-387. https://doi.org/10.1016/j.renene.2020.05.092
Tavernier, D.D., Ferreira, C., Viré, A., et al. (2021) Controlling Dynamic Stall Using Vortex Generators on a Wind Turbine Airfoil. Renewable Energy, 172, 1194-1211.
Howell, R., Qin, N., Edwards, J. and Durrani, N. (2010) Wind Tunnel and Numerical Study of a Small Vertical Axis Wind Turbine. Renewable Energy, 35, 412-422. https://doi.org/10.1016/j.renene.2009.07.025
Danao, L.A., Eboibi, O. and Howell, R. (2013) An Experimental Investigation into the Influence of Unsteady Wind on the Performance of a Vertical Axis Wind Turbine. Applied Energy, 107, 403-411. https://doi.org/10.1016/j.apenergy.2013.02.012
Lee, Y.T. and Lim, H.C. (2015) Numerical Study of the Aerodynamic Performance of a 500W Darrieus-Type Vertical-Axis Wind Turbine. Renewable Energy, 83, 407-415. https://doi.org/10.1016/j.renene.2015.04.043
Subramanian, A., Arun, S., et al. (2017) Effect of Airfoil and Solidity on Performance of Small Scale Vertical Axis Wind Turbine Using Three Dimensional CFD Model. Energy, 133, 179-190. https://doi.org/10.1016/j.energy.2017.05.118
Elkhoury, M., Kiwata, T. and Aoun, E. (2015) Experimental and Numerical Investigation of a Three-Dimensional Vertical-Axis Wind Turbine with Variable-Pitch. Journal of Wind Engineering and Industrial Aerodynamics, 139, 111-123. https://doi.org/10.1016/j.jweia.2015.01.004
Rezaeiha, A., Kalkman, I. and Blocken, B. (2017) Effect of Pitch Angle on Power Performance and Aerodynamics of a Vertical Axis Wind Turbine. Applied Energy, 197, 132-150. https://doi.org/10.1016/j.apenergy.2017.03.128
Li, Y., Feng, F., Tian, W.Q., et al. (2011) Numerical Simulation on the Static Torque Performance of Vertical Axis Wind Turbine with Different Blade Airfoils. Applied Mechanics and Materials, 84-85, 702-705. https://doi.org/10.4028/www.scientific.net/AMM.84-85.702
Cao, H., Wu, X., Ye, H., et al. (2018) Optimization Research on Lift-Type Vertical Axis Wind Turbine Airfoil by CFD. Journal of Physics: Conference Series, 1064, Article ID: 012072. https://doi.org/10.1088/1742-6596/1064/1/012072
Jianyou, H., Chia-Ou, C. and Chien-Cheng, C. (2021) Analysis of Structural Vibrations of Vertical Axis Wind Turbine Blades via Hamilton’s Principle—Part 3: Pitch Angle and Equilibrium State. International Journal of Structural Stability and Dynamics, 21, Article ID: 2150070. https://doi.org/10.1142/S021945542150070X
Saeid, B., Amin, S. and Nader, J. (2008) Forced Vibration Analysis of Flexible Euler-Bernoulli Beams with Geometrical Discontinuities. 2008 American Control Conference, Seattle, 11-13 June 2008, 4029-4034.
Sun, X.J., Zhu, J.Y., Li, Z.J. and Sun, G.X. (2020) Rotation Improvement of Vertical Axis Wind Turbine by Offsetting Pitching Angles and Changing Blade Numbers. Energy, 215, Article ID: 119177. https://doi.org/10.1016/j.energy.2020.119177
Carne, T.G., Lauffer, J.P., Gomez, A.J., et al. (1987) Modal Testing the EOLE. SAND-87-1506.
Huang, J.Y., Zhang, H., Zhou, C., Tang, Q.C. and Lin, J.X. (2023) Nonlinear Structural Vibration of Multi-Megawatt Vertical Axis Wind Turbine Blades-Part 1: Derivation of Motion Equations. International Journal of Structural Stability and Dynamics. https://doi.org/10.1142/S0219455424501359
Huang, J.Y., Chang, C.O. and Chang, C.C. (2020) Analysis of Structural Vibrations of Vertical Axis Wind Turbine Blades via Hamilton’S Principle—Part 2: Exact and Approximate Solutions. International Journal of Structural Stability and Dynamics, 20, Article ID: 2050099. https://doi.org/10.1142/S0219455420500996
Huang, J.Y., Chang, C.O. and Chang, C.C. (2020) Analysis of Structural Vibrations of Vertical Axis Wind Turbine Blades via Hamilton’S Principle—Part 1: General Formulation. International Journal of Structural Stability and Dynamics, 20, Article ID: 2050098. https://doi.org/10.1142/S0219455420500984
田海姣, 王铁龙, 王颖. 垂直轴风力发电机发展概述[J]. 应用能源技术, 2006(11): 22-27.
田海姣, 高日, 王铁龙. 巨型垂直轴风力发电机组结构的动力特性分析[J]. 钢结构, 2007, 22(6): 38-41.
蒋周伟. H型垂直轴风力发电机风振特性与结构优化研究[D]: [硕士学位论文]. 武汉: 武汉理工大学, 2012.
Kim, H.H., Oh, Y. and Yoo, H.H. (2020) Simple Vibration Model for the Design of a Vertical Axis Wind Turbine. Journal of Mechanical Science and Technology, 34, 511-520. https://doi.org/10.1007/s12206-020-0101-z
Luk, K.F., So, R.M.C., Leung, R.C, K., et al. (2004) Aerodynamic and Structural Resonance of an Elastic Airfoil Due to Oncoming Vortices. AIAA Journal, 42, 899-907. https://doi.org/10.2514/1.2246
Blevins, R.D. and Saunders, H. (1977) Flow-Induced Vibration. Van Nostrand Reinhold, New York.
Sina, S. (2021) Aeroelastic Stability of Horizontal Axis Wind Turbine Blades. 7th Iran Wind Energy Conference (IWEC2021), Shahrood, 17-18 May 2021, 1-4.
Kallesøe, B.S. and Hansen, M.H. (2009) Some Effects of Large Blade Deflections on Aeroelastic Stability. 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, 5-8 January 2009. https://doi.org/10.2514/6.2009-839
Touraj, F. and Altan, K. (2016) Classical Aeroelastic Stability Analysis of Large Composite Wind Turbine Blades. 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, San Diego, 4-8 January 2016. https://doi.org/10.2514/6.2016-1959
Wanru, D., Yang, Y., Liqin, L., et al. (2020) Research on the Dynamical Responses of H-Type Floating VAWT Considering the Rigid-Flexible Coupling Effect. Journal of Sound and Vibration, 469, Article ID: 115162. https://doi.org/10.1016/j.jsv.2019.115162
Hodges, D.H. and Dowell, E.H. (1974) Nonlinear Equations of Motion for the Elastic Bending and Torsion of Twisted Nonuniform Rotor Blades. NASA TN D-7818.
Wu, X.L., Jiao, Y.H. and Chen, Z.B. (2022) An Analytical Model of a Rotating Radial Cantilever Beam Considering the Coupling Between Bending, Stretching, and Torsion. Journal of Vibration and Acoustics, 144, Article ID: 021004. https://doi.org/10.1115/1.4051494
Li, L., Zhang, X. and Li, Y. (2016) Analysis of Coupled Vibration Characteristics of Wind Turbine Blade Based on Green’s Functions. Acta Mechanica Solida Sinica, 29, 620-630. https://doi.org/10.1016/S0894-9166(16)30332-9
Jun, W. and Branislav, T. (2021) Modal Analysis of a Rotating Pre-Twisted Beam Axially Loaded by an Internally Guided Tendon. Journal of Sound and Vibration, 498, Article ID: 115980. https://doi.org/10.1016/j.jsv.2021.115980
Hamed, F. and Alper, E. (2021) Three-Dimensional Nonlinear Extreme Vibrations of Cantilevers Based on a Geometrically Exact Model. Journal of Sound and Vibration, 510, Article ID: 116295. https://doi.org/10.1016/j.jsv.2021.116295
Zhou, Y.X., Zhang, Y.M. and Yao, G. (2020) Nonlinear Forced Vibration Analysis of a Rotating Three-Dimensional Tapered Cantilever Beam. Journal of Vibration and Control, 27. https://doi.org/10.1177/1077546320949716
Han, H.S., Liu, L. and Cao, D.Q. (2019) Dynamic Modeling for Rotating Composite Timoshenko Beam and Analysis on Its Bending-Torsion Coupled Vibration. Applied Mathematical Modelling, 78, 773-791.
Jokar, H., Mahzoon, M. and Vatankhah, R. (2022) Nonlinear Dynamic Characteristics of Horizontal-Axis Wind Turbine Blades Including Pre-Twist. Ocean Engineering, 256, Article ID: 111441. https://doi.org/10.1016/j.oceaneng.2022.111441
Nayfeh, A.H. and Pai, P.F. (2004) Linear and Nonlinear Structural Mechanics. John Wiiley and Sons, New Jersey. https://doi.org/10.1002/9783527617562
Li, L., Li, Y.H., Liu, Q.K. and Lv, H.W. (2014) A Mathematical Model for Horizontal Axis Wind Turbine Blades. Applied Mathematical Modelling, 38, 2695-2715. https://doi.org/10.1016/j.apm.2013.10.068
Pai, P.F. and Nayfeh, A.H. (1990) Three-Dimensional Nonlinear Vibrations of Composite Beams—I. Equations of Motion. Nonlinear Dynamics, 1, 477-502. https://doi.org/10.1007/BF01856950