铜绿假单胞菌是一种具有很强抗生素耐药性的条件致病菌,能够引起广泛的危及生命的急性和慢性感染。它是细菌性肺部感染的主要病原菌之一,具有很高的发病率和死亡率。建立有效、合适的动物模型能够极大地帮助我们了解疾病的发病机制以及测试和开发新的治疗策略。本文旨在通过对以铜绿假单胞菌为病原菌建立的动物肺炎模型方法的概述及评价,为基础与临床研究应用提供理论基础。 Pseudomonas aeruginosa is a highly antibiotic-resistant conditionally pathogenic bacterium capable of causing a wide range of life-threatening acute and chronic infections. It is one of the major pathogens of bacterial lung infections with high morbidity and mortality. The establishment of effective and appropriate animal models can greatly assist our understanding of disease pathogenesis as well as testing and developing new therapeutic strategies. The aim of this paper is to provide a theoretical basis for basic and clinical research applications by detailing and evaluating the methodology of animal pneumonia models established using Pseudomonas aeruginosa as the causative agent.
铜绿假单胞菌,急性感染,慢性感染,动物模型, Pseudomonas aeruginosa
Acute Infection
Chronic Infection
Animal Model
摘要
Pseudomonas aeruginosa is a highly antibiotic-resistant conditionally pathogenic bacterium capable of causing a wide range of life-threatening acute and chronic infections. It is one of the major pathogens of bacterial lung infections with high morbidity and mortality. The establishment of effective and appropriate animal models can greatly assist our understanding of disease pathogenesis as well as testing and developing new therapeutic strategies. The aim of this paper is to provide a theoretical basis for basic and clinical research applications by detailing and evaluating the methodology of animal pneumonia models established using Pseudomonas aeruginosa as the causative agent.
Keywords:Pseudomonas aeruginosa, Acute Infection, Chronic Infection, Animal Model
参考文献References
Wisinger, D. (1993) Bacterial Pneumonia. S. pneumoniae and H. influenzae Are the Villains. Postgraduate Medicine, 93, 43-52. https://doi.org/10.1080/00325481.1993.11701700
Kuek, L.E. and Lee, R.J. (2020) First Contact: The Role of Respiratory Cilia in Host-Pathogen Interactions in the Airways. American Journal of Physiology-Lung Cellular and Molecular Physiology, 319, L603-L619. https://doi.org/10.1152/ajplung.00283.2020
Gonschior, H., Schmied, C., Van der Veen, R.E., et al. (2022) Nanoscale Segregation of Channel and Barrier Claudins Enables Paracellular Ion Flux. Nature Communications, 13, Article No. 4985. https://doi.org/10.1038/s41467-022-32533-4
Ma, J., Rubin, B.K. and Voynow, J.A. (2018) Mucins, Mucus, and Goblet Cells. Chest, 154, 169-176. https://doi.org/10.1016/j.chest.2017.11.008
Rokicki, W., Rokicki, M., Wojtacha, J., et al. (2016) The Role and Importance of Club Cells (Clara Cells) in the Pathogenesis of Some Respiratory Diseases. Kardiochirurgia i Torakochirurgia Polska, 13, 26-30. https://doi.org/10.5114/kitp.2016.58961
Vielle, N.J., García-Nicolás, O., Oliveira Esteves, B.I., et al. (2019) The Human Upper Respiratory Tract Epithelium Is Susceptible to Flaviviruses. Frontiers in Microbiology, 10, Article 811. https://doi.org/10.3389/fmicb.2019.00811
Hewitt, R.J. and Lloyd, C.M. (2021) Regulation of Immune Responses by the Airway Epithelial Cell Landscape. Nature Reviews Immunology, 21, 347-362. https://doi.org/10.1038/s41577-020-00477-9
Wanner, A., Salathé, M. and O’Riordan, T.G. (1996) Mucociliary Clearance in the Airways. American Journal of Respiratory and Critical Care Medicine, 154, 1868-1902. https://doi.org/10.1164/ajrccm.154.6.8970383
Button, B., Cai, L.-H., Ehre, C., et al. (2012) A Periciliary Brush Promotes the Lung Health by Separating the Mucus Layer from Airway Epithelia. Science, 337, 937-941. https://doi.org/10.1126/science.1223012
Bustamante-Marin, X.M. and Ostrowski, L.E. (2017) Cilia and Mucociliary Clearance. Cold Spring Harbor Perspectives in Biology, 9, a028241. https://doi.org/10.1101/cshperspect.a028241
Ganz, T. (2002) Antimicrobial Polypeptides in Host Defense of the Respiratory Tract. Journal of Clinical Investigation, 109, 693-697. https://doi.org/10.1172/JCI0215218
Fahy, J.V. and Dickey, B.F. (2010) Airway Mucus Function and Dysfunction. New England Journal of Medicine, 363, 2233-2247. https://doi.org/10.1056/NEJMra0910061
Bardoel, B.W. and Strijp, J.A. (2011) Molecular Battle between Host and Bacterium: Recognition in Innate Immunity. Journal of Molecular Recognition, 24, 1077-1086. https://doi.org/10.1002/jmr.1156
Semeraro, E.F., Marx, L., Mandl, J., et al. (2022) Lactoferricins Impair the Cytosolic Membrane of Escherichia coli within a Few Seconds and Accumulate Inside the Cell. eLife, 11, e72850. https://doi.org/10.7554/eLife.72850
Wang, J., Xu, H., Wang, D., et al. (2017) Comparison of Pathogen Eradication Rate and Safety of Anti-Bacterial Agents for Bronchitis: A Network Meta-Analysis. Journal of Cellular Biochemistry, 118, 3171-3183. https://doi.org/10.1002/jcb.25951
Chang, A.B., Upham, J.W., Masters, I.B., et al. (2016) Protracted Bacterial Bronchitis: The Last Decade and the Road Ahead. Pediatric Pulmonology, 51, 225-242. https://doi.org/10.1002/ppul.23351
Decramer, M., Janssens, W. and Miravitlles, M. (2012) Chronic Obstructive Pulmonary Disease. The Lancet, 379, 1341-1351. https://doi.org/10.1016/S0140-6736(11)60968-9
Christenson, S.A., Smith, B.M., Bafadhel, M., et al. (2022) Chronic Obstructive Pulmonary Disease. The Lancet, 399, 2227-2242. https://doi.org/10.1016/S0140-6736(22)00470-6
Ferrera, M.C., Labaki, W.W. and Han, M.K. (2021) Advances in Chronic Obstructive Pulmonary Disease. Annual Review of Medicine, 72, 119-134. https://doi.org/10.1146/annurev-med-080919-112707
Blanchard, A.C. and Waters, V.J. (2019) Microbiology of Cystic Fibrosis Airway Disease. Seminars in Respiratory and Critical Care Medicine, 40, 727-736. https://doi.org/10.1055/s-0039-1698464
Ferreira-Coimbra, J., Sarda, C. and Rello, J. (2020) Burden of Community-Acquired Pneumonia and Unmet Clinical Needs. Advances in Therapy, 37, 1302-1318. https://doi.org/10.1007/s12325-020-01248-7
Veve, M.P. and Wagner, J.L. (2018) Lefamulin: Review of a Promising Novel Pleuromutilin Antibiotic. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 38, 935-946. https://doi.org/10.1002/phar.2166
Coates, A.R.M., Hu, Y., Holt, J., et al. (2020) Antibiotic Combination Therapy against Resistant Bacterial Infections: Synergy, Rejuvenation and Resistance Reduction. Expert Review of Anti-Infective Therapy, 18, 5-15. https://doi.org/10.1080/14787210.2020.1705155
Ho, J. and Ip, M. (2019) Antibiotic-Resistant Community-Acquired Bacterial Pneumonia. Infectious Disease Clinics of North America, 33, 1087-1103. https://doi.org/10.1016/j.idc.2019.07.002
Ahmad, M. and Khan, A.U. (2019) Global Economic Impact of Antibiotic Resistance: A Review. Journal of Global Antimicrobial Resistance, 19, 313-316. https://doi.org/10.1016/j.jgar.2019.05.024
Munguia, J., LaRock, D.L., Tsunemoto, H., et al. (2017) The Mla Pathway Is Critical for Pseudomonas aeruginosa Resistance to Outer Membrane Permeabilization and Host Innate Immune Clearance. Journal of Molecular Medicine, 95, 1127-1136. https://doi.org/10.1007/s00109-017-1579-4
Carniello, V., Peterson, B.W., Van der Mei, H.C., et al. (2018) Physico-Chemistry from Initial Bacterial Adhesion to Surface-Programmed Biofilm Growth. Advances in Colloid and Interface Science, 261, 1-14. https://doi.org/10.1016/j.cis.2018.10.005
Chaban, B., Hughes, H.V. and Beeby, M. (2015) The Flagellum in Bacterial Pathogens: For Motility and a Whole Lot More. Seminars in Cell & Developmental Biology, 46, 91-103. https://doi.org/10.1016/j.semcdb.2015.10.032
Zhao, A.L., Sun, J.Z. and Liu, Y.P. (2023) Understanding Bacterial Biofilms: From Definition to Treatment Strategies. Frontiers in Cellular and Infection Microbiology, 13, Article 1137947. https://doi.org/10.3389/fcimb.2023.1137947
Costerton, J.W., Stewart, P.S. and Greenberg, E.P. (1999) Bacterial Biofilms: A Common Cause of Persistent Infections. Science, 284, 1318-1322. https://doi.org/10.1126/science.284.5418.1318
Maurice, N.M., Bedi, B. and Sadikot, R.T. (2018) Pseudomonas aeruginosa Biofilms: Host Response and Clinical Implications in Lung Infections. American Journal of Respiratory Cell and Molecular Biology, 58, 428-439. https://doi.org/10.1165/rcmb.2017-0321TR
Siegel, S.J. and Weiser, J.N. (2015) Mechanisms of Bacterial Colonization of the Respiratory Tract. Annual Review of Microbiology, 69, 425-444. https://doi.org/10.1146/annurev-micro-091014-104209
Muras, A., Otero-Casal, P., Blanc, V., et al. (2020) Acyl Homoserine Lactone-Mediated Quorum Sensing in the Oral Cavity: A Paradigm Revisited. Scientific Reports, 10, Article No. 9800. https://doi.org/10.1038/s41598-020-66704-4
Tabatabaeifar, F., Isaei, E., Kalantar-Neyestanaki, D., et al. (2022) Antimicrobial and Antibiofilm Effects of Combinatorial Treatment Formulations of Anti-Inflammatory Drugs—Common Antibiotics against Pathogenic Bacteria. Pharmaceutics, 15, Article 4. https://doi.org/10.3390/pharmaceutics15010004
Weiser, J.N., Ferreira, D.M. and Paton, J.C. (2018) Streptococcus pneumoniae: Transmission, Colonization and Invasion. Nature Reviews Microbiology, 16, 355-367. https://doi.org/10.1038/s41579-018-0001-8
Naninck, T., Coutte, L., Mayet, C., et al. (2018) In Vivo Imaging of Bacterial Colonization of the Lower Respiratory Tract in a Baboon Model of Bordetella pertussis Infection and Transmission. Scientific Reports, 8, Article No. 12297. https://doi.org/10.1038/s41598-018-30896-7
Karpurapu, M., Lee, Y.G., Qian, Z, et al. (2018) Inhibition of Nuclear Factor of Activated T Cells (NFAT) C3 Activation Attenuates Acute Lung Injury and Pulmonary Edema in Murine Models of Sepsis. Oncotarget, 9, 10606-10620. https://doi.org/10.18632/oncotarget.24320
Wang, Q.L., Yang, L., Peng, Y., et al. (2019) Ginsenoside Rg1 Regulates SIRT1 to Ameliorate Sepsis-Induced Lung Inflammation and Injury via Inhibiting Endoplasmic Reticulum Stress and Inflammation. Mediators of Inflammation, 2019, Article ID: 6453296. https://doi.org/10.1155/2019/6453296
Viana, F., O’Kane, C.M. and Schroeder, G.N. (2021) Precision-Cut Lung Slices: A Powerful exVivo Model to Investigate Respiratory Infectious Diseases. Molecular Microbiology, 117, 578-588. https://doi.org/10.1111/mmi.14817
He, B., Chen, G. and Zeng, Y. (2016) Three-Dimensional Cell Culture Models for Investigating Human Viruses. VirologicaSinica, 31, 363-379. https://doi.org/10.1007/s12250-016-3889-z
Habanjar, O., Diab-Assaf, M., Caldefie-Chezet, F., et al. (2021) 3D Cell Culture Systems: Tumor Application, Advantages, and Disadvantages. International Journal of Molecular Sciences, 22, Article 12200. https://doi.org/10.3390/ijms222212200
Nickerson, C.A., Richter, E.G. and Ott, C.M. (2006) Studying Host-Pathogen Interactions in 3-D: Organotypic Models for Infectious Disease and Drug Development. Journal of Neuroimmune Pharmacology, 2, 26-31. https://doi.org/10.1007/s11481-006-9047-x
Eenjes, E., Mertens, T.C.J., Buscop-Van Kempen, M.J., et al. (2018) A Novel Method for Expansion and Differentiation of Mouse Tracheal Epithelial Cells in Culture. Scientific Reports, 8, Article No. 7349. https://doi.org/10.1038/s41598-018-25799-6
Hiemstra, P.S., Tetley, T.D. and Janes, S.M. (2019) Airway and Alveolar Epithelial Cells in Culture. European Respiratory Journal, 54, Article 1900742. https://doi.org/10.1183/13993003.00742-2019
Aoki, S., Takezawa, T., Sugihara, H., et al. (2016) Progress in Cell Culture Systems for Pathological Research. Pathology International, 66, 554-562. https://doi.org/10.1111/pin.12443
Luna, C.M., Sibila, O., Agusti, C., et al. (2009) Animal Models of Ventilator-Associated Pneumonia. European Respiratory Journal, 33, 182-188. https://doi.org/10.1183/09031936.00046308
Zhao, M., Lepak, A.J. and Andes, D.R. (2016) Animal Models in the Pharmacokinetic/Pharmacodynamic Evaluation of Antimicrobial Agents. Bioorganic & Medicinal Chemistry, 24, 6390-6400. https://doi.org/10.1016/j.bmc.2016.11.008
Kukavica-Ibrulj, I. and Levesque, R.C. (2008) Animal Models of Chronic Lung Infection with Pseudomonas aeruginosa: Useful Tools for Cystic Fibrosis Studies. Laboratory Animals, 42, 389-412. https://doi.org/10.1258/la.2007.06014e
Hraiech, S., Papazian, L., Rolain, J.M., et al. (2015) Animal Models of Polymicrobial Pneumonia. Drug Design, Development and Therapy, 9, 3279-3292. https://doi.org/10.2147/DDDT.S70993
Bonniaud, P., Fabre, A., Frossard, N., et al. (2018) Optimising Experimental Research in Respiratory Diseases: An ERS Statement. European Respiratory Journal, 51, Article 1702133. https://doi.org/10.1183/13993003.02133-2017
Bielen, K., Jongers, B., Malhotra-Kumar, S., et al. (2017) Animal Models of Hospital-Acquired Pneumonia: Current Practices and Future Perspectives. Annals of Translational Medicine, 5, Article 132. https://doi.org/10.21037/atm.2017.03.72
Robinson, N.B., Krieger, K., Khan, F.M., et al. (2019) The Current State of Animal Models in Research: A Review. International Journal of Surgery, 72, 9-13. https://doi.org/10.1016/j.ijsu.2019.10.015
Reynolds, D. and Kollef, M. (2021) The Epidemiology and Pathogenesis and Treatment of Pseudomonas aeruginosa Infections: An Update. Drugs, 81, 2117-2131. https://doi.org/10.1007/s40265-021-01635-6
Loebinger, M.R. and Wilson, R. (2008) Bacterial Pneumonia. Medicine, 36, 285-290. https://doi.org/10.1016/j.mpmed.2008.03.011
Gibson, R.L., Burns, J.L. and Ramsey, B.W. (2003) Pathophysiology and Management of Pulmonary Infections in Cystic Fibrosis. American Journal of Respiratory and Critical Care Medicine, 168, 918-951. https://doi.org/10.1164/rccm.200304-505SO
Diaz, M.H., Shaver, C.M., King, J.D., et al. (2008) Pseudomonas aeruginosa Induces Localized Immunosuppression during Pneumonia. Infection and Immunity, 76, 4414-4421. https://doi.org/10.1128/IAI.00012-08
Lyczak, J.B., Cannon, C.L. and Pier, G.B. (2000) Establishment of Pseudomonas aeruginosa Infection: Lessons from a Versatile Opportunist1*Address for Correspondence: Channing Laboratory, 181 Longwood Avenue, Boston, MA 02115, USA. Microbes and Infection, 2, 1051-1060. https://doi.org/10.1016/S1286-4579(00)01259-4
Kerr, K.G. and Snelling, A.M. (2009) Pseudomonas aeruginosa: A Formidable and Ever-Present Adversary. Journal of Hospital Infection, 73, 338-344. https://doi.org/10.1016/j.jhin.2009.04.020
Wu, D.C., Chan, W.W., Metelitsa, A.I., et al. (2011) Skin Infection Clinical Features, Epidemiology, and Management. American Journal of Clinical Dermatology, 12, 157-169. https://doi.org/10.2165/11539770-000000000-00000
Wood, S.J., Kuzel, T.M. and Shafikhani, S.H. (2023) Infections, Animal Modeling, and Therapeutics. Cells, 12, Article 199. https://doi.org/10.3390/cells12010199
Williams, B.J., Dehnbostel, J. and Blackwell, T.S. (2010) Pseudomonas aeruginosa: Host Defence in Lung Diseases. Respirology, 15, 1037-1056. https://doi.org/10.1111/j.1440-1843.2010.01819.x
Gellatly, S.L. and Hancock, R.E.W. (2013) Pseudomonas aeruginosa: New Insights into Pathogenesis and Host Defenses. Pathogens and Disease, 67, 159-173. https://doi.org/10.1111/2049-632X.12033
Mendes, O.R. (2023) The Challenge of Pulmonary Pseudomonas aeruginosa Infection: How to Bridge Research and Clinical Pathology. In: Bagchi, D., Das, A. and Downs, B.W., Eds., Viral, Parasitic, Bacterial, and Fungal Infections, Academic Press, Cambridge, MA, 591-608. https://doi.org/10.1016/B978-0-323-85730-7.00019-9
Moore, N.M. and Flaws, M.L. (2011) Antimicrobial Resistance Mechanisms in Pseudomonas aeruginosa. Clinical Laboratory Science, 24, 47-51. https://doi.org/10.29074/ascls.24.1.47
Rosenthal, V.D., Duszynska, W., Ider, B.-E., et al. (2021) International Nosocomial Infection Control Consortium (INICC) Report, Data Summary of 45 Countries for 2013-2018, Adult and Pediatric Units, Device-Associated Module. American Journal of Infection Control, 49, 1267-1274. https://doi.org/10.1016/j.ajic.2021.04.077
Moradali, M.F., Ghods, S. and Rehm, B.H.A. (2017) Pseudomonas aeruginosa Lifestyle: A Paradigm for Adaptation, Survival, and Persistence. Frontiers in Cellular and Infection Microbiology, 7, Article 39. https://doi.org/10.3389/fcimb.2017.00039
Ho, D.-K., Nichols, B.L.B., Edgar, K.J, et al. (2019) Challenges and Strategies in Drug Delivery Systems for Treatment of Pulmonary Infections. European Journal of Pharmaceutics and Biopharmaceutics, 144, 110-124. https://doi.org/10.1016/j.ejpb.2019.09.002
Diep, B.A., Le, V.T.M., Visram, Z.C., et al. (2016) Improved Protection in a Rabbit Model of Community-Associated Methicillin-Resistant Staphylococcus aureus Necrotizing Pneumonia Upon Neutralization of Leukocidins in Addition to Alpha-Hemolysin. Antimicrobial Agents and Chemotherapy, 60, 6333-6340. https://doi.org/10.1128/AAC.01213-16
Kurahashi, K., Kajikawa, O., Sawa, T., et al. (1999) Pathogenesis of Septic Shock in Pseudomonas aeruginosa Pneumonia. Journal of Clinical Investigation, 104, 743-750. https://doi.org/10.1172/JCI7124
Li Bassi, G., Rigol, M., Marti, J.-D., et al. (2014) A Novel Porcine Model of Ventilator-Associated Pneumonia Caused by Oropharyngeal Challenge with Pseudomonas aeruginosa. Anesthesiology, 120, 1205-1215. https://doi.org/10.1097/ALN.0000000000000222
Moser, K.M., Maurer, J., Jassy, L.,et al. (1982) Sensitivity, Specificity, and Risk of Diagnostic Procedures in a Canine Model of Streptococcus pneumoniae Pneumonia. American Review of Respiratory Disease, 125, 436-442.
Thomassen, M.J., Klinger, J.D., Winnie, G.B., et al. (1984) Pulmonary Cellular Response to Chronic Irritation and Chronic Pseudomonas aeruginosa Pneumonia in Cats. Infection and Immunity, 45, 741-747. https://doi.org/10.1128/iai.45.3.741-747.1984
Kukavica-Ibrulj, I., Facchini, M., Cigana, C., et al. (2014) Assessing Pseudomonas aeruginosa Virulence and the Host Response Using Murine Models of Acute and Chronic Lung Infection. Methods in Molecular Biology, 1149, 757-771. https://doi.org/10.1007/978-1-4939-0473-0_58
Munder, A. and Tummler, B. (2014) Assessing Pseudomonas Virulence Using Mammalian Models: Acute Infection Model. Methods in Molecular Biology, 1149, 773-791. https://doi.org/10.1007/978-1-4939-0473-0_59
Mazzolini, R., Rodríguez-Arce, I., Fernández-Barat, L., et al. (2023) Engineered Live Bacteria Suppress Pseudomonas aeruginosa Infection in Mouse Lung and Dissolve Endotracheal-Tube Biofilms. Nature Biotechnology, 41, 1089-1098. https://doi.org/10.1038/s41587-022-01584-9
Cash, H.A., Woods, D.E., McCullough, B., et al. (1979) A Rat Model of Chronic Respiratory Infection with Pseudomonas aeruginosa. American Review of Respiratory Disease, 119, 453-459.
Nakamura, S., Iwanaga, N., Seki, M., et al. (2016) Toll-Like Receptor 4 Agonistic Antibody Promotes Host Defense against Chronic Pseudomonas aeruginosa Lung Infection in Mice. Infection and Immunity, 84, 1986-1993. https://doi.org/10.1128/IAI.01384-15
Van Heeckeren, A.M. and Schluchter, M.D. (2002) Murine Models of Chronic Pseudomonas aeruginosa Lung Infection. Laboratory Animals, 36, 291-312. https://doi.org/10.1258/002367702320162405
Yanagihara, K., Tomono, K., Sawai, T., et al. (1997) Effect of Clarithromycin on Lymphocytes in Chronic Respiratory Pseudomonas aeruginosa Infection. American Journal of Respiratory and Critical Care Medicine, 155, 337-342. https://doi.org/10.1164/ajrccm.155.1.9001333
Hraiech, S., Bregeon, F., Brunel, J.M., et al. (2012) Antibacterial Efficacy of Inhaled Squalamine in a Rat Model of Chronic Pseudomonas aeruginosa Pneumonia. Journal of Antimicrobial Chemotherapy, 67, 2452-2458. https://doi.org/10.1093/jac/dks230
Growcott, E.J., Coulthard, A., Amison, R., et al. (2011) Characterisation of a Refined Rat Model of Respiratory Infection with Pseudomonas aeruginosa and the Effect of Ciprofloxacin. Journal of Cystic Fibrosis, 10, 166-174. https://doi.org/10.1016/j.jcf.2010.12.007
Allewelt, M., Tuomanen, E.I., Coleman, F.T., et al. (2000) Acquisition of Expression of the Pseudomonas aeruginosa ExoU Cytotoxin Leads to Increased Bacterial Virulence in a Murine Model of Acute Pneumonia and Systemic Spread. Infection and Immunity, 68, 3998-4004. https://doi.org/10.1128/IAI.68.7.3998-4004.2000
Fothergill, J.L., Neill, D.R., Loman, N., et al. (2014) Pseudomonas aeruginosa Adaptation in the Nasopharyngeal Reservoir Leads to Migration and Persistence in the Lungs. Nature Communications, 5, Article No. 4780. https://doi.org/10.1038/ncomms5780
Morris, A.E., Liggitt, H.D., Hawn, T.R., et al. (2009) Role of Toll-Like Receptor 5 in the Innate Immune Response to Acute P. aeruginosa Pneumonia. American Journal of Physiology-Lung Cellular and Molecular Physiology, 297, L1112-L1119. https://doi.org/10.1152/ajplung.00155.2009
Yu, H., Hanes, M., Chrisp, C.E., et al. (1998) Microbial Pathogenesis in Cystic Fibrosis: Pulmonary Clearance of Mucoid Pseudomonas aeruginosa and Inflammation in a Mouse Model of Repeated Respiratory Challenge. Infection and Immunity, 66, 280-288. https://doi.org/10.1128/IAI.66.1.280-288.1998
Facchini, M., De Fino, I., Riva, C., et al. (2014) Long Term Chronic Pseudomonas aeruginosa Airway Infection in Mice. Journal of Visualized Experiments, No. 85, Article 51019.
Hoiby, N., Krogh Johansen, H., Moser, C., et al. (2001) Pseudomonas aeruginosa and the in Vitro and in Vivo Biofilm Mode of Growth. Microbes and Infection, 3, 23-35. https://doi.org/10.1016/S1286-4579(00)01349-6
Boyd, R.L., Ramphal, R., Rice, R., et al. (1983) Chronic Colonization of Rat Airways with Pseudomonas aeruginosa. Infection and Immunity, 39, 1403-1410. https://doi.org/10.1128/iai.39.3.1403-1410.1983
Schroeder, T.H., Reiniger, N., Meluleni, G., et al. (2001) Transgenic Cystic Fibrosis Mice Exhibit Reduced Early Clearance of Pseudomonas aeruginosa from the Respiratory Tract. The Journal of Immunology, 166, 7410-7418. https://doi.org/10.4049/jimmunol.166.12.7410
Thomsen, K., Christophersen, L., Bjarnsholt, T., et al. (2016) Anti-Pseudomonas aeruginosa IgY Antibodies Augment Bacterial Clearance in a Murine Pneumonia Model. Journal of Cystic Fibrosis, 15, 171-178. https://doi.org/10.1016/j.jcf.2015.08.002
Cheung, D.O., Halsey, K. and Speert, D.P. (2000) Role of Pulmonary Alveolar Macrophages in Defense of the Lung against Pseudomonas aeruginosa. Infection and Immunity, 68, 4585-4592. https://doi.org/10.1128/IAI.68.8.4585-4592.2000
Cui, Z., Han, D., Sun, X., et al. (2015) Mannose-Modified Chitosan Microspheres Enhance OprF-OprI-Mediated Protection of Mice against Pseudomonas aeruginosa Infection via Induction of Mucosal Immunity. Applied Microbiology and Biotechnology, 99, 667-680. https://doi.org/10.1007/s00253-014-6147-z
De Vrankrijker, A.M., Wolfs, T.F., Ciofu, O., et al. (2009) Respiratory Syncytial Virus Infection Facilitates Acute Colonization of Pseudomonas aeruginosa in Mice. Journal of Medical Virology, 81, 2096-2103. https://doi.org/10.1002/jmv.21623
Kaushal, D., Miller, M.A., Stabenow, J.M., et al. (2012) Visualization of Murine Intranasal Dosing Efficiency Using Luminescent Francisella tularensis: Effect of Instillation Volume and Form of Anesthesia. PLOS ONE, 7, e31359. https://doi.org/10.1371/journal.pone.0031359
Sordelli, D.O., Cerquetti, M.C. and Hooke, A.M. (1985) Replication Rate of Pseudomonas aeruginosa in the Murine Lung. Infection and Immunity, 50, 388-391. https://doi.org/10.1128/iai.50.2.388-391.1985
Evans, S.E., Tuvim, M.J., Zhang, J., et al. (2010) Host Lung Gene Expression Patterns Predict Infectious Etiology in a Mouse Model of Pneumonia. Respiratory Research, 11, Article No. 101. https://doi.org/10.1186/1465-9921-11-101
Iizawa, Y., Nishi, T., Kondo, M., et al. (1991) Examination of Host Defense Factors Responsible for Experimental Chronic Respiratory Tract Infection Caused by Klebsiella pneumoniae in Mice. Microbiology and Immunology, 35, 615-622. https://doi.org/10.1111/j.1348-0421.1991.tb01593.x
Garcia-Medina, R., Dunne, W.M., Singh, P.K., et al. (2005) Pseudomonas aeruginosa Acquires Biofilm-Like Properties within Airway Epithelial Cell. Infection and Immunity, 73, 8298-8305. https://doi.org/10.1128/IAI.73.12.8298-8305.2005
Fleiszig, S.M., Evans, D.J., Do, N., et al. (1997) Epithelial Cell Polarity Affects Susceptibility to Pseudomonas aeruginosa Invasion and Cytotoxicity. Infection and Immunity, 65, 2861-2867. https://doi.org/10.1128/iai.65.7.2861-2867.1997
Darling, K.E.A., Dewar, A. and Evans, T.J. (2004) Role of the Cystic Fibrosis Transmembrane Conductance Regulator in Internalization of Pseudomonas aeruginosa by Polarized Respiratory Epithelial Cells. Cellular Microbiology, 6, 521-533. https://doi.org/10.1111/j.1462-5822.2004.00380.x
Zhu, P., Bu, H., Tan, S., et al. (2020) A Novel Cochlioquinone Derivative, CoB1, Regulates Autophagy in Pseudomonas aeruginosa Infection through the PAK1/Akt1/MTOR Signaling Pathway. The Journal of Immunology, 205, 1293-1305. https://doi.org/10.4049/jimmunol.1901346
Psoter, K.J., De Roos, A.J., Mayer, J.D., et al. (2015) Fine Particulate Matter Exposure and Initial Pseudomonas aeruginosa Acquisition in Cystic Fibrosis. Annals of the American Thoracic Society, 12, 385-391. https://doi.org/10.1513/AnnalsATS.201408-400OC
Augustin, D.K., Heimer, S.R., Tam, C., et al. (2011) Role of Defensins in Corneal Epithelial Barrier Function against Pseudomonas aeruginosa Traversal. Infection and Immunity, 79, 595-605. https://doi.org/10.1128/IAI.00854-10
Soong, G., Parker, D., Magargee, M., et al. (2008) The Type III Toxins of Pseudomonas aeruginosa Disrupt Epithelial Barrier Function. Journal of Bacteriology, 190, 2814-2821. https://doi.org/10.1128/JB.01567-07
Kroken, A.R., Gajenthra Kumar, N., Yahr, T.L., et al. (2022) Exotoxin S Secreted by Internalized Pseudomonas aeruginosa Delays Lytic Host Cell Death. PLOS Pathogens, 18, e1010306. https://doi.org/10.1371/journal.ppat.1010306
Okuda, J., Hayashi, N., Okamoto, M., et al. (2010) Translocation of Pseudomonas aeruginosa from the Intestinal Tract Is Mediated by the Binding of ExoS to an Na,K-ATPase Regulator, FXYD3. Infection and Immunity, 78, 4511-4522. https://doi.org/10.1128/IAI.00428-10
Zulianello, L., Canard, C., Köhler, T., et al. (2006) Rhamnolipids Are Virulence Factors That Promote Early Infiltration of Primary Human Airway Epithelia by Pseudomonas aeruginosa. Infection and Immunity, 74, 3134-3147. https://doi.org/10.1128/IAI.01772-05
Liu, J., Chen, X., Dou, M., et al. (2019) Particulate Matter Disrupts Airway Epithelial Barrier via Oxidative Stress to Promote Pseudomonas aeruginosa Infection. Journal of Thoracic Disease, 11, 2617-2627. https://doi.org/10.21037/jtd.2019.05.77