wjf World Journal of Forestry 2169-2432 2169-2440 beplay体育官网网页版等您来挑战! 10.12677/wjf.2024.132017 wjf-84127 Articles 地球与环境 森林地上生物量及其驱动因素研究进展
Advance of Forest Aboveground Biomass and Its Driving Factors
傅佳琴 浙江师范大学生命科学学院,浙江 金华 03 04 2024 13 02 107 117 1 3 :2024 29 3 :2024 29 3 :2024 Copyright © 2024 beplay安卓登录 All rights reserved. 2024 This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ 森林生态系统是陆地生态系统的主体,是全球碳循环的重要组成部分。森林地上生物量是森林生产力的重要衡量标准,探究森林地上生物量及其影响因素对理解陆地生态系统碳循环及应对气候变化具有重要意义。本文系统归纳了目前具有代表性的森林地上生物量研究,并对森林地上生物量估算方法及森林地上生物量影响因素的研究现状进行了梳理,总结如下:1) 目前关于森林地上生物量的研究较多,总体来说森林生物量静态储量方面研究较全面,关于生物量动态变化及其驱动因素的研究还有待补充;2) 生物量的估算方法主要包括样地调查、模型模拟和遥感,各有优缺点,后续可将多种方法结合使用,提高森林地上生物量估算的精确度和效率;3) 生物多样性与森林地上生物量的关系复杂,在研究过程中,应根据实际情况综合考虑生物和非生物因素对森林地上生物量的交互影响,以更准确理解各因素对森林地上生物量的影响机制。综上,深入探究森林地上生物量储量及动态变化,综合研究更多因素对森林地上生物量的影响机制对于在目前气候背景下制定合理的森林保护和恢复策略具有重要意义。
Forest ecosystem is the main body of terrestrial ecosystem and an important part of the global carbon cycle. Forest aboveground biomass is an important measure of forest productivity. Exploring forest aboveground biomass and its influencing factors is of great significance to understanding the carbon cycle of terrestrial ecosystems and responding to climate change. This article systematically summarizes the current representative research on forest aboveground biomass, and sorts out the research status of forest aboveground biomass estimation methods and factors affecting forest aboveground biomass. The summary is as follows: 1) Current research on forest aboveground biomass, generally speaking, research on static reserves of forest biomass is relatively comprehensive, and research on dynamic changes in biomass and its driving factors needs to be supplemented; 2) Biomass estimation methods mainly include sample plot surveys, model simulations and remote sensing, each of which has advantages and disadvantages, and multiple methods can be used in combination in the future to improve the accuracy and efficiency of forest aboveground biomass estimation; 3) The relationship between biodiversity and forest aboveground biomass is complex, and during the research process, it should be comprehensively considered based on the actual situation Interactive effects of biotic and abiotic factors on above- ground forest biomass to more accurately understand the impact mechanism of each factor on forest above-ground biomass. In summary, in-depth exploration of forest aboveground biomass reserves and dynamic changes, and comprehensive study of the impact mechanisms of more factors on forest aboveground biomass are of great significance for formulating reasonable forest protection and restoration strategies under the current climate background.
森林地上生物量,生物多样性,影响因素,生产力,生态系统
Forest Aboveground Biomass
Biodiversity Influencing Factors Productivity Ecosystem
1. 引言

森林作为地球上最重要的生态系统之一,拥有三分之二的陆地生物多样性 [1] ,占陆地初级生产总值的75% [2] ,是陆地生态系统碳汇(Carbon Sink)及其它效益的主要贡献者 [3] 。森林在全球碳循环(Carbon Cycle)和维持碳中和(Carbon Neutral)中发挥了不可替代的作用 [1] [3] ,其提供的生态系统功能在全球受到重视。估算森林生物量被认为是评估森林碳储量的关键步骤 [4] ,包括森林碳源、碳汇、碳动态和生产力的衡量都是以森林生物量为基础 [5] ,因此森林生物量信息至关重要。

森林生态系统是全球碳循环中的重要组成部分,碳主要以活体生物量和无生命有机质存在其中,其中地上活体生物量和土壤有机质是两大主要部分 [6] 。其中土壤中大部分的碳不容易氧化 [7] ,相较来说更加稳定,但估算起来更困难 [6] 。而地上生物量很容易受到自然或者人为影响,例如山火、虫灾和人为砍伐等 [8] ,变化快且显著,且其可以通过异速生长方程进行较为准确的估算 [9] 。地上生物量的变化是导致森林生态系统碳储量变化的主要因素 [10] ,因此成为了森林生态系统碳储量研究的关键问题。目前对于森林地上生物量静态储量方面的研究较为充足,而关于动态变化及其影响因子的研究有待进一步补充。

2. 森林地上生物量 2.1. 国内外森林地上生物量的研究

不同地区、不同森林类型的生物量储量和动态变化及其影响因素差异较大。热带和亚热带森林碳储量占全球森林碳储量的55%左右,占全球初级生产总值和净初级生产的40%以上 [1] [2] ;北方针叶林占世界森林碳储量的32%,温带森林占14% [1] 。在墨西哥热带森林的研究中,地上生物量受降水驱动最强,其次是树木平均胸径,这些因素对地上生物量均有积极影响。在小空间尺度中物种丰富度对地上生物量的正效应最明显,而林分密度和树木大小等森林结构属性则在任何空间尺度下都与地上生物量显著相关 [11] 。中国海南热带森林生物量,同样受气候降水的积极影响,还随着功能优势度、个体大小变异系数的增加而直接增加;年平均温度、降水和土壤肥力等非生物因素通过影响生物因素间接影响森林生物量 [12] 。在中国中部的亚热带森林的研究中,生物因子、地形因子和空间因子分别解释了森林生物量分布的64.8%;其中林分密度和木质密度在预测森林生物量方面具有重要意义;水分和地形对森林生物量和大树密度的分布起重要作用 [13] 。南美洲的亚热带森林,生物量储量直接受年温度差异和大型树木比例的驱动;年温度差异对地上生物量为负反馈,全年温差大的群落地上生物量积累较少;大型树木占这些森林中总生物量的64%,因此可知森林碳储存的稳定性依赖于大型树木,在长期碳储存中发挥关键作用 [14] 。欧洲温带森林中,林分冠层结构的多样性对森林生产力有促进作用 [15] ;同时因温带森林所处纬度和海拔较为特殊,受气候因子和立地条件的影响较大 [16] 。中国东北地区长白山的温带森林中,地上碳储量由胸高断面积、个体树木大小变异系数、树木最大高度和木材密度等功能性状的均匀度和多样性所驱动;其中树木大小变异系数和最大树高的群落加权平均值影响最显著,温带混交林的林分结构是提高地上碳储量的关键 [17]

<xref></xref>2.2. 森林地上生物量的研究方法

森林生态系统作为一个巨大的碳库,在全球碳循环中具有重要地位;生物量作为衡量森林碳储量的基础;所以,准确估算森林地上生物量对未来应对全球碳动态变化具有重要意义 [18] 。目前常用估算森林地上生物量的方法有三种:样地清查、模型模拟和遥感估计 [19]

最传统的样地清查方法是进行实地调查,获取区域内树种、树高和胸径等相关信息,再进行不同程度采样,实验测量获得实际生物量或通过构建异速生长模型具体量化生物量 [20] [21] 。根据测量时对树木的影响程度分为破坏法和无破坏法;破坏法是需要获取树干、树叶和树枝等部分 [22] ,在小面积范围内是最直接最精确的计算方法,常被用于开发不同地区物种的异速生长方程 [23] ;无破坏法不需要对树木进行破坏性采样 [24] ;该方法保证一定的精确度,因此这适用大部分地区估算地上生物量 [25] 。目前全球各国都已开展森林清查,例如中国、北欧各国等 [26] [27] ,为未来的森林管理打基础。作为最传统的估算方法存在较大的不足,人力、时间和经济成本较高,效率较低,在大面积区域进行生物量估算时局限性更明显 [28] ;但却是估算最准确的方法。

模型模拟是基于观测的森林蓄积量和生物量数据,在不同森林类型之间构建回归模型,通过模型计算获得森林生物量 [29] 。该方法用于不同类型且大尺度的森林生物量估计时较为便利,且森林蓄积量和生物量数据获取方便;但森林内部人为或自然造成的影响就无法及时估算 [30]

遥感技术因其具有时空分辨率高、及时更新、覆盖面广的遥感数据现已广泛应用与各类森林生态系统的生物量估算中 [31] 。遥感估算的优势在于可以在森林内便利、快捷地收集数据,且成本低,效率高 [32] ;但是遥感技术只能估算地上生物量,无法进行地下生物量估算 [30] 。目前主要有三种类型的遥感方法,分别是光学遥感、雷达和激光雷达,具有不同的优势和缺点 [33] 。光学遥感是目前最常用的森林生物量估算方法,通过可见光、近红外光和短波红外光等波段的影像,反映森林植被部分参数以评估生物量;其数据源较多,分辨率高,可获取的数据覆盖面较广;但其估算容易受到大气、云雨、土壤等外界因素的影响,且在高生物量地区的估算不够准确 [28] [34] 。雷达技术克服了光学遥感易受大气、云雨等外界恶劣环境影响的问题,且可以体现森林内部结构 [22] [33] ;但雷达数据反映的是土地表面的粗糙度,而不能区分植被类型,从而导致生物量估算存在一定误差 [35] 。激光雷达是一项较新且复杂的技术,可以通过激光脉冲提供高精度的森林植被高度,反映植被的垂直结构,与地上生物量有更强的相关性,因此该技术可以更加精确的估算森林地上生物量 [36] [37] 。但激光雷达的数据分析复杂,需要指定的软件和更高的图像处理技术,且其数据采集的成本高,覆盖范围较小,目前不能广泛运用 [33] [38]

<xref></xref>3. 森林地上生物量的影响因素 <xref></xref>3.1. 非生物因素

森林生物量与环境因子息息相关,例如气候、地形、土壤等。在许多不同森林生态系统研究中都发现了气候因子直接或间接对地上生物量及动态产生影响 [39] [40] 。通常认为森林初级生产力与温度和水分呈正相关,这可能是更大能量(太阳光照、温度和水)可用性的关系,从而对更多物种的生长有促进作用 [41] [42] ,但是在部分热带地区却相反,森林地上生物量动态与温度呈现负相关 [12] ,研究表明高温通过影响植物呼吸速率对其代谢产生负面影响 [43] 。因此,当基本接近或超过最高温度、最低温度时可能会抑制植物呼吸。另一方面,水资源的可用性也是一个重要的驱动因素,甚至可能因为物种竞争使水资源紧缺,从而减少物种多样性 [44] 。在科学家们的研究中,在地上生物量处于最大值时大部分是中等降雨状态,这是因为没有极端干旱或者极度湿润的情况,没有云层覆盖导致的低水平光照限制 [11] [45] 。在中国内蒙古草原进行生物量动态研究发现,夏季气温与累积降水的交互作用对草地地上生物量动态的正效应最大,其次为1~8月总降水量,而夏季气温对草地地上生物量动态的影响不大,且为负效应 [46] 。中国海南热带山地雨林中,暴雨次数和干旱月份时长是尖峰岭热带山地雨林碳源和碳汇变化的两个关键影响因子 [47]

地形以通过海拔、坡度、凹凸度等地形因子影响森林地上生物量 [48] [49] ,调节小范围气候和土壤养分从而对植被组成和植物生长产生影响,间接影响森林地上生物量 [50] [51] 。在山脊和陡峭的山坡上,面临周期性缺水、土壤养分贫瘠和大风等问题,具有类似生活史策略的物种才能生长良好 [52] [53] ,由此影响森林内该地形地上生物量的积累。研究发现,在法属圭亚那的一个低地雨林中,陡坡对树木死亡率有较大的影响 [54] 。相比之下,森林的河谷地区植物则竞争太阳光照,并且通常形成更多树冠垂直分层 [55] ,具有更高的生产力和物种更新频率 [56] 。在台湾地区的亚热带森林中,在地形平坦的地区发现了较高的地上生物量 [49]

土壤养分对森林地上生物量有重要影响。当土壤养分可利用性提高,植物生长得更快 [56] [57] ,并促进物种生态位分化 [58] ,因此土壤养分是影响森林物种多样性、植被性状和地上生物量储量的重要因素 [59] 。在我国长白山地区的温带森林中发现,土壤养分的提高增加了森林地上生物量的积累,且提高群落内植被更新速度 [60] 。但土壤养分的增加也可能加剧群落内物种的竞争,从而导致死亡率提高 [56] [61] ;研究表明,部分热带森林中土壤贫瘠的地区拥有更高的生产力 [62] ;Prado-Junior等人还发现土壤养分中钙含量过高对地上生物量有负面影响,在较干旱的热带森林土壤水分是比土壤养分更有力的驱动因子 [63] 。而在我国广东地区的亚热带森林中发现,高土壤氮含量降低了群落物种多样性,对地上生物量影响不显著 [64] ;这可能是由于不同气候地区植被的土壤养分偏好导致。

极端天气会影响陆地生态系统的结构、组成和功能,从而影响碳循环及生态系统对气候系统的反馈 [65] ;目前干旱、冰雨和冰暴等主要极端天气对净初级生产力的影响已得到广泛研究 [66] 。在我国的森林生物量碳汇研究中表明,从1973年到2008年森林碳汇增加,而2009年到2013年碳汇量下降;且2009年至2013年期间,除北部和西北地区外,所有地区的森林生物量碳汇都有所下降;我国东部和南部地区的中幼森林中,森林过于密集和积雪破坏是生物量碳汇减少的主要因素;西南地区的贵州省碳汇减少主要是由于雪灾 [67] 。冰雪灾害的影响不仅包括当下冰冻造成的生理压力,还包括可能持续数年的植被物理损害 [68] ;降低森林生态系统的潜在生产力 [66] 。在位于广东省和湖南省边界的杨东山十二度水自然保护区研究发现,2008年的冰雪灾害对当地亚热带常绿阔叶林造成了严重的破坏,破坏程度与坡度、海拔等地形因子相关;且在经过了2~3年后森林已基本恢复,但是乔木数量还是在下降 [69] 。在古田山24 hm2固定监测样地中,雪灾对其中三分之一的树木造成严重破坏,三分之一造成轻度破坏;破坏程度与生境、胸径、生活型和所处林层有较强的相关性,其中在低海拔山谷受损更严重,树木胸径越大受损越严重,常绿树种比落叶树种受损严重,处于上林层的乔木受损比小乔木和灌木受损严重 [70] 。2008年这场冰雪灾害使我国森林蓄积量受损超过10%的森林面积达2000万公顷 [71] 。还有研究表明森林在经历雪灾后形成林窗,改变树冠结构,从而增加林下幼苗的丰富度和多度,促进了森林群落更新 [72] [73] 。探究冰雪灾害等极端天气对生态系统功能的影响以及森林后续的恢复机制很重要,可以推动应对大型极端事件和相关人类干预的研究。

<xref></xref>3.2. 生物因素

目前不少科学家研究了森林地上生物量与物种多样性的关系,多数研究证明物种多样性与地上生物量呈现正相关关系 [74] [75] ;这种正相关关系主要是通过选择概率效应和生态位互补性来解释。在生态位互补中,更多的物种共存可以使得资源得到最大化的利用 [76] ,且群落拥有较高的物种多样性可以更好的抵御外来植物的入侵,维持群落的稳定性 [77] ;选择概率效应则提出,较高的物种丰富度可以增加选择增加高产物种的生存来提高群落生产力 [78] ;这两种可以同时对群落地上生物量产生积极作用。在瑞典森林中则发现物种丰富度与生产力等生态系统服务功能为正相关关系 [79] ;Paquette等人在加拿大的温带森林到北方针叶林也发现树种的生长状态明显受物种多样性的驱动 [80] ;还有研究表明混交林的生产力超过单一树种森林的24% [81] 。还有一部分报道表明地上生物量与物种多样性之间存在负相关,生态位互补程度过高则导致某些资源的短缺,不利于物种生长从而对地上生物量产生消极影响 [82] ;在中欧国家的温带天然林中,发现地上生物量与物种多样性存在微弱的负相关,但在删除少部分高海拔的数据后则呈现更显著的相关性 [83] 。综合以上两种情况形成了森林生物量与物种多样性之间的驼峰关系 [80] 。另外还有调查显示物种多样性与森林生物量之间没有显著相关性 [84] ;在我国东部亚热带森林中则发现物种多样性对地上生物量储量的影响可以忽略不计 [85] 。综上,两者之间关系在不同环境、物种和群落类型情况下表现出明显不同。

最近的研究表明,森林结构多样性(包括林分密度、胸径变异系数等指标)比物种多样性更能显著提高自然森林地上碳储量、生物量和生产力等生态系统功能服务的能力 [17] [85] [86] 。有研究表明,更高的林分密度通过更高的林冠重叠将光的利用效率最大化,增加了森林碳储量 [87] 。在加拿大温带森林研究中同样发现,增加结构多样性能提高地上光捕获能力,可以提高地上生产力的潜力 [88] 。另外,在我国温带阔叶林的研究中,地上生物量随着胸径变异系数和乔木密度的增加而显著增加,在潮湿的森林中相关性更加显著。还发现林分结构变化在潮湿森林和半干旱森林中比在半湿润森林中更重要,表明林分结构变化的积极影响在良好的栖息地或有生存压力的环境中变得更强 [89] ,总体而言,胸径变异系数和林分密度是森林地上生物量的重要解释变量。且研究表明,随着森林中林龄的增加,林分密度、胸径变异系数等结构多样性指标提高对地上生物量产生积极影响的解释率越来越高 [88]

科学家还曾提出多样性对生态系统功能的影响归因于群落内部物种的功能特征,而不是物种数量 [90] [91] 。该指标量化了群落中与植物生长、繁殖和生存密切相关的一系列核心属性的多样性;物种根据自身功能的不同而在生态系统之中占据不同的生态位,所以功能多样性实质上与生态位差异相关 [92] 。而且,功能多样性显著影响生态系统功能,并体现生态系统对环境变化的响应 [93] 。因此,功能多样性被当作生态系统功能和恢复力驱动因素的重要指标 [94] 。现多数研究基于物种木材密度、最大树木高度和叶片属性等功能性状,计算功能分散程度等指标来衡量群落中功能多样性 [95] ;这些不仅是很常见的功能性状,而且与地上生物量储量及其动态密切相关 [96] 。在我国东北地区温带森林中则发现地上生物量受最大高度、木材密度等功能性状计算所得的功能多样性指标(群落加权平均值和功能均匀度等)驱动 [17]

系统发育多样性体现群落的进化历史,受到物种之间平均亲缘关系和物种数量的影响 [97] ,被认为是比物种多样性更好的生态系统功能的驱动因子 [98] 。在之前的研究中,当无法获取性状指标时使用系统发育多样性作为代替,因为在功能相似的物种之间系统进化距离更短,反之则更长 [98] [99] 。此外,与目前可收集量化的功能性状对比,系统发育指标有更强的解释能力,因为它是从基因亲缘关系角度进行分析,可以整合更多内在的性状信息,对植物性能具有更全面的衡量 [100] ,从而更准确评估对森林生物量的影响程度。但是也有研究表明系统发育多样性与森林地上生物量无显著关系 [101] ,可能是因为影响生物量的功能性状缺乏系统发育信号 [102]

4. 总结

地上生物量是森林生产力的重要衡量标准,而森林生产力又是森林生态系统功能中的重要组成部分,所以探究森林地上生物量及其影响因素具有重要意义。本文总结了多年来对不同森林类型地上生物量的相关研究、森林地上生物量估算的常用方法,以及森林地上生物量各类影响因素的研究,得出如下结论:

1) 现在关于森林地上生物量的研究范围广,已经遍布各气候带,包含各种森林类型。但是关于生物量动态变化及其规律的研究还有待继续补充。

2) 为探究森林生物量的分布和变化规律,科学家采用了多种方法和技术手段提高生物量估算的精确度。其中包括样地调查、模型模拟和遥感等。样地调查对与小尺度的森林生物量估算可以达到较高的精确度,但是时间、人力和金钱成本较高,对于大尺度森林难以实现。模型模拟适用于大尺度的森林生物量估算,且数据获取方便,但无法及时考虑人为或自然给森林内部造成的影响,从而影响其精确度。遥感对于森林地上生物量的估算也较精确,且效率高,但存在技术和设备要求较高的问题,且目前无法对地下生物量进行估算。方法多样,各有优缺点,后续可将多种方法结合使用,提高森林地上生物量估算的精确度和效率。

3) 生物多样性与森林地上生物量的关系复杂,而这种关系受许多因素的共同影响。本文总结了关于多种因素的研究,其中非生物因素包括如气候、地形、土壤、极端天气,生物因素包括物种多样性、结构多样性、功能多样性、系统发育多样性。因此,在研究过程中,应该根据实际情况综合考虑更多因素对森林地上生物量的交互影响,以更准确理解各因素对森林地上生物量的影响机制。

5. 展望

随着全球气候变化和人类活动的加剧,森林生态系统面临着巨大的挑战和不确定性。因此,对森林地上生物量的深入研究显得尤为重要。未来,我们需要从以下几个方面进一步加强研究;首先,需要进一步完善森林地上生物量的估算方法,可以结合不同方法的优点,探索更加准确、高效、低成本的估算方法,以满足不同尺度、不同需求的生物量估算要求;其次,需要深入探究森林地上生物量的动态变化规律,目前关于生物量动态变化的研究还相对较少,而且长期连续的观测数据相对来说较少,因此,我们需要加强长期监测,掌握生物量的动态变化规律,以更好地预测和评估森林生态系统的未来发展趋势;第三,多种因素都对森林地上生物量产生影响,而这些因素之间的关系又十分复杂。因此,我们需要综合考虑,建立更加完善的生态模型,以更好地理解和预测森林地上生物量的变化;最后,需要加强国际合作,通过共享数据、交流经验、开展联合研究等方式,共同推进森林地上生物量的研究。森林生态系统是全球生态系统的重要组成部分,各国之间的合作和交流对于推动森林地上生物量的研究具有重要意义。

总之,探究森林生物量是一个长期而复杂的过程,需要不断地探索和创新,且森林生物量研究对于维护和提升森林生态系统服务能力具有重要意义。未来的研究需要更加关注森林生物量在全球气候变化背景下的动态变化以及其影响因素的作用机制,以更好地保护和管理这个重要的生态系统。

References Pan, Y., Birdsey, R.A., Fang, J., et al. (2011) A Large and Persistent Carbon Sink in the World’s Forests. Science, 333, 988-993. >https://doi.org/10.1126/science.1201609 Beer, C., Reichstein, M., Tomelleri, E., et al. (2010) Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate. Science, 329, 834-838. >https://doi.org/10.1126/science.1184984 Canadell, J.G. and Raupach, M.R. (2008) Managing Forests for Climate Change Mitigation. Science, 320, 1456-1457. >https://doi.org/10.1126/science.1155458 Montagu, K.D., Duttmer, K., Barton, C.V.M. and Cowie, A.L. (2005) Developing General Allometric Relationships for Regional Estimates of Carbon Sequestration—An Example Using ‘Eucalyptus Pilularis’ from Seven Contrasting Sites. Forest Ecology and Management, 204, 115-129. >https://doi.org/10.1016/j.foreco.2004.09.003 Houghton, R.A. (2005) Aboveground Forest Biomass and the Global Carbon Balance. Global Change Biology, 11, 945-958. Fahey, T.J., Woodbury, P.B., Battles, J.J., et al. (2010) Forest Carbon Storage: Ecology, Management, and Policy. Frontiers in Ecology and the Environment, 8, 245-252. >https://doi.org/10.1890/080169 Davidson, E.A. AND Janssens, I.A. (2006) Temperature Sensitivity of Soil Carbon Decomposition and Feedbacks to Climate Change. Nature, 440, 165-173. >https://doi.org/10.1038/nature04514 Lin, D., Lai, J., Muller-Landau, H.C., et al. (2012) Topographic Variation in Aboveground Biomass in a Subtropical Evergreen Broad-Leaved Forest in China. PLOS ONE, 7, e48244. >https://doi.org/10.1371/journal.pone.0048244 Kloeppel, B., Harmon, M. AND Fahey, T. (2007) Estimating Aboveground Net Primary Productivity in Forest-Domi-nated Ecosystems. In: Kloeppel, B., Harmon, M. and Fahey, T., Eds., Principles and Standards for Measuring Primary Production, Oxford University Press, Oxford, 63-81. >https://doi.org/10.1093/acprof:oso/9780195168662.003.0005 Houghton, R.A. (2005) Aboveground Forest Biomass and the Global Carbon Balance. Global Change Biology, 11, 945-958. >https://doi.org/10.1111/j.1365-2486.2005.00955.x Poorter, L., Van Der Sande, M.T., Thompson, J., et al. (2015) Diversity Enhances Carbon Storage in Tropical Forests. Global Ecology and Biogeography, 24, 1314-1328. >https://doi.org/10.1111/geb.12364 Ali, A., Lin, S., He, J., et al. (2019) Elucidating Space, Climate, Edaphic, and Biodiversity Effects on Aboveground Biomass in Tropical Forests. Land Degradation&Development, 30, 918-927. >https://doi.org/10.1002/ldr.3278 Xu, Y., Franklin, S.B., Wang, Q., et al. (2015) Topographic and Biotic Factors Determine Forest Biomass Spatial Distribution in a Subtropical Mountain Moist Forest. Forest Ecology Management, 357, 95-103. >https://doi.org/10.1016/j.foreco.2015.08.010 Bordin, K.M., Esquivel-Muelbert, A., Bergamin, R.S., et al. (2021) Climate and Large-Sized Trees, but Not Diversity, Drive Above-Ground Biomass in Subtropical Forests. Forest Ecology and Management, 490, Article ID: 119126. >https://doi.org/10.1016/j.foreco.2021.119126 Glatthorn, J., Feldmann, E., Pichler, V., et al. (2018) Biomass Stock and Productivity of Primeval and Production Beech Forests: Greater Canopy Structural Diversity Promotes Productivity. Ecosystems, 21, 704-722. >https://doi.org/10.1016/j.foreco.2021.119126 Hilmers, T., Avdagić, A., Bartkowicz, L., et al. (2019) the Productivity of Mixed Mountain Forests Comprised of Fagus sylvatica, Picea abies, and Abies alba Across Europe. Forestry: An International Journal of Forest Research, 92, 512-522. >https://doi.org/10.1093/forestry/cpz035 Yuan, Z., Wang, S., Ali, A., et al. (2018) Aboveground Carbon Storage Is Driven by Functional Trait Composition and Stand Structural Attributes Rather than Biodiversity in Temperate Mixed Forests Recovering from Disturbances. Annals of Forest Science, 75, Article No. 67. >https://doi.org/10.1007/s13595-018-0745-3 Kumar, L. and Mutanga, O. (2017) Remote Sensing of Above-Ground Biomass. Remote Sensing, 9, Article 935. >https://doi.org/10.3390/rs9090935 Su, Y., Guo, Q., Xue, B., et al. (2015) Spatial Distribution of Forest Aboveground Biomass in China: Estimation through Combination of Spaceborne Lidar, Optical Imagery, and Forest Inventory Data. Remote Sensing of Environment, 173, 187-199. >https://doi.org/10.1016/j.rse.2015.12.002 Fang, J., Chen, A., Peng, C., et al. (2001) Changes in Forest Biomass Carbon Storage in China between 1949 and 1998. Science, 292, 2320-2322. >https://doi.org/10.1126/science.1058629 Dong, L.H., Zhang, L. and Li, F. (2016) Developing Two Additive Biomass Equations for Three Coniferous Plantation Species in Northeast China. Forests, 7, Article 136. >https://doi.org/10.3390/f7070136 Tadese, S., Soromessa, T., Bekele, T., et al. (2020) Above Ground Biomass Estimation Methods and Challenges: A Review. International Journal of Energy Technology and Policy, 9, 12-25. Návar, J. (2009) Allometric Equations for Tree Species and Carbon Stocks for Forests of Northwestern Mexico. Forest Ecology and Management, 257, 427-434. >https://doi.org/10.1016/j.foreco.2008.09.028 Picard, N., Saint-André, L. and Henry, M. (2012) Manual for Building Tree Volume and Biomass Allometric Equations: From Field Measurement to Prediction. Food and Agricultural Organization of the United Nations and Centre de Coopération Internationale en Recherche Agronomique Pour le Développement, Rome, Montpellier. Montès, N., Gauquelin, T., Badri, W., et al. (2000) A Non-Destructive Method for Estimating Above-Ground Forest Biomass in Threatened Woodlands. Forest Ecology and Management, 130, 37-46. >https://doi.org/10.1016/S0378-1127(99)00188-7 Zeng, W., Tomppo, E., Healey, S.P., et al. (2015) The National Forest Inventory in China: History-Results-International Context. Forest Ecosystems, 2, 23-39. >https://doi.org/10.1186/s40663-015-0047-2 Tomppo, E., Gschwantner, T., Lawrence, M., et al. (2010) National Forest Inventories: Pathways for Common Reporting. Springer, Dordrecht. >https://doi.org/10.1007/978-90-481-3233-1 Lu, D., Chen, Q., Wang, G., et al. (2016) A Survey of Remote Sensing-Based Aboveground Biomass Estimation Methods in Forest Ecosystems. International Journal of Digital Earth, 9, 63-105. >https://doi.org/10.1080/17538947.2014.990526 赵敏, 周广胜. 中国森林生态系统的植物碳贮量及其影响因子分析[J]. 地理科学, 2004, 24(1): 50-54. Lu, D. (2006) The Potential and Challenge of Remote Sensing–Based Biomass Estimation. International Journal of Remote Sensing, 27, 1297-1328. >https://doi.org/10.1080/01431160500486732 Mutanga, O., Shoko, C., Adelabu, S., et al. (2016) Remote Sensing of Aboveground Forest Biomass: A Review. Tropical Ecology, 57, 125-132. Bortolot, Z.J. and Wynne, R.H. (2005) Estimating Forest Biomass Using Small Footprint LiDAR Data: An Individual Tree-Based Approach That Incorporates Training Data. ISPRS Journal of Photogrammetry and Remote Sensing, 59, 342-360. >https://doi.org/10.1016/j.isprsjprs.2005.07.001 Kumar, L., Sinha, P., Taylor, S., et al. (2015) Review of the Use of Remote Sensing for Biomass Estimation to Support Renewable Energy Generation. Journal of Applied Remote Sensing, 9, Article ID: 097696. >https://doi.org/10.1117/1.JRS.9.097696 St-Onge, B., Hu, Y. and Vega, C. (2008) Mapping the Height and Above-Ground Biomass of a Mixed Forest Using Lidar and Stereo Ikonos Images. International Journal of Remote Sensing, 29, 1277-1294. >https://doi.org/10.1080/01431160701736505 Li, D., Wang, C., Hu, Y., et al. (2012) General Review on Remote Sensing-Based Biomass Estimation. Geomatics and Information Science of Wuhan University, 37, 631-635. Vashum, K. and Jayakumar, S. (2012) Methods to Estimate Above-Ground Biomass and Carbon Stock in Natural Forests: A Review. Journal of Ecosystem&Ecography, 2, 4-11. >https://doi.org/10.4172/2157-7625.1000116 Lefsky, M.A., Cohen, W.B., Harding, D.J., et al. (2002) Lidar Remote Sensing of Above-Ground Biomass in Three Biomes. Global Ecology and Biogeography, 11, 393-399. >https://doi.org/10.1046/j.1466-822x.2002.00303.x Zolkos, S.G., Goetz, S.J. and Dubayah, R. (2013) A Meta-Analysis of Terrestrial Aboveground Biomass Estimation Using Lidar Remote Sensing. Remote Sensing of Environment, 128, 289-298. >https://doi.org/10.1016/j.rse.2012.10.017 Sullivan, M.J.P., Lewis, S.L., Affum-Baffoe, K., et al. (2020) Long-Term Thermal Sensitivity of Earth’s Tropical Forests. Science, 368, 869-874. >https://doi.org/10.1126/science.aaw7578 Chu, C., Bartlett, M., Wang, Y., et al. (2016) Does Climate Directly Influence NPP Globally? Global Change Biology, 22, 12-24. >https://doi.org/10.1111/gcb.13079 Coomes, D.A., Flores, O., Holdaway, R., et al. (2014) Wood Production Response to Climate Change Will Depend Critically on Forest Composition and Structure. Global Change Biology, 20, 3632-3645. >https://doi.org/10.1111/gcb.12622 O’brien, E.M. (2006) Biological Relativity to Water-Energy Dynamics. Journal of Biogeography, 33, 1868-1888. >https://doi.org/10.1111/j.1365-2699.2006.01534.x Alvarez-Davila, E., Cayuela, L., González-Caro, S., et al. (2017) Forest Biomass Density across Large Climate Gradients in Northern South America Is Related to Water Availability but Not with Temperature. PLOS ONE, 12, e0171072. >https://doi.org/10.1371/journal.pone.0171072 Allen, C.D., Macalady, A.K., Chenchouni, H., et al. (2010) A Global Overview of Drought and Heat-Induced Tree Mortality Reveals Emerging Climate Change Risks for Forests. Forest Ecology and Management, 259, 660-684. >https://doi.org/10.1016/j.foreco.2009.09.001 Vilanova, E., Ramírez-Angulo, H., Torres-Lezama, A., et al. (2018) Environmental Drivers of Forest Structure and Stem Turnover across Venezuelan Tropical Forests. PLOS ONE, 13, e0198489. >https://doi.org/10.1371/journal.pone.0198489 乐荣武, 张娜, 王晶杰, 等. 2000-2019 年内蒙古草地地上生物量的时空变化特征[J]. 中国科学院大学学报, 2022, 39(1): 21-33. 陈德祥, 李意德, Liu Heping, 等. 尖峰岭热带山地雨林生物量及碳库动态[J]. 中国科学C辑, 2010, 40(7): 596-609. 郭屹立, 王斌, 向悟生, 等. 喀斯特季节性雨林木本植物胸高断面积分布格局及其对地形因子的响应[J]. 生物多样性, 2016, 24(1): 30-39. Mcewan, R.W., Lin, Y.C., Sun, I.F., et al. (2011) Topographic and Biotic Regulation of Aboveground Carbon Storage in Subtropical Broad-Leaved Forests of Taiwan. Forest Ecology and Management, 262, 1817-1825. >https://doi.org/10.1016/j.foreco.2011.07.028 Jucker, T., Bongalov, B., Burslem, D.F.R.P., et al. (2018) Topography Shapes the Structure, Composition and Function of Tropical Forest Landscapes. Ecology Letters, 21, 989-1000. >https://doi.org/10.1111/ele.12964 Chadwick, K.D. and Asner, G.P. (2016) Tropical Soil Nutrient Distributions Determined by Biotic and Hillslope Processes. Biogeochemistry, 127, 273-289. >https://doi.org/10.1007/s10533-015-0179-z Paoli, G.D. (2006) Divergent Leaf Traits among Congeneric Tropical Trees with Contrasting Habitat Associations on Borneo. Journal of Tropical Ecology, 22, 397-408. >https://doi.org/10.1017/S0266467406003208 Tanner, E.V.J., Rodriguez-Sanchez, F., Healey, J.R., et al. (2014) Long-Term Hurricane Damage Effects on Tropical Forest Tree Growth and Mortality. Ecology, 95, 2974-2983. >https://doi.org/10.1890/13-1801.1 Ferry, B., Morneau, F., Bontemps, J.D., et al. (2010) Higher Treefall Rates on Slopes and Waterlogged Soils Result in Lower Stand Biomass and Productivity in a Tropical Rain Forest. Journal of Ecology, 98, 106-116. >https://doi.org/10.1111/j.1365-2745.2009.01604.x Werner, F.A. and Homeier, J. (2015) Is Tropical Montane Forest Heterogeneity Promoted by a Resource-Driven Feedback Cycle? Evidence from Nutrient Relations, Herbivory and Litter Decomposition along a Topographical Gradient. Functional Ecology, 29, 430-440. >https://doi.org/10.1111/1365-2435.12351 Quesada, C.A., Phillips, O.L., Schwarz, M., et al. (2012) Basin-Wide Variations in Amazon Forest Structure and Function Are Mediated by Both Soils and Climate. Biogeosciences, 9, 2203-2246. >https://doi.org/10.5194/bg-9-2203-2012 Wright, S.J., Yavitt, J.B., Wurzburger, N., et al. (2011) Potassium, Phosphorus, or Nitrogen Limit Root Allocation, Tree Growth, or Litter Production in a Lowland Tropical Forest. Ecology, 92, 1616-1625. >https://doi.org/10.1890/10-1558.1 Coomes, D.A., Kunstler, G., Canham, C.D., et al. (2009) A Greater Range of Shade-Tolerance Niches in Nutrient-Rich Forests: An Explanation for Positive Richness-Productivity Relationships? Journal of Ecology, 97, 705-717. >https://doi.org/10.1111/j.1365-2745.2009.01507.x Becknell, J.M. and Powers, J.S. (2014) Stand Age and Soils as Drivers of Plant Functional Traits and Aboveground Biomass in Secondary Tropical Dry Forest. Canadian Journal of Forest Research, 44, 604-613. >https://doi.org/10.1139/cjfr-2013-0331 Yuan, Z., Ali, A., Jucker, T., et al. (2019) Multiple Abiotic and Biotic Pathways Shape Biomass Demographic Processes in Temperate Forests. Ecology, 100, e02650. >https://doi.org/10.1002/ecy.2650 Malhi, Y., Wood, D., Baker, T.R., et al. (2006) The Regional Variation of Aboveground Live Biomass in Old-Growth Amazonian Forests. Global Change Biology, 12, 1107-1138. >https://doi.org/10.1111/j.1365-2486.2006.01120.x Malhi, Y. (2012) The Productivity, Metabolism and Carbon Cycle of Tropical Forest Vegetation. Journal of Ecology, 100, 65-75. >https://doi.org/10.1111/j.1365-2745.2011.01916.x Prado-Junior, J.A., Schiavini, I., Vale, V.S., et al. (2016) Conservative Species Drive Biomass Productivity in Tropical Dry Forests. Journal of Ecology, 104, 817-827. >https://doi.org/10.1111/1365-2745.12543 朱杰, 吴安驰, 邹顺, 等. 南亚热带常绿阔叶林树木多样性与生物量和生产力的关联及其影响因素[J]. 生物多样性, 2021, 29(11): 1435-1446. Frank, D., Reichstein, M., Bahn, M., et al. (2015) Effects of Climate Extremes on the Terrestrial Carbon Cycle: Concepts, Processes and Potential Future Impacts. Global Change Biology, 21, 2861-2880. >https://doi.org/10.1111/gcb.12916 Huang, K., Wang, S., Zhou, L., et al. (2013) Effects of Drought and Ice Rain on Potential Productivity of a Subtropical Coniferous Plantation from 2003 to 2010 Based on Eddy Covariance Flux Observation. Environmental Research Letters, 8, Article ID: 035021. >https://doi.org/10.1088/1748-9326/8/3/035021 Zhang, C., Ju, W., Chen, J.M., et al. (2015) Disturbance-Induced Reduction of Biomass Carbon Sinks of China’s Forests in Recent Years. Environmental Research Letters, 10, Article ID: 114021. >https://doi.org/10.1088/1748-9326/10/11/114021 Yao, W., Ma, Y., Chen, F., et al. (2020) Analysis of Ice Storm Impact on and Post-Disaster Recovery of Typical Subtropical Forests in Southeast China. Remote Sensing, 12, Article 164. >https://doi.org/10.3390/rs12010164 Zhang, F., Zhou, G., Hiratsuka, M., et al. (2012) Influence of An Ice Storm on Aboveground Biomass of Subtropical Evergreen Broadleaf Forest in Lechang, Nanling Mountains of Southern China. International Journal of Forestry Research, 2012, Article ID: 467848. >https://doi.org/10.1155/2012/467848 曼兴兴, 米湘成, 马克平. 雪灾对古田山常绿阔叶林群落结构的影响[J]. 生物多样性, 2011, 19(2): 197-205. Sun, Y., Gu, L., Dickinson, R., et al. (2012) Forest Greenness after the Massive 2008 Chinese Ice Storm: Integrated Effects of Natural Processes and Human Intervention. Environmental Research Letters, 7, Article ID: 035702. >https://doi.org/10.1088/1748-9326/7/3/035702 Song, X., Hogan, J.A., Lin, L., et al. (2018) Canopy Openness and Topographic Habitat Drive Tree Seedling Recruitment after Snow Damage in an Old-Growth Subtropical Forest. Forest Ecology and Management, 429, 493-502. >https://doi.org/10.1016/j.foreco.2018.07.038 王云泉. 雪灾对密度制约维持森林群落生物多样性的影响[D]: [硕士学位论文]. 金华: 浙江师范大学, 2015. Barrufol, M., Schmid, B., Bruelheide, H., et al. (2013) Biodiversity Promotes Tree Growth during Succession in Subtropical Forest. PLOS ONE, 8, e81246. >https://doi.org/10.1371/journal.pone.0081246 Castro-Izaguirre, N., Chi, X., Baruffol, M., et al. (2016) Tree Diversity Enhances Stand Carbon Storage but Not Leaf Area in a Subtropical Forest. PLOS ONE, 11, e0167771. >https://doi.org/10.1371/journal.pone.0167771 Tilman, D. (1999) The Ecological Consequences of Changes in Biodiversity: A Search for General Principles. Ecology, 80, 1455-1474. >https://doi.org/10.2307/176540 Hooper, D.U., Chapin Iii, F.S., Ewel, J.J., et al. (2005) Effects of Biodiversity on Ecosystem Functioning: A Consensus of Current Knowledge. Ecological Monographs, 75, 3-35. >https://doi.org/10.1890/04-0922 Huston, M.A. (1997) Hidden Treatments in Ecological Experiments: Re-Evaluating the Ecosystem Function of Biodiversity. Oecologia, 110, 449-460. >https://doi.org/10.1007/s004420050180 Gamfeldt, L., Snäll, T., Bagchi, R., et al. (2013) Higher Levels of Multiple Ecosystem Services Are Found in Forests with More Tree Species. Nature Communications, 4, Article No. 1340. >https://doi.org/10.1038/ncomms2328 Paquette, A. and Messier, C. (2011) The Effect of Biodiversity on Tree Productivity: From Temperate to Boreal Forests. Global Ecology and Biogeography, 20, 170-180. >https://doi.org/10.1111/j.1466-8238.2010.00592.x Vilà, M., Carrillo-Gavilán, A., Vayreda, J., et al. (2013) Disentangling Biodiversity and Climatic Determinants of Wood Production. PLOS ONE, 8, e53530. >https://doi.org/10.1371/journal.pone.0053530 Forrester, D.I. and Bauhus, J. (2016) A Review of Processes Behind Diversity—Productivity Relationships in Forests. Current Forestry Reports, 2, 45-61. >https://doi.org/10.1007/s40725-016-0031-2 Szwagrzyk, J. and Gazda, A. (2007) Above-Ground Standing Biomass and Tree Species Diversity in Natural Stands of Central Europe. Journal of Vegetation Science, 18, 555-562. >https://doi.org/10.1111/j.1654-1103.2007.tb02569.x Seidel, D., Leuschner, C., Scherber, C., et al. (2013) the Relationship between Tree Species Richness, Canopy Space Exploration and Productivity in a Temperate Broad-Leaf Mixed Forest. Forest Ecology and Management, 310, 366-374. >https://doi.org/10.1016/j.foreco.2013.08.058 Ali, A., Yan, E., Chen, H.Y, H., et al. (2016) Stand Structural Diversity Rather than Species Diversity Enhances Aboveground Carbon Storage in Secondary Subtropical Forests in Eastern China. Biogeosciences, 13, 4627-4635. >https://doi.org/10.5194/bg-13-4627-2016 Dănescu, A., Albrecht, A.T. and Bauhus, J. (2016) Structural Diversity Promotes Productivity of Mixed, Uneven-Aged Forests in Southwestern Germany. Oecologia, 182, 319-333. >https://doi.org/10.1007/s00442-016-3623-4 Morin, X. (2015) Species Richness Promotes Canopy Packing: A Promising Step towards a Better Understanding of the Mechanisms Driving the Diversity Effects on Forest Functioning. Functional Ecology, 29, 993-994. >https://doi.org/10.1111/1365-2435.12473 Zhang, Y. and Chen, H.Y.H. (2015) Individual Size Inequality Links Forest Diversity and Above-Ground Biomass. Journal of Ecology, 103, 1245-1252. >https://doi.org/10.1111/1365-2745.12425 Chen, G., Cai, Q., Ma, S., et al. (2023) Climate and Forest Attributes Influence Above-Ground Biomass of Deciduous Broadleaf Forests in China. Journal of Ecology, 111, 495-508. >https://doi.org/10.1111/1365-2745.14042 Macgillivray, C.W., Grime, J.P. and the Integrated Screening Programme (ISP) Team (1995) Testing Predictions of the Resistance and Resilience of Vegetation Subjected to Extreme Events. Functional Ecology, 9, 640-649. >https://doi.org/10.2307/2390156 Lepš, J., Osbornová-Kosinová, J. and Rejmánek, M. (1982) Community Stability, Complexity and Species Life History Strategies. Vegetatio, 50, 53-63. >https://doi.org/10.1007/BF00120678 Lian, Z., Wang, J., Fan, C., et al. (2022) Structure Complexity Is the Primary Driver of Functional Diversity in the Temperate Forests of Northeastern China. Forest Ecosystems, 9, Article ID: 100048. >https://doi.org/10.1016/j.fecs.2022.100048 Chiu, C.H. and Chao, A. (2014) Distance-Based Functional Diversity Measures and Their Decomposition: A Framework Based on Hill Numbers. PLOS ONE, 9, e100014. >https://doi.org/10.1371/journal.pone.0100014 Petchey, O.L. and Gaston, K.J. (2002) Functional Diversity (FD), Species Richness and Community Composition. Ecology Letters, 5, 402-411. >https://doi.org/10.1046/j.1461-0248.2002.00339.x Huang, Y., Chen, Y., Castro-Izaguirre, N., et al. (2018) Impacts of Species Richness on Productivity in a Large-Scale Subtropical Forest Experiment. Science, 362, 80-83. >https://doi.org/10.1126/science.aat6405 Wu, X., Wang, X., Wu, Y., et al. (2015) Forest Biomass Is Strongly Shaped by Forest Height across Boreal to Tropical Forests in China. Journal of Plant Ecology, 8, 559-567. >https://doi.org/10.1093/jpe/rtv001 Webb, C.O. (2000) Exploring the Phylogenetic Structure of Ecological Communities: An Example for Rain Forest Trees. American Society of Naturalists, 156, 145-155. >https://doi.org/10.1086/303378 Cadotte, M.W., Cardinale, B.J. and Oakley, T.H. (2008) Evolutionary History and the Effect of Biodiversity on Plant Productivity. Proceedings of the National Academy of Sciences of the United States of America, 105, 17012-17017. >https://doi.org/10.1073/pnas.0805962105 Srivastava, D.S., Cadotte, M.W., Macdonald, A.A.M., et al. (2012) Phylogenetic Diversity and the Functioning of Ecosystems. Ecology Letters, 15, 637-648. >https://doi.org/10.1111/j.1461-0248.2012.01795.x Cadotte, M.W., Cavender-Bares, J., Tilman, D., et al. (2009) Using Phylogenetic, Functional and Trait Diversity to Understand Patterns of Plant Community Productivity. PLOS ONE, 4, e5695. >https://doi.org/10.1371/journal.pone.0005695 Venail, P., Gross, K., Oakley, T.H., et al. (2015) Species Richness, but Not Phylogenetic Diversity, Influences Community Biomass Production and Temporal Stability in a Re-Examination of 16 Grassland Biodiversity Studies. Functional Ecology, 29, 615-626. >https://doi.org/10.1111/1365-2435.12432 Maherali, H. and Klironomos, J.N. (2007) Influence of Phylogeny on Fungal Community Assembly and Ecosystem Functioning. Science, 316, 1746-1748. >https://doi.org/10.1126/science.1143082
Baidu
map