随着平均寿命的上升,慢性肾脏病患者的人数与比例都在逐年增加。蛋白结合毒素已被证明是诱发多种尿毒症并发症的关键因素,而且传统血液透析无法对蛋白结合毒素产生良好的清除效果。近年来,有关蛋白结合毒素清除材料的研究呈增多趋势,本文将基于应用于血液透析与血液灌流的吸附材料两种类型来进行综述。 As the average life expectancy increases, the number and proportion of patients with chronic kidney disease are increasing year by year. Protein-bound toxins have been shown to be a key factor in inducing a variety of uremic complications, and traditional hemodialysis cannot produce a good removal effect on protein-bound toxins. In recent years, research on protein-bound toxin removal materials has been increasing. This article will review based on two types of adsorbent materials used in hemodialysis and hemoperfusion.
As the average life expectancy increases, the number and proportion of patients with chronic kidney disease are increasing year by year. Protein-bound toxins have been shown to be a key factor in inducing a variety of uremic complications, and traditional hemodialysis cannot produce a good removal effect on protein-bound toxins. In recent years, research on protein-bound toxin removal materials has been increasing. This article will review based on two types of adsorbent materials used in hemodialysis and hemoperfusion.
参考文献References
Coresh, J. (2017) Update on the Burden of CKD. Journal of the American Society of Nephrology, 28, 1020-1022. https://doi.org/10.1681/ASN.2016121374
Sirich, T.L., Meyer, T.W., Gondouin, B., Brunet, P. and Niwa, T. (2014) Protein-Bound Molecules: A Large Family with a Bad Character. Seminars in Nephrology, 34, 106-117. https://doi.org/10.1016/j.semnephrol.2014.02.004
Fujii, H., Goto, S. and Fukagawa, M. (2018) Role of Uremic Toxins for Kidney, Cardiovascular, and Bone Dysfunction. Toxins (Basel), 10, Article No. 202. https://doi.org/10.3390/toxins10050202
Rosner, M.H., Reis, T., Husain-Syed, F., Vanholder, R., Hutchison, C., Stenvinkel, P., Blankestijn, P.J., Cozzolino, M., Juillard, L., Kashani, K., et al. (2021) Classification of Uremic Toxins and Their Role in Kidney Failure. Clinical Journal of the American Society of Nephrology: CJASN, 16, 1918-1928. https://doi.org/10.2215/CJN.02660221
Sirich, T.L. and Meyer, T.W. (2018) Intensive Hemodialysis Fails to Reduce Plasma Levels of Uremic Solutes. Clinical Journal of the American Society of Nephrology, 13, 361-362. https://doi.org/10.2215/CJN.00950118
Lekawanvijit, S., Kompa, A.R. and Krum, H. (2016) Protein-Bound Uremic Toxins: A Long Overlooked Culprit in Cardiorenal Syndrome. American Journal of Physiology-Renal Physiology, 311, F52-F62. https://doi.org/10.1152/ajprenal.00348.2015
Lekawanvijit, S., Kompa, A.R., Manabe, M., Wang, B.H., Langham, R.G., Nishijima, F., et al. (2012) Chronic Kidney Disease-Induced Cardiac Fibrosis Is Ameliorated by Reducing Circulating Levels of a Non-Dialysable Uremic Toxin, Indoxyl Sulfate. PLOS ONE, 7, E41281. https://doi.org/10.1371/journal.pone.0041281
Lin, C.J., Wu, V., Wu, P.C. and Wu, C.J. (2015) Meta-Analysis of the Associations of P-Cresyl Sulfate (P-Cresyl Sulfate) and Indoxyl Sulfate (IS) with Cardiovascular Events and All-Cause Mortality in Patients with Chronic Renal Failure. PLOS ONE, 10, E0132589. https://doi.org/10.1371/journal.pone.0132589
Yamamoto, S., Kazama, J.J., Wakamatsu, T., Takahashi, Y., Kaneko, Y., Goto, S. and Narita, I. (2016) Removal of Uremic Toxins by Renal Replacement Therapies: A Review of Current Progress and Future Perspectives. Renal Replacement Therapy, 2, Article No. 43. https://doi.org/10.1186/s41100-016-0056-9
Lesaffer, G., De Smet, R., Lameire, N., Dhondt, A., Duym, P. and Vanholder, R. (2000) Intradialytic Removal of Protein-Bound Uraemic Toxins: Role of Solute Characteristics and of Dialyser Membrane. Nephrology Dialysis Transplantation, 15, 50-57. https://doi.org/10.1093/ndt/15.1.50
Ronco, C., Ghezzi, P.M. and Bowry, S.K. (2004) Membranes for Hemodialysis. In: Hörl, W.H., Koch, K.M., Lindsay, R.M., Ronco, C. and Winchester, J.F., Eds., Replacement of Renal Function by Dialysis, Springer, Dordrecht, 301-323. https://doi.org/10.1007/978-1-4020-2275-3_13
Krieter, D.H. and Canaud, B. (2003) High Permeability of Dialysis Membranes: What Is the Limit of Albumin Loss? Nephrology Dialysis Transplantation, 18, 651-654. https://doi.org/10.1093/ndt/gfg054
Botella, J., Ghezzi, P.M. and Sanz-Moreno, C. (2000) Sorbents in Hemodialysis. Kidney International, 58, S60-S65. https://doi.org/10.1046/j.1523-1755.2000.07607.x
Ghezzi, P.M., Dutto, A., Gervasio, R. and Botella, J. (1989) Hemodiafiltration with Separate Convection and Diffusion: Paired Filtration Dialysis. Clinical Nephrology, 69, 141-161. https://doi.org/10.1159/000416756
Wratten, M.L. and Ghezzi, P.M. (2007) Hemodiafiltration with Endogenous Reinfusion. Hemodiafiltration, 158, 94-102. https://doi.org/10.1159/000107239
Aucella, F. (2012) Hemodiafiltration with Endogenous Reinfusion. Hemodiafiltration, 29, S72-S82.
Grandi, F., Bolasco, P., Palladino, G., Sereni, L., Caiazzo, M., Atti, M. and Ghezzi, P.M. (2012) Adsorption in Extracorporeal Blood Purification: How to Enhance Solutes Removal beyond Diffusion and Convection. In: Suzuki, H., Ed., Hemodialysis, IntechOpen, London. https://doi.org/10.5772/52272
Cuoghi, A., Caiazzo, M., Monari, E., Bellei, E., Bergamini, S., Sereni, L., Aucella, F., Loschiavo, C., Atti, M. and Tomasi, A. (2015) New Horizon in Dialysis Depuration: Characterization of a Polysulfone Membrane Able to Break the “Albumin Wall”. Journal of Biomaterials Applications, 29, 1363-1371. https://doi.org/10.1177/0885328214565651
Monari, E., Cuoghi, A., Bellei, E., Bergamini, S., Caiazzo, M., Aucella, F., Loschiavo, C., Corazza, L., Palladino, G., Sereni, L., et al. (2015) Proteomic Analysis of Protein Extraction during Hemofiltration with On-Line Endogenous Reinfusion (HFR) Using Different Polysulphone Membranes. Journal of Materials Science: Materials in Medicine, 26, Article No. 140. https://doi.org/10.1007/s10856-015-5398-2
Martinez, A.W., Recht, N.S., Hostetter, T.H. and Meyer, T.W. (2005) Removal of P-Cresol Sulfate by Hemodialysis. Journal of the American Society of Nephrology, 16, 3430-3436. https://doi.org/10.1681/ASN.2005030310
Itoh, Y., Ezawa, A., Kikuchi, K., Tsuruta, Y. and Niwa, T. (2012) Protein-Bound Uremic Toxins in Hemodialysis Patients Measured by Liquid Chromatography/Tandem Mass Spectrometry and Their Effects on Endothelial ROS Production. Analytical and Bioanalytical Chemistry, 403, 1841-1850. https://doi.org/10.1007/s00216-012-5929-3
Basile, C., Libutti, P., Di Turo, A.L., Casino, F.G., Vernaglione, L., Tundo, S., Maselli, P., De Nicolo, E.V., Ceci, E., Teutonico, A., et al. (2011) Removal of Uraemic Retention Solutes in Standard Bicarbonate Haemodialysis and Long-Hour Slow-Flow Bicarbonate Haemodialysis. Nephrology Dialysis Transplantation, 26, 1296-1303. https://doi.org/10.1093/ndt/gfq543
Krieter, D.H., Hackl, A., Rodriguez, A., Chenine, L., Moragues, H.L., Lemke, H.D., Wanner, C. and Canaud, B. (2010) Protein-Bound Uraemic Toxin Removal in Haemodialysis and Post-Dilution Haemodiafiltration. Nephrology Dialysis Transplantation, 25, 212-218. https://doi.org/10.1093/ndt/gfp437
Meyer, T.W., Peattie, J.W., Miller, J.D., Dinh, D.C., Recht, N.S., Walther, J.L. and Hostetter, T.H. (2007) Increasing the Clearance of Protein-Bound Solutes by Addition of A Sorbent to the Dialysate. Journal of the American Society of Nephrology, 18, 868-874. https://doi.org/10.1681/ASN.2006080863
Li, J., Han, L., Liu, S., He, S., Cao, Y., Xie, J. and Jia, L. (2018) Removal of Indoxyl Sulfate by Water-Soluble Poly-Cyclodextrins in Dialysis. Colloids and Surfaces B: Biointerfaces, 164, 406-413. https://doi.org/10.1016/j.colsurfb.2018.01.056
Shen, Y., Shen, Y., Li, J., Ding, F. and Wang, Y. (2022) Polyethyleneimine-Anchored Liposomes as Scavengers for Improving the Efficiency of Protein-Bound Uremic Toxin Clearance during Dialysis. Journal of Biomedical Materials Research Part A, 110, 976-983. https://doi.org/10.1002/jbm.a.37346
Liu, Y., Li, G., Han, Q., Lin, H., Deng, G., Li, Q. and Liu, F. (2023) Designing Adsorptive Membranes for Removing Protein-Bound Uremic Toxins via π-π and Cation-π Interaction. Journal of Membrane Science, 676, Article ID: 121584. https://doi.org/10.1016/j.memsci.2023.121584
Yen, S.C., Liu, Z.W., Juang, R.S., Sahoo, S., Huang, C.H., Chen, P., Hsiao, Y.S. and Fang, J.T. (2019) Carbon Nanotube/Conducting Polymer Hybrid Nanofibers as Novel Organic Bioelectronic Interfaces for Efficient Removal of Protein-Bound Uremic Toxins. ACS Applied Materials & Interfaces, 11, 43843-43856. https://doi.org/10.1021/acsami.9b14351
Liu, Y., Peng, X., Hu, Z., Yu, M., Fu, J. and Huang, Y. (2021) Fabrication of a Novel Nitrogen-Containing Porous Carbon Adsorbent for Protein-Bound Uremic Toxins Removal. Materials Science & Engineering C-Materials for Biological Applications, 121, Article ID: 111879. https://doi.org/10.1016/j.msec.2021.111879
Zhao, R., Ma, T., Cui, F., Tian, Y. and Zhu, G. (2020) Porous Aromatic Framework with Tailored Binding Sites and Pore Sizes as a High-Performance Hemoperfusion Adsorbent for Bilirubin Removal. Advanced Science (Weinh), 7, Article ID: 2001899. https://doi.org/10.1002/advs.202001899
Chao, Z., Li, J., Jiang, W., Zhang, C., Ji, J., Hua, X., Xu, L., Han, L. and Jia, L. (2021) Hemocompatible MOF-Decorated Pollen Hemoperfusion Absorbents for Rapid and Highly Efficient Removal of Protein-Bound Uremic Toxins. Materials Chemistry Frontiers, 5, 7617-7627. https://doi.org/10.1039/D1QM01071A
Wu, K., Yang, W., Jiao, Y. and Zhou, C. (2017) A Surface Molecularly Imprinted Electrospunpolyethersulfone (PES) Fiber Mat for Selective Removal of Bilirubin. Journal of Materials Chemistry B, 5, 5763-5773. https://doi.org/10.1039/C7TB00643H
Yang, Y., Yin, S., He, C., Wu, X., Yin, J., Zhang, J., Ma, L., Zhao, W., Cheng, C. and Zhao, C. (2020) Construction of Kevlar Nanofiber/Graphene Oxide Composite Beads as Safe, Self-Anticoagulant, and Highly Efficient Hemoperfusion Adsorbents. Journal of Materials Chemistry B, 8, 1960-1970. https://doi.org/10.1039/C9TB02789K
Xu, K., Cao, L., Wang, Z. and Chen, L.P. (2023) Heparin-Mimetic Chitooligosaccharides-Based Monoliths Obtained from C/W Emulsions: Hemocompatibility and Toxin Removal Ability. ACS Biomaterials Science & Engineering, 9, 5610-5621. https://doi.org/10.1021/acsbiomaterials.3c00833
Cai, N., Li, Q., Zhang, J., Xu, T., Zhao, W., Yang, J. and Zhang, L. (2017) Antifouling Zwitterionic Hydrogel Coating Improves Hemocompatibility of Activated Carbon Hemoadsorbent. Journal of Colloid and Interface Science, 503, 168-177. https://doi.org/10.1016/j.jcis.2017.04.024
Li, Q., Yang, J., Cai, N., Zhang, J., Xu, T., Zhao, W., Guo, H., Zhu, Y. and Zhang, L. (2019) Hemocompatible Hemo Adsorbent for Effective Removal of Protein-Bound Toxin in Serum. Journal of Colloid and Interface Science, 555, 145-156. https://doi.org/10.1016/j.jcis.2019.07.045