好氧反硝化菌自从第一次被提出以来,就因为其挑战了厌氧反硝化理论,能够在好氧条件下发挥反硝化作用,实现了在一个反应器里硝化反硝化同时进行而受到了很多关注。本文较为系统的总结了近几年来从不同环境中筛选分离出的好氧反硝化菌,并从“协同呼吸理论”和“好氧反硝化酶作用”这两个方面深入探讨了好氧反硝化菌的反硝化作用机理。在此基础上,考察了各种环境因子对好氧反硝化菌脱氮效果的影响。包括碳源的种类,温度,溶氧,pH,盐度。最后对好氧反硝化菌在污水处理领域的应用前景进行分析,并利用好氧反硝化菌易于附着于生物膜表面,从而达到高效稳定运行的目的,为污水处理领域的实际应用研究提供理论依据。 Since it was first proposed, aerobic denitrification bacteria have attracted much attention because they challenge the theory of anaerobic denitrification, can play the role of denitrification under aerobic conditions, and achieve simultaneous nitrification and denitrification in one reactor. This paper systematically summarizes the aerobic denitrifying bacteria isolated from different environments in recent years, and further discusses the denitrifying mechanism of aerobic denitrifying bacteria from two aspects: “cooperative respiration theory” and “aerobic denitrifying enzyme action”. On this basis, the effects of various environmental factors on the denitrification efficiency of aerobic denitrifying bacteria are investigated. Including the type of carbon source, temperature, dissolved oxygen, pH, salinity. Finally, the application prospect of aerobic denitrifying bacteria in the field of sewage treatment is analyzed, and the use of aerobic denitrifying bacteria is easy to attach to the surface of biofilm, so as to achieve the purpose of efficient and stable operation, and provide a theoretical basis for the practical application research in the field of sewage treatment.
好氧反硝化菌,筛选分离,作用机理,影响因素,应用前景, Aerobic Denitrifier
Screening and Separation
Mechanism of Action
Influence Factor
Application Prospect
摘要
Research Progress on Denitrification Performance of Aerobic Denitrifying Bacteria and Its Application in Wastewater Treatment
Wei Yao
College of Environmental Science and Engineering, North China Electric Power University, Beijing
Received: Feb. 6th, 2024; accepted: Mar. 21st, 2024; published: Mar. 31st, 2024
ABSTRACT
Since it was first proposed, aerobic denitrification bacteria have attracted much attention because they challenge the theory of anaerobic denitrification, can play the role of denitrification under aerobic conditions, and achieve simultaneous nitrification and denitrification in one reactor. This paper systematically summarizes the aerobic denitrifying bacteria isolated from different environments in recent years, and further discusses the denitrifying mechanism of aerobic denitrifying bacteria from two aspects: “cooperative respiration theory” and “aerobic denitrifying enzyme action”. On this basis, the effects of various environmental factors on the denitrification efficiency of aerobic denitrifying bacteria are investigated. Including the type of carbon source, temperature, dissolved oxygen, pH, salinity. Finally, the application prospect of aerobic denitrifying bacteria in the field of sewage treatment is analyzed, and the use of aerobic denitrifying bacteria is easy to attach to the surface of biofilm, so as to achieve the purpose of efficient and stable operation, and provide a theoretical basis for the practical application research in the field of sewage treatment.
Keywords:Aerobic Denitrifier, Screening and Separation, Mechanism of Action, Influence Factor, Application Prospect
协同呼吸理论认为,反硝化微生物既能向氧转移电子,又能向硝酸根转移电子。也就是说,碳源比如乙酸钠等作为电子供体,而电子受体既是氧气又是硝酸盐。由于O2比 具有更高的电子亲和力,所以在好氧反硝化菌对外界能量需求比较低的情况下,更倾向于把O2当作电子受体;而在好氧反硝化菌对外界能量需求比较高的情况下,作为电子受体的 N O 3 − - N 竞争能力增强,电子转移到 N O 3 − - N 的比例增加。虽然NO3−-N对电子的竞争弱于O2,但 N O 3 − - N 仍能与O2参与微生物代谢,即发生好氧反硝化作用。
在常规传统脱氮过程中,细胞色素c (Cyt c)与细胞色素aa3 (Cyt aa3)间的电子传递受到限制,所以导致电子难以向O2传输。在此基础上,我们提出了协同呼吸理论,这就很好的解释了之前电子传输的“瓶颈现象”。即电子能同时向 N O 3 − - N 和O2转移,也就是说,在好氧条件下可以发生反硝化反应 [
7
] 。
如果从电子转移的角度来看,在好氧反硝化过程中, N O 3 − - N 和O2都可以成为电子受体, N O 3 − - N 和O2的共存必然会竞争电子。如果从热力学的角度来看,当O2被好氧反硝化菌用作电子受体时,好氧反硝化菌获得的能量远比 N O 3 − - N 作为电子受体的多,因此好氧反硝化菌更容易利用O2。好氧反硝化受DO的影响,其作用大小随微生物类型而异。
目前,国内外学者通过对振动筛旋转速度进行调控,从而实现对溶解氧的有效调控 [
27
] 。在一项研究DO对施氏假单胞菌T13好氧反硝化作用的研究中,通过改变摇动速度来控制DO浓度。振动速度为120、150和160 rpm分别相当于4.7、6.5和7.2 mg·L−1的DO。当振动速度保持在160 rpm以下时,观察到显著的 N O 3 − - N 去除效率 [
28
] 。当振动转速低于120 rpm (4.37 mg·L−1)时, N O 3 − - N 几乎100%被排出 [
29
] 。
但是,对于一些嗜盐细菌来说,一定的盐度水平反而促进了反硝化作用。例如,Duan等学者从海洋沉积物中分离到一种嗜盐异养硝化–好氧反硝化细菌diabolicus弧菌SF16。研究发现在1%~5%的盐度下,菌株SF16对 N H 4 + - N 的去除效果不错。但在不添加NaCl时几乎不去除 N H 4 + - N 。说明NaCl对菌株SF16的酶活性至关重要 [
35
] 。
姚 伟. 好氧反硝化细菌脱氮性能及其在污水处理中应用研究进展Research Progress on Denitrification Performance of Aerobic Denitrifying Bacteria and Its Application in Wastewater Treatment[J]. 微生物前沿, 2024, 13(01): 49-57. https://doi.org/10.12677/amb.2024.131005
参考文献References
张梦寒, 李建, 姜韬, 等. 苏州市桶装饮用水中藻类的检测[J]. 职业与健康, 2014, 30(24): 3598-3600
Ahn, Y.H. (2006) Sustainable Nitrogen Elimination Biotechnologies: A Review. Process Biochemistry, 41, 1709-1721. https://doi.org/10.1016/j.procbio.2006.03.033
Zheng, H.Y., Liu, Y., Gao, X.Y., et al. (2012) Characterization of A Marine Origin Aerobic Nitrifying-Denitrifying Bacterium. Journal of Bioscience and Bioengineering, 114, 33-37. https://doi.org/10.1016/j.jbiosc.2012.02.025
Jung, J., Yeom, J., Han, J., et al. (2012) Seasonal Changes in Nitrogen-Cycle Gene Abundances and in Bacterial Communities in Acidic Forest Soils. Journal of Microbiology, 50, 365-373. https://doi.org/10.1007/s12275-012-1465-2
Frette, L., Gejisbjerg, B. and Westermann, P. (1997) Aerobic Denitrifiers Isolated from an Alternating Active Sludge System. FEMSMicrobiology Ecology, 24, 363-370. https://doi.org/10.1111/j.1574-6941.1997.tb00453.x
Meiberg, J.B.M. (1980) Effect of Dissolved Oxygen Tension on the Metabolism of Methylated Amines in Hyphomicrobumx in the Absence and Presence of Nitrate Evidence for Aerobic Denitrifcation. The Journal of General Microbiology, 120, 453-463. https://doi.org/10.1099/00221287-120-2-453
Robertson, L.A., Van Niel, E.W., Torremans, R.A., et al. (1988) Simultaneous Nitrification and Denitrificationin Aerobic Chemostat Cultures of Thiosphaera pantotropha. Applied and Environmental Microbiology, 54, 2812-2818. https://doi.org/10.1128/aem.54.11.2812-2818.1988
康鹏亮, 张海涵, 黄廷林, 等. 湖库沉积物好氧反硝化菌群脱氮特性及种群结构[J]. 环境科学, 2018, 39(5): 2431-2437.
郭焱, 何雯, 吴丹, 张雅清, 代加南. 好氧反硝化菌Pseudomonas sp. J-5的分离及脱氮性能研究[J]. 绿色科技, 2023, 25(14): 224-229.
李茜, 孙正祥, 周燚. 高效好氧反硝化盖氏假单胞菌YZ-7的鉴定及其脱氮性能研究[J]. 南方农业学报, 2023, 54(5): 1549-1558.
夏平, 马民, 宫玲, 杜敬, 曹经纶, 罗凡, 欧阳卓明, 赵御豪. 好氧反硝化菌株Herbaspirillum sp. XDT-1分离鉴定及特性研究[J]. 给水排水, 2022, 58(S2): 177-185.
张志昊. 好氧反硝化细菌Burkholderia sp. ZH8的脱氮机理及生物强化应用研究[D]: [硕士学位论文]. 西安: 西安建筑科技大学, 2022.
Ji, B., Yang, K., Zhu, L., et al. (2015) Aerobic Denitrification: A Review of Important Advances of the Last 30 Years. Biotechnology and Bioprocess Engineering, 20, 643-651. https://doi.org/10.1007/s12257-015-0009-0
Jetten, M.S., Logemann, S., Muyzer, G., Robertson, L.A., de Vries, S., et al. (1997) Novel Principles in the Microbial Conversion of Nitrogen Compounds. Antonie Van Leeuwenhoek, 71, 75-93. https://doi.org/10.1023/A:1000150219937
Kumar, M. and Linj, G. (2010) Co-Existence of Anammox and Denitrification for Simultaneous Nitrogen and Carbon Removal-Strategies and Issues. Journal of Hazardous Materials, 178, 1-9. https://doi.org/10.1016/j.jhazmat.2010.01.077
Xi, H.P., Zhou, X.T., Arslan, M., Luo, Z.J., Wei, J., Wu, Z.R., et al. (2022) Heterotrophic Nitrification and Aerobic Denitrification Process: Promising but a Long Way to Go in the Wastewater Treatment. Science of the Total Environment, 805, Article ID: 150212. https://doi.org/10.1016/j.scitotenv.2021.150212
赵洋, 孙慧明, 林浩澎, 罗娉婷, 朱雅婷, 陈琼华, 舒琥. 一株安全高效的好氧反硝化菌Pseudomonasstutzeri DZ11的生物安全性及脱氮性能研究[J]. 生物技术通报, 2022, 38(10): 226-234.
Chen, Q. and Ni, J.R. (2012) Ammonium Removal by Agrobacterium sp. LAD9 Capable of Heterotrophic Nitrification-Aerobic Denitrification. Journal of Bioscience and Bioengineering, 113, 619-623. https://doi.org/10.1016/j.jbiosc.2011.12.012
Wu, L., Ding, X., Lin, Y., et al. (2022) Nitrogen Removal by a Novel Heterotrophic Nitrification and Aerobic Denitrification Bacterium Acinetobacter calcoaceticus TY1 Under Low Temperatures. Bioresource Technology, 353, Article ID: 127148. https://doi.org/10.1016/j.biortech.2022.127148
Ji, B., Wang, H.Y. and Yang, K. (2014) Tolerance of an Aerobic Denitrifier Pseudomonas Stutzerito High O2 Concentrations. Biotechnology Letters, 36, 719-722. https://doi.org/10.1007/s10529-013-1417-x
董怡华, 王凌潇, 任涵雪, 等. 一株耐低温异养硝化-好氧反硝化菌的分离鉴定及其脱氮特性[J]. 生物技术通报, 2023, 39(12): 237-249.
Su, J.F., Shao, S.C., Huang, T.L., Ma, F., Zhang, K., Wen, G. and Zheng, S.C. (2016) Isolation, Identification, and Algicidal Activity of Aerobic Denitrifying Bacterium R11 and Its Effect on Microcystis aeruginosa. Water Science & Technology, 73, 2600-2607. https://doi.org/10.2166/wst.2016.085
Zhao, Y.Y., Min, H.C., Luo, K.Y., Zhang, R.J., Chen, Q. and Chen, Z.B. (2022) Transcriptomics and Proteomics Revealed the Psychrotolerant and Antibiotic-Resistant Mechanisms of Strain Pseudomonas psychrophila RNC-1 Capable of Assimilatory Nitrate Reduction and Aerobic Denitrification. Science of the Total Environment, 820, Article ID: 153169. https://doi.org/10.1016/j.scitotenv.2022.153169
Yao, S., Ni, J., Ma, T. and Li, C. (2013) Heterotrophic Nitrification and Aerobic Denitrification at Low Temperature by a Newly Isolated Bacterium, Acinetobacter Sp. HA2. Bioresource Technology, 139, 80-86. https://doi.org/10.1016/j.biortech.2013.03.189
Wei, B., Luo, X., Ma, W., et al. (2022) Biological Nitrogen Removal and Metabolic Characteristics of a Novel Cold-Resistant Heterotrophic Nitrification and Aerobic Denitrification Rhizobium sp. WS7. Bioresource Technology, 362, Article ID: 127756. https://doi.org/10.1016/j.biortech.2022.127756
Lin, Z., Zhou, J., He, L., et al. (2022) High-Temperature Biofilm System Based on Heterotrophic Nitrification and Aerobic Denitrification Treating High-Strength Ammonia Wastewater: Nitrogen Removal Performances and Temperature-Regulated Metabolicpathways. Bioresource Technology, 344, Article ID: 126184. https://doi.org/10.1016/j.biortech.2021.126184
Lei, X., Jia, Y.T., Chen, Y.C. and Hu, Y.Y. (2019) Simultaneous Nitrification and Denitrification without Nitrite Accumulation by a Novel Isolated Ochrobactrum Anthropic LJ81. Bioresource Technology, 272, 442-450. https://doi.org/10.1016/j.biortech.2018.10.060
Sun, Y.L., Li, A., Zhang, X.N. and Ma, F. (2015) Regulation of Dissolved Oxygen from Accumulated Nitrite during the Heterotrophic Nitrification and Aerobic Denitrification of Pseudomonas stutzeri T13. Applied Microbiology and Biotechnology, 99, 3243-3248. https://doi.org/10.1007/s00253-014-6221-6
Sun, Z.Y., Lv, Y.K., Liu, Y.X. and Ren, R.P. (2016) Removal of Nitrogen by Heterotrophic Nitrification-Aerobic Denitrification of a Novel Metal Resistant Bacterium Cupriavidus sp. S1. Bioresource Technology, 220, 142-150. https://doi.org/10.1016/j.biortech.2016.07.110
张宇红, 刘香宇, 董先博, 等. 好氧反硝化细菌SY-D-22的分离、优化及脱氮机理[J]. 微生物学通报, 2023, 50(5): 1815-1825.
Huang., F., Pan, L.Q., Lv, N. and Tang, X.M. (2017) Characterization of Novel Bacillus Strain N31 from Mariculture Water Capable of Halophilic Heterotrophic Nitrification-Aerobic Denitrification. Journal of Bioscience and Bioengineering, 124, 564-571. https://doi.org/10.1016/j.jbiosc.2017.06.008
滕峪, 汪鲁, 王占英, 等. 一株嗜碱兼性好氧反硝化菌Marinobacter sp. B3的分离鉴定及脱氮性能研究[J]. 海洋与湖沼, 2024(26): 1-13.
Su, J., Ting Lian, T., Lin Huang, T., et al. (2017) Microcystis Aeruginosa Flour as Carbon and Nitrogen Source for Aerobic Denitrification and Algicidal Effect of Raoultella sp. R11. Ecological Engineering, 105, 162-169. https://doi.org/10.1016/j.ecoleng.2017.04.014
Wang, T., Dang, Q.F., Liu, C.S., Yan, J.Q., Fan, B., Cha, D.S., Yin, Y.Y. and Zhang, Y.B. (2016) Heterotrophic Nitrogen Removal by a Newly-Isolated Alkalitolerant Microorganism, Serratia marcescens W5. Bioresource Technology, 211, 618-627. https://doi.org/10.1016/j.biortech.2016.03.142
Duan, J.M., Fang, H.D., Su, B., Chen, J.F. and Lin, J.M. (2015) Characterization of a Halophilic Heterotrophic Nitrification-Aerobic Denitrification Bacterium and Its Application on Treatment of Saline Wastewater. Bioresource Technology, 179, 421-428. https://doi.org/10.1016/j.biortech.2014.12.057
Cui, Y., Cuiy, W. and Huang, J.L. (2021) A Novel Halophilic Exiguobacterium Mexicanum Strain Removes Nitrogen from Saline Wastewater via Heterotrophic Nitrification and Aerobic Denitrification. Bioresource Technology, 333, Article ID: 125189. https://doi.org/10.1016/j.biortech.2021.125189
Kixmuller, D. and Greie, J.C. (2012) Construction and Characterization of a Gradually Inducible Expression Vector for Halobacteriumsalinarum, Based on the Kdp Promoter. Applied and Environmental Microbiology, 78, 2100-2105. https://doi.org/10.1128/AEM.07155-11
He, X.L., Sun, Q., Xu, T.Y., Dai, M. and Wei, D.S. (2019) Removal of Nitrogen by Heterotrophic Nitrification-Aerobic Denitrification of a Novel Halotolerant Bacterium Pseudomonas mendocina TJPU04. Bioprocess and Biosystems Engineering, 42, 853-866. https://doi.org/10.1007/s00449-019-02088-8
Abdelfattah, A., Hossain, M.I. and Chrng, L. (2020) High-Strength Wastewater Treatment Using Microbial Biofilm Reactor: A Critical Review. World Journal of Microbiology and Biotechnology, 36, Article No. 75. https://doi.org/10.1007/s11274-020-02853-y
Tian, Z., Zhou, N., You, W., et al. (2021) Mitigating NO and N2O Emissions from a Pilot-Scale Oxidation Ditch Using Bioaugmentation of Immobilized Aerobic Denitrifying Bacteria. Bioresource Technology, 340, Article ID: 125704. https://doi.org/10.1016/j.biortech.2021.125704
Hong, P., Yang, K., Shu, Y., et al. (2021) Efficacy of Auto-Aggregating Aerobic Denitrifiers with Coaggregation Traits for Bioaugmentation Performance in Biofilm-Formation and Nitrogen-Removal. Bioresource Technology, 337, Article ID: 125391. https://doi.org/10.1016/j.biortech.2021.125391
Chen, X., Zhang, Q., Zhu, Y. and Zhao, T.T. (2021) Response of Wastewater Treatment Performance, Microbial Composition and Functional Genes to Different C/N Ratios and Carrier Types in MBBR Inoculated with Heterotrophic Nitrification-Aerobic Denitrification Bacteria. Bioresource Technology, 336, Article ID: 125339. https://doi.org/10.1016/j.biortech.2021.125339