2型糖尿病(type 2 diabetes mellitus, T2DM)是遗传与环境共同作用的结果,目前公认的2型糖尿病的病理生理变化主要涉及到胰岛素抵抗和胰岛β细胞功能受损。许多研究显示,在T2DM发生发展过程中,炎症与氧化应激是调控胰岛素分泌的重要发病因素。ω-3多不饱和脂肪酸(ω-3 polyunsaturated fatty acid, ω-3PUFAs)在调节炎症反应、糖脂代谢、氧化与抗氧化反应等方面具有重要作用。但能否有效改善T2DM的发病风险,目前尚存争议。本文结合近年来国内外的相关研究进展,综述了ω-3PUFAs在T2DM发病风险的具体作用机制。探讨饮食营养对改善T2DM的意义,为ω-3PUFAs改善T2DM以及相关营养干预提供依据。 Type 2 diabetes (T2DM) is the result of the interaction of heredity and environment. At present, the pathophysiological changes of type 2 diabetes are mainly related to insulin resistance and pancreatic β Impaired cellular function. Many studies have shown that inflammation and oxidative stress are important pathogenic factors regulating insulin secretion during the occurrence and development of T2DM. ω-3 polyunsaturated fatty acids (ω-3 PUFAs) play important roles in regulating inflammatory responses, glucose and lipid metabolism, oxidation, and antioxidant responses. However, there is still controversy over whether it can effectively im-prove the risk of developing T2DM. This article reviews the relevant research progress both domestically and internationally in recent years ω-The specific mechanism of action of ω-3 PUFAs in the risk of developing T2DM. Exploring the significance of dietary nutrition in improving T2DM, in order to ω-3 PUFAs provide a basis for improving T2DM and related nutritional interventions.
2型糖尿病(type 2 diabetes mellitus, T2DM)是遗传与环境共同作用的结果,目前公认的2型糖尿病的病理生理变化主要涉及到胰岛素抵抗和胰岛β细胞功能受损。许多研究显示,在T2DM发生发展过程中,炎症与氧化应激是调控胰岛素分泌的重要发病因素。ω-3多不饱和脂肪酸(ω-3 polyunsaturated fatty acid, ω-3PUFAs)在调节炎症反应、糖脂代谢、氧化与抗氧化反应等方面具有重要作用。但能否有效改善T2DM的发病风险,目前尚存争议。本文结合近年来国内外的相关研究进展,综述了ω-3PUFAs在T2DM发病风险的具体作用机制。探讨饮食营养对改善T2DM的意义,为ω-3PUFAs改善T2DM以及相关营养干预提供依据。
2型糖尿病,ω-3多不饱和脂肪酸,炎症,氧化应激,胰岛素抵抗,胰岛β细胞
Mengrou Zhou, Yongmei Lan*, Asaigul
Medical College, Northwest Minzu University, Lanzhou Gansu
Received: Feb. 1st, 2024; accepted: Mar. 20th, 2024; published: Mar. 28th, 2024
Type 2 diabetes (T2DM) is the result of the interaction of heredity and environment. At present, the pathophysiological changes of type 2 diabetes are mainly related to insulin resistance and pancreatic β Impaired cellular function. Many studies have shown that inflammation and oxidative stress are important pathogenic factors regulating insulin secretion during the occurrence and development of T2DM. ω-3 polyunsaturated fatty acids (ω-3 PUFAs) play important roles in regulating inflammatory responses, glucose and lipid metabolism, oxidation, and antioxidant responses. However, there is still controversy over whether it can effectively improve the risk of developing T2DM. This article reviews the relevant research progress both domestically and internationally in recent years ω-The specific mechanism of action of ω-3 PUFAs in the risk of developing T2DM. Exploring the significance of dietary nutrition in improving T2DM, in order to ω-3 PUFAs provide a basis for improving T2DM and related nutritional interventions.
Keywords:Type 2 Diabetes, ω-3 Polyunsaturated Fatty Acids, Inflammation, Oxidative Stress, Insulin Resistance, Pancreatic β-Cells
Copyright © 2024 by author(s) and beplay安卓登录
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/
在过去的几十年里,糖尿病席卷全球,目前全世界糖尿病人数达5.37亿 [
在糖尿病发病前期,出现胰岛素抵抗是最早也是最常见的异常表现, 是指靶器官对胰岛素敏感性下降,即当机体分泌胰岛素时,介导的信号级联出现障碍,如参与炎症反应和氧化应激的核因子-κB信号转导通路(nuclear factor-kappaB, NF-κB) [
为探究ω-3PUFAs在脂肪膳食中比例与胰岛素抵抗的具体关系,邱雅 [
2013年Lillà [
为进一步探究ω-3PUFAs对糖尿病代谢的作用机制,2021年的BMC微生物组杂志上报道 [
但De Assis [
人们普遍认为,炎症的增加是胰岛素抵抗发展的主要因素之一,且胰岛素抵抗被定义为慢性非特异性炎症。大量研究发现,在胰岛素抵抗的状态下,多种促炎因子被激活,而机体发生炎症时,炎症信号分子损伤胰岛信号转导通路,如IRS-1/PI3K/AKT通路、TLR4信号活化通路、p38MAPK通路 [
为探究在肥胖儿童中ω-3PUFAs与IL-6、胰岛素抵抗的相关性,汪洁云 [
有研究表明,ω-3 PUFAs是炎症反应的强大抑制剂,尤其能抑制TLR-2和TLR-4的活性 [
研究发现,用来源于植物的ω-3 PUFAs代表物α-亚麻酸(α-lionlenic acid, ALA)替代脂肪组织后,胰岛素抵抗下降,原因是ALA可以使TNF-α、IL-6、IL-1β等炎症因子分泌减少 [
T2DM的胰岛素抵抗不仅与炎症有关,还与氧化应激反应密切相关。其中氧化应激相关因子发挥作用,一方面高血糖使得致氧化因子ROS自由基产生,体内ROS增多是氧化应激反应激活的标志,因为它干扰了胰岛素与受体正常结合,使胰岛素信号通路受阻 [
为评估脂肪类型对胰岛素抵抗小鼠的氧化应激水平的影响,Dante [
脂肪酸的氧化代谢要经过线粒体、过氧化物酶体,发挥调节作用的细胞因子就有肉碱一棕榈酰转移酶1 [
T2DM的发病原因除了胰岛素抵抗,还涉及胰岛β细胞功能缺陷。在糖尿病早期,出现轻度高血糖和胰岛素抵抗,胰岛β细胞迅速进入代偿期维持机体糖脂代谢稳态,然而在持续的代谢应激条件下,胰岛β细胞很快进入失代偿期,最终损伤胰岛β细胞,使其不能正常分泌胰岛素以供机体使用,导致血糖水平失衡,最终出现糖尿病 [
王子婧 [
结合大量代谢综合征的动物模型和临床实验,证明ω-3PUFAs可能会减缓胰腺β细胞功能障碍的进展 [
ω-3 PUFAs可防止淋巴细胞浸润至再生胰岛,从而急剧升高胰腺β细胞标志物的表达。据Bi [
沈淼达 [
代谢性疾病的炎症能诱导胰腺β细胞应激进而干扰胰岛素的正常分泌 [
炎症能诱导胰岛β细胞发生凋亡,该过程应该有胰岛免疫细胞的参与 [
氧化应激是损害胰腺的重要机制之一,长期接触大量脂肪酸会增强细胞器(特别是线粒体和内质网)中ROS的形成。ROS的增加和这种长期的氧化应激导致胰岛β细胞功能障碍 [
邹宏宇 [
T2DM的发病机制十分复杂,遗传因素的不可控和现代生活方式的多样性,使T2DM的发病人数逐渐增多,且趋向年轻化。治愈T2DM仍是医学界的重大难题。T2DM患者体内存在胰岛素抵抗和胰岛β细胞受损,但导致上述两种病因的发病机制尚不完全清楚。ω-3PUFAs的功能已被多项研究证实,在T2DM的发生发展过程中起着不可忽视的作用。ω-PUFAs能从阻断炎症信号通路,降低炎症因子表达水平,激活内源性抗氧化物酶,平衡氧化和抗氧化水平等多方面影响胰岛素分泌,在一定程度上能改善T2DM的胰岛素抵抗和胰岛β细胞功能障碍,为未来预防和治疗T2DM提供营养膳食新思路 [
综上所述,当体内发生炎症、氧化应激反应便可促进胰岛素抵抗、胰岛β细胞受损。ω-3PUFAs能通过缓解炎症反应和氧化应激状态进而改善T2DM。但由于遗传因素、生活习惯、ω-3PUFAs来源不同和物种差异,ω-3PUFAs对T2DM发病风险的影响尚存争议,且研究大多集中在单一来源的ω-3PUFAs的动物实验,因此,今后仍需增加临床试验明确不同来源的ω-3PUFAs对不同T2DM人群发病机制的影响,为预防和治疗T2DM提供合理膳食依据 [
感谢此论文过程中导师对我的指导和支持。
1) 甘肃省自然科学基金项目(23JRRA725);2) 西北民族大学中央高校基本科研业务费项目(31920230127);2023年西北民族大学创新创业教育教学改革研究项目(XJCXCYSFKC14)。
周梦柔,兰咏梅,阿赛古丽. ω-3多不饱和脂肪酸改善2型糖尿病研究进展 Research Progress of ω-3 Polyunsaturated Fatty Acids in Improving Type 2 Diabetes[J]. 生物过程, 2024, 14(01): 34-42. https://doi.org/10.12677/BP.2024.141005
https://doi.org/10.1016/j.diabres.2021.109118
https://doi.org/10.3390/nu13072421
https://doi.org/10.1136/bmj.l4697
https://doi.org/10.1111/jdi.12614
https://doi.org/10.1007/s13105-013-0303-2
https://doi.org/10.4239/wjd.v14.i3.147
https://doi.org/10.3390/md13041864
https://doi.org/10.4236/fns.2013.49A1017
https://doi.org/10.1186/s40168-021-01126-6
https://doi.org/10.1155/2014/860703
https://doi.org/10.1007/s11010-011-1099-4
https://doi.org/10.33549/physiolres.932715
https://doi.org/10.1371/journal.pone.0044525
https://doi.org/10.1016/j.jep.2021.114251
https://doi.org/10.1007/s00011-019-01263-7
https://doi.org/10.1111/jcmm.13617
https://doi.org/10.1016/j.ejphar.2016.04.024
https://doi.org/10.1017/S0029665118002793
https://doi.org/10.3390/nu15071782
https://doi.org/10.1039/C7FO01993A
https://doi.org/10.3390/nu10030350
https://doi.org/10.3390/life13061322
https://doi.org/10.2337/db12-1107
https://doi.org/10.2337/db16-1362
https://doi.org/10.1016/j.bcp.2023.115775
https://doi.org/10.1080/21623945.2018.1443662
https://doi.org/10.3390/md21010039
https://doi.org/10.1172/JCI87388
https://doi.org/10.1016/j.metabol.2015.05.003
https://doi.org/10.1096/fasebj.30.1_supplement.1269.2
https://doi.org/10.1016/j.celrep.2022.111255
https://doi.org/10.1111/apm.12632
https://doi.org/10.3389/fnut.2021.769293
https://doi.org/10.1007/s00592-021-01840-5
https://doi.org/10.1007/s13105-016-0509-1
https://doi.org/10.1089/ars.2010.3302