物种的婚配制度与性选择之间具有密切联系。对于无尾两栖类来说,一雌多雄的婚配制度广泛存在,并通过交配前性选择和交配后性选择来体现。因此,在巨大的选择压力下,无尾目动物产生了各种进化机制。本文综述了婚配制度和性选择的相关概念,阐述了无尾两栖类一雌多雄制和性选择进化机制的研究进展,并对进化机制的研究作出总结和展望,为今后研究提供了参考。 There is a close relationship between the animal’s mating system and sexual selection. For the Anura amphibian, the polyandry exists extensively, and is manifested by precopulatory sexual selection and postcopulatory sexual selection. As a result, Anura amphibian have produced various evolutionary mechanisms under tremendous selection pressure. This paper reviews the related concepts of mating system and sexual selection, expounds the research progress on the evolutionary mechanisms of polyandry and sexual selection of the Anura amphibian, and finally summarizes and prospects the research on evolutionary mechanisms.
无尾目,一雌多雄制,性选择,精子竞争,进化机制, Anura
Polyandry
Sexual Selection
Sperm Competition
Evolutionary Mechanism
摘要
Research Progress on Evolutionary Mechanism of Monogyny and Polygyny in Tailless Amphibians
Jing Li
College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua Zhejiang
Received: Jan. 24th, 2024; accepted: Mar. 20th, 2024; published: Mar. 28th, 2024
ABSTRACT
There is a close relationship between the animal’s mating system and sexual selection. For the Anura amphibian, the polyandry exists extensively, and is manifested by precopulatory sexual selection and postcopulatory sexual selection. As a result, Anura amphibian have produced various evolutionary mechanisms under tremendous selection pressure. This paper reviews the related concepts of mating system and sexual selection, expounds the research progress on the evolutionary mechanisms of polyandry and sexual selection of the Anura amphibian, and finally summarizes and prospects the research on evolutionary mechanisms.
Keywords:Anura, Polyandry, Sexual Selection, Sperm Competition, Evolutionary Mechanism
李 靖. 无尾两栖类一雌多雄制进化机制研究进展 Research Progress on Evolutionary Mechanism of Monogyny and Polygyny in Tailless Amphibians[J]. 生物过程, 2024, 14(01): 23-33. https://doi.org/10.12677/BP.2024.141004
参考文献References
Mcdonough, K. (2014) Amphibian Species of the World: An Online Reference (Version 6). Reference Reviews, 28, 32. https://doi.org/10.1108/RR-05-2014-0125
Wells, K.D. (2010) The Ecology and Behavior of Amphibians. Austral Ecology, 34, 116. https://doi.org/10.1111/j.1442-9993.2008.01952.x
李成, 江建平. 无尾两栖类在不同生活史阶段的栖息环境[J]. 四川动物, 2016, 35(6): 950-955.
Reichard, M., Comber, S.C. and Smith, C. (2007) Sneaking from a Fe-male Perspective. Animal Behaviour, 74, 679-688. https://doi.org/10.1016/j.anbehav.2007.03.005
Lee, P.L. and Hays, G.C. (2004) Polyandry in a Marine Turtle: Females Make the Best of a Bad Job. Proceedings of the National Academy of Sciences of the United States of America, 101, 6530-6535. https://doi.org/10.1073/pnas.0307982101
Fitze, P.S., Galliard, J.F.L., Federici, P., et al. (2005) Conflict over Multiple-Partner Mating between Males and Females of the Polygynandrous Common Lizards. Evolution, 59, 2451-2459. https://doi.org/10.1111/j.0014-3820.2005.tb00954.x
卢自勇, 冉景丞. 两栖动物面临的威胁及保护对策探讨[J]. 环保科技, 2012, 18(2): 21-27.
Roberts, J.D. and Byrne, P.G. (2011) Chapter 1—Polyandry, Sperm Com-petition and the Evolution of Anuran Amphibians. Advances in the Study of Behavior, 43, 1-53. https://doi.org/10.1016/B978-0-12-380896-7.00001-0
彭延. 猫气味重复暴露对褐家鼠配偶选择的影响[D]: [硕士学位论文]. 扬州: 扬州大学, 2021.
Claw, K.G., George, R.D., Maccoss, M.J. and Swanson, W.J. (2018) Quantitative Evolutionary Proteomics of Seminal Fluid from Primates with Different Mating Systems. BMC Ge-nomics, 19, Article No. 488. https://doi.org/10.1186/s12864-018-4872-x
刘春燕, 堪立新, 王政昆, 等. 哺乳动物的婚配制度研究[J]. 绿色科技, 2019(16): 5-9.
Kokko, H. and Johnstone, R.A. (2002) Why Is Mutual Mate Choice Not the Norm? Operational Sex Ratios, Sex Roles and the Evolution of Sexually Dimorphic and Monomorphic Signalling. Philosophical Transactions of the Royal Society of London, 357, 319-330. https://doi.org/10.1098/rstb.2001.0926
Simmons, L.W. and Kvarnemo, C. (2006) Costs of Breeding and Their Effects on the Direction of Sexual Selection. Proceedings of the Royal Society B Biological Sciences, 273, 465-470. https://doi.org/10.1098/rspb.2005.3309
Darwin, C. (2009) Origin of Species 150th Anniversary Edition. Bridge-Logos Foundation, Alachua.
刘文芬. 短蛸微卫星标记开发及交配模式与性选择机制研究[D]: [硕士学位论文]. 上海: 上海海洋大学, 2018.
Andersoon, M. and Simmons, L.W. (2006) Sexual Selection and Mate Choice. Trends in Ecology & Evolution, 21, 296-302. https://doi.org/10.1016/j.tree.2006.03.015
Dale, J., Dunn, P.O., Figuerola, J., et al. (2007) Sexual Selection Explains Rensch’s Rule of Allometry for Sexual Size Dimorphism. The Royal Society Proceedings B, 274, 2971-2979. https://doi.org/10.1098/rspb.2007.1043
Emlen, D.J. (2008) The Evolution of Animal Weapons. Annual Review of Ecology Evolution and Systematics, 39, 387-413. https://doi.org/10.1146/annurev.ecolsys.39.110707.173502
Andersson, S. (1994) Costs of Sexual Advertising in the Lekking Jackson’s Widowbird. Condor, 96, 1-10. https://doi.org/10.2307/1369058
卫松山. 蟪蛄(半翅目: 蝉科)性选择行为研究[D]: [硕士学位论文]. 咸阳: 西北农林科技大学, 2020.
Ablard, K.M., Simonetto, K., Weir, L.K., et al. (2014) First-Male Sperm Precedence and Precopulatory and Postcopulatory Rituals in the Parasitoid Wasp Ooencyrtus kuvanae (Hymenoptera: Encyrtidae). Canadian Entomologist, 146, 548-559. https://doi.org/10.4039/tce.2014.7
Piasecka, M., Fraczek, M., Gaczar-zewicz, D., et al. (2014) Novel Morphological Findings of Human Sperm Removal by Leukocytes in in Vivo and in Vitro Conditions: Preliminary Study. American Journal of Reproductive Immunology, 72, 348-358. https://doi.org/10.1111/aji.12284
程明阳. 大凉螈的精子竞争[D]: [硕士学位论文]. 北京: 中国科学院大学, 2021.
Rice, W.R. (1996) Sexually Antagonistic Male Adaptation Triggered by Experimental Arrest of Female Evolution. Nature, 381, 232-234. https://doi.org/10.1038/381232a0
Parker, G.A. (2010) Sperm Competition and Its Evolutionary Consequence in the Insects. Biological Reviews, 45, 525-567. https://doi.org/10.1111/j.1469-185X.1970.tb01176.x
Eberhard, W.G. and Cordero, C. (1995) Sexual Selection by Cryptic Female Choice on Male Seminal Products—A New Bridge between Sexual Selection and Reproductive Physiology. Trends in Ecology & Evolution, 10, 493-496. https://doi.org/10.1016/S0169-5347(00)89205-8
Kvarnemo, C. and Simmons, L.W. (2013) Polyandry as a Mediator of Sexual Selection before and after Mating. Philosophical Transactions of the Royal Society of London, 368, Article ID: 20120042. https://doi.org/10.1098/rstb.2012.0042
Buzatto, B.A., Roberts, J.D. and Simmon, L.W. (2015) Sperm Compe-tition and the Evolution of Precopulatory Weapons: Increasing Male Density Promotes Sperm Competition and Reduces Selection on Arm Strength in a Chorusing Frog. Evolution, 69, 2613-2624. https://doi.org/10.1111/evo.12766
Byrne, P.G. and Whiting, M.J. (2008) Simultaneous Polyandry Increases Fertilization Success in an African Foam-Nesting Treefrog. Animal Behaviour, 76, 1157-1164. https://doi.org/10.1016/j.anbehav.2008.05.019
王慧. 峨眉树蛙体长与抱对性比对繁殖成功的影响[D]: [硕士学位论文]. 武汉: 华中师范大学, 2014.
Byrne, P.G. and Roberts, J.D. (2004) Intrasexual Selection and Group Spawning in Quacking Frogs (Crinia Georgiana). Behavioral Ecology, 15, 872-882. https://doi.org/10.1093/beheco/arh100
Luo, Z., Li, C., Wang, H., et al. (2016) Male-Male Competition Drives Sexual Selection and Group Spawning in the Omei Treefrog, (Rhacophorus Omeimontis). Behavioral Ecology and So-ciobiology, 70, 593-605. https://doi.org/10.1007/s00265-016-2078-2
Zhao, M., Li, C., Zhang, W., et al. (2016) Male Pursuit of Higher Reproductive Success Drives Female Polyandry in the Omei Treefrog. Animal Behaviour, 111, 101-110. https://doi.org/10.1016/j.anbehav.2015.10.007
尚玉昌. 动物的亲代抚育行为[J]. 生物学通报, 1999(10): 7-9.
Brown, J.L., Morales, V. and Summers, K. (2010) A Key Ecological Trait Drove the Evolution of Biparental Care and Monogamy in an Amphibian. The American Naturalist, 175, 436-446. https://doi.org/10.1086/650727
李辰亮. 峨眉树蛙的婚配制度与性选择[D]: [博士学位论文]. 武汉: 华中师范大学, 2016.
Sherman, C.D.H., Sagvik, J. and Olsson, M. (2010) Female Choice for Males with Greater Fertilization Success in the Swedish Moor Frog, (Rana Arvalis). PLOS ONE, 5, e13634. https://doi.org/10.1371/journal.pone.0013634
杨曈, 姜德纯, 党宁馨, 李家堂. 蛙类前肢形态对树栖环境的适应性演化[J]. 四川动物, 2018, 37(4): 400-405.
Navas, C.A. and James, S. (2007) Sexual Dimorphism of Extensor Carpi Radialis Muscle Size, Isometric Force, Relaxation Rate and Stamina during the Breeding Season of the Frog (Rana Temporaria) Linnaeus 1758. Journal of Experimental Biology, 210, 715-721. https://doi.org/10.1242/jeb.000646
Buzatto, B.A., Roberts, J.D. and Simmons, L.W. (2015) Sperm Competition and the Evolution of Precopulatory Weapons: Increasing Male Density Promotes Sperm Competition and Reduces Selection on Arm Strength in a Chorusing Frog. Evolution, 69, 2613-2614 https://doi.org/10.1111/evo.12766
Davies, N.B. and Halliday, T.R. (1979) Competitive Mate Searching in Male Common Toads, (Bufo Bufo). Animal Behaviour, 27, 1253-1267. https://doi.org/10.1016/0003-3472(79)90070-8
Emerson, S.B. (1991) A Biomechanical Perspective on the Use of Forelimb Length as a Measure of Sexual Selection in Frogs. Journal of Evolutionary Biology, 4, 671-678. https://doi.org/10.1046/j.1420-9101.1991.4040671.x
Weir, L.K., Grant, J.W.A. and Hutchings, J.A. (2011) The Influence of Operational Sex Ratio on the Intensity of Competition for Mates. American Naturalist, 177, 167-176. https://doi.org/10.1086/657918
Elmberg, J. (1990) Long-Term Survival, Length of Breeding Season, and Op-erational Sex Ratio in a Boreal Population of Common Frogs, (Rana Temporaria L). Revue Canadienne De Zoologie, 68, 121-127. https://doi.org/10.1139/z90-017
Friedl, T.W.P. and Klump, G.M. (2005) Sexual Selection in the Lek-Breeding European Treefrog: Body Size, Chorus Attendance, Random Mating and Good Genes. Animal Behaviour, 70, 1141-1154. https://doi.org/10.1016/j.anbehav.2005.01.017
Lu, X., Ma, X., Li, Y. and Fan, L.Q. (2009) Breeding Behavior and Mating System in Relation to Body Size in (Rana Chensinensis), a Temperate Frog Endemic to Northern China. Journal of Ethology, 27, 391-400. https://doi.org/10.1007/s10164-008-0132-x
Pitnick, S., Hosken, D.J. and Birkheadt, R. (2009) Sperm Mor-phological Diversity. In: Birkhead, T.R., Hosken, D.J. and Pitnick, S., Eds., Sperm Biology, Academic Press, Cambridge, 69-149. https://doi.org/10.1016/B978-0-12-372568-4.00003-3
Simmons, L.W. and Fitzpatrickj, L. (2012) Sperm Wars and the Evolution of Male Fertility. Reproduction, 144, 519-534. https://doi.org/10.1530/REP-12-0285
Koenig, L.A. and Allant, J.R. (2021) Sperm Competition, Sexual Selection and the Diverse Reproductive Biology of Osteoglos-siformes. Journal of Fish Biology, 99, 740-754. https://doi.org/10.1111/jfb.14779
Birkhead, T.R. (1998) Sperm Competition and Sexual Selection. Academic Press, Cambridge.
Gage, M., Macfarlane, C.P., Yeates, S., et al. (2004) Spermatozoa Traits and Sperm Competition in Atlantic Salmon: Relative Sperm Velocity Is the Primary De-terminant of Fertilization Success. Current Biology, 14, 44-47. https://doi.org/10.1016/S0960-9822(03)00939-4
Malo, A.F., Garde, J.J., Soler, A.J., et al. (2005) Male Fertil-ity in Natural Populations of Red Deer Is Determined by Sperm Velocity and the Proportion of Norma1 Spermatozoa. Biology of Reproduction, 72, 822-829. https://doi.org/10.1095/biolreprod.104.036368
Katz, D.F., Drobnis, E.Z. and Overstreet, J.W. (2010) Factors Regulating Mammalian Sperm Migration through the Female Reproductive Tract and Oocyte Vestments. Gamete Re-search, 22, 443-469. https://doi.org/10.1002/mrd.1120220410
Gomendio, M. and Roldan, E.R. (1991) Sperm Competition Influ-ences Sperm Size in Mammals. Proceeding Biological Sciences, 243, 181-185. https://doi.org/10.1098/rspb.1991.0029
Humphries, S., Evans, J.P. and Simmons, L.W. (2008) Sperm Com-petition: Linking Form to Function. BMC Evolutionary Biology, 8, Article No. 319. https://doi.org/10.1186/1471-2148-8-319
Hettyey, A. and Roberts, J.D. (2006) Sperm Traits of the Quacking Frog, Crinia Georgiana: Intra- and Interpopulation Variation in a Species with a High Risk of Sperm Competition. Be-havioral Ecology & Sociobiology, 59, 389-396. https://doi.org/10.1007/s00265-005-0062-3
Simpson, J.L., Humphries, S., Evans, J.P., et al. (2014) Relation-ships between Sperm Length and Speed Differ among Three Internal and Three External Fertilization Species. Evolution, 68, 92-104. https://doi.org/10.1111/evo.12199
Prakash, S., Prithiviraj, E., Suresh, S., et al. (2014) Mor-phological Diversity of Sperm: A Mini Review. International Journal of Reproductive BioMedicine, 12, 239-242.
Dziminski, M.A., Roberts, J.D., Beveridge, M., et al. (2009) Sperm Competitiveness in Frogs: Slow and Steady Wins the Race. Proceedings of the Royal Society B: Biological Sciences, 276, 3955-3961. https://doi.org/10.1098/rspb.2009.1334
滕兆乾, 张青文. 昆虫精子竞争及其避免机制[J]. 中国农业大学学报, 2006, 11(6): 7-12.
王会琴, 李金钢. 昆虫精子竞争的研究进展[J]. 安徽农学通报, 2011, 17(9): 41-44.
Carbone, S.S. and Rivera, A.C. (2003) Fertility and Paternity in the Eucalyptus Snout-Beetle Gonipterus Scutellatus: Females Might Benefit from Sperm Mixing. Ethology Ecology and Evolution, 15, 283-294. https://doi.org/10.1080/08927014.2003.9522673
Xu, J. and Wang, Q. (2010) Mechanisms of Last Male Precedence in a Moth: Sperm Displacement at Ejaculation and Storage Sites. Behavioral Ecology, 21, 714-721. https://doi.org/10.1093/beheco/arq044
Rafinski, J. and Osikowski, A. (2002) Sperm Mixing in the Alpine Newt (Triturus Alpestris). Revue Canadienne De Zoologie, 80, 1293-1298. https://doi.org/10.1139/z02-099
Cordero-Rivera, A. (2016) Sperm Removal during Copulation Confirmed in the Oldest Extant Damselfly, Hemiphlebia mirabilis. PeerJ, 4, e2077. https://doi.org/10.7717/peerj.2077
周泽霖. 长颚斗蟋翅二型雄虫精子竞争能力的研究[D]: [硕士学位论文]. 长沙: 中南林业科技大学, 2021.
Si-va-Jothy, M.T. and Tsubaki, Y. (1989) Variation in Copulation Duration in Mnais pruinosa pruinosa Selys(Odonata: Calopterygidae). Behavioral Ecology and Sociobiology, 25, 261-267. https://doi.org/10.1007/BF00300052
Price, C.S.C., Dyer, K.A. and Coyne, J.A. (1999) Sperm Competition between Drosophila Males Involves Both Displacement and Incapacitation. Nature, 400, 449-452. https://doi.org/10.1038/22755
Oguejiofor, C.F., Ifeanyi, E.G. and Anya, K. (2020) Antifertility Effects of Azadirachta Indica Methanol Seed Extract on Canine Spermatozoa in Vitro. Asian Pacific Journal of Reproduction, 9, 135-141. https://doi.org/10.4103/2305-0500.284271
Snook, R.R. and Hosken, D.J. (2004) Sperm Death and Dumping in Drosophila. Nature, 428, 939-941. https://doi.org/10.1038/nature02455
Simmons, L.W. (2001) Sperm Competition and Its Evolutionary Conse-quences in the Insects. Pricetion University Press, Princetion. https://doi.org/10.1515/9780691207032
Moore, H. and Akhondi, M.A. (1996) Fertilizing Capacity of Rat Spermatozoa Is Correlated with Decline in Straight-Line Veloc-ity Measured by Continuous Computer-Aided Sperm Analysis: Epididymal Rats Perm Atozoa from the Proximal Cauda Have a Greater Fertilizing Capacity in Vitro than Those from the Distal Cauda or Vas Deferens. Journal of Andrology, 17, 50-60. https://doi.org/10.1002/j.1939-4640.1996.tb00586.x
Birkhea, T.R., Martinez, J.G., Burke, T. and Fro-man, D.P. (1999) Sperm Mobility Determines the Outcome of Sperm Competition in the Domestic Fowl. Proceedings Biological Sciences, 266, 1759-1764. https://doi.org/10.1098/rspb.1999.0843
Byrne, P.G. and Roberts, J.D. (2012) Evolutionary Causes and Con-sequences of Sequential Polyandry in Anuran Amphibians. Biological Reviews, 87, 209-228. https://doi.org/10.1111/j.1469-185X.2011.00191.x
Byrne, P.G., Roberts, J.D. and Simmons, L.W. (2002) Sperm Competition Selects for Increased Testes Mass in Australian Frogs. Journal of Evolutionary Biology, 15, 347-355. https://doi.org/10.1046/j.1420-9101.2002.00409.x
Hackiewicz, K., Rozenblut-Kocisty, B. and Ogielska, M. (2017) Prespermatogenesis and Early Spermatogenesis in Frogs. Zoology, 122, 63-79. https://doi.org/10.1016/j.zool.2017.01.003
Montoto, L.G., Arregui, L., Sanchez, N.M., et al. (2012) Postnatal Testicular Development in Mouse Species with Different Levels of Sperm Competition. Reproduction, 143, 333-346. https://doi.org/10.1530/REP-11-0245
Moreira, J.R., Clarke, J.R. and Macdonald, D.W. (1997) 1997 the Testis of Capybaras (Hydrochoerus Hydrochaeris). Journal of Mammalogy, 78, 1096-1100. https://doi.org/10.2307/1383052
Hettyey, A., Laurila, A., Herczeg, G., et al. (2005) Does Testis Weight De-cline towards the Subarctic? A Case Study on the Common Frog, Rana Temporaria. The Science of Nature, 92, 188-192. https://doi.org/10.1007/s00114-005-0607-3
Boulton, R.A., Cook, N., Green, J., et al. (2018) Sperm Blocking Is Not a Male Adaptation to Sperm Competition in a Parasitoid Wasp. Behavioral Ecology, 29, 253-263. https://doi.org/10.1093/beheco/arx156
Byrne, P.G., Simmons, L.W. and Roberts, J.D. (2003) Sperm Competi-tion and the Evolution of Gamete Morphology in Frogs. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270, 2079-2086. https://doi.org/10.1098/rspb.2003.2433
Chen, C., Huang, Y.Y., Liao, W.B., et al. (2016) A Comparison of Testes Size and Sperm Length between Polypedates megacephalus Populations at Different Altitudes. The Herpetologi-cal Journal, 26, 249-252.
Jetz, W. and Pyron, RA. (2018) The Interplay of Past Diversification and Evolutionary Isolation with Present Imperilment across the Amphibian Tree of Life. Nature Ecology and Evolution, 2, 850-858. https://doi.org/10.1038/s41559-018-0515-5
Reuter, M., Linklater, J.R., Lehmann, L., Fowler, K., Chapman, T. and Hurst, G.D.D. (2008) Adaptation to Experimental Alterations of the Operational Sex Ratio in Populations of Dro-sophila melanogaster. Evolution, 62, 401-412. https://doi.org/10.1111/j.1558-5646.2007.00300.x
Rowley, A.G. and Fitzpatrick, J.L. (2016) Sperm Competi-tion. In: Kliman, R.M., Ed., Encyclopedia of Evolutionary Biology, Academic Press, Cambridge, 245-249. https://doi.org/10.1016/B978-0-12-800049-6.00158-X
Hodgson, A.N. (2009) Sperm Biology: An Evolution-ary Perspective. Animal Biology, 59, 969-970. https://doi.org/10.1163/157075509X12499949744388
Snook, R.R., Robertson, A., Crudgington, H.S. and Ritchie, M.G. (2005) Experimental Manipulation of Sexual Selection and the Evolution of Courtship Song in Drosophila pseudoobscura. Behavior Genetics, 35, 245-255. https://doi.org/10.1007/s10519-005-3217-0
Sherman, C.D.H., Wapstra, E., Uller, T. and Olsson, M. (2008) Males with High Genetic Similarity to Females Sire More Offspring in Sperm Competition in Peron’s Tree Frog Litoria peronii. Proceedings Biological Sciences, 275, 971-978. https://doi.org/10.1098/rspb.2007.1626
Simmons, L.W. and Kotiaho, J.S. (2010) Evolution of Ejaculation: Patterns of Phenotypic and Genotypic Variation and Conditional Dependence in Sperm Competition Traits. Evolution, 56, 1622-1631. https://doi.org/10.1111/j.0014-3820.2002.tb01474.x
Schulte-Hostedde, A.I., Millar, J.S. and Hickling, G.J. (2005) Condition Dependence of Testis Size in Small Mammals. Evolutionary Ecology Research, 7, 143-149.
Par-ker, G.A. (1998) Sperm Competition and the Evolution of Ejaculates: Towards a Theory Base. In: Birkhead, T.R. and Møller, A.P., Eds., Sperm Competition and Sexual Selection, Academic Press, Cambridge, 3-54. https://doi.org/10.1016/B978-012100543-6/50026-X
Mi, Z.P., Liao, W.B., et al. (2016) Altitudinal Variation in M Ale Reproductive Investment in a Polyandrous Frog Species (Hyla Gongshanensis Jingdongensis). Animal Biology, 66, 289-303. https://doi.org/10.1163/15707563-00002505
刘巧. 在不同精子竞争压力下26种无尾两栖动物精子大小与睾丸组织的适应关系[D]: [硕士学位论文]. 南充: 西华师范大学, 2021.
Noirault, J., Brillard, J.P. and Bakst, M.R. (2006) Sperm Atogenesis in the Turkey (Meleagris Gallopavo): Quantitative Approach in Immature and Adult Males Subjected to Various Photoperiods. Theriogenology, 65, 845-859. https://doi.org/10.1016/j.theriogenology.2005.01.012
Castillo, D.M. and Moyle, L.C, (2019) Conspecific Sperm Precedence Is Reinforced, But Postcopulatory Sexual Selection Weakened, in Sympatric Populations of Drosoph-ila. Proceedings of the Royal Society B: Biological Sciences, 286, 1-10. https://doi.org/10.1098/rspb.2018.2535
Iwata, Y., et al. (2021) Sperm Competition Risk Affects Ejaculate Strategy in Terms of Sperm Number but Not Sperm Size in Squid. Journal of Evolutionary Biology, 34, 1352-1361. https://doi.org/10.1111/jeb.13894
Boschetto, C., Gasparini, C. and Pilastro, A. (2011) Sperm Number and Velocity Affect Sperm Competition Success in the Guppy (Poecilia Reticulata). Behavioral Ecology and Sociobiology, 65, 813-821. https://doi.org/10.1007/s00265-010-1085-y
Gupta, G., Maikhuri, J.P., Setty, B.S., et al. (2000) Seasonal Var-iations in Daily Sperm Production Rate of Rhesus and Bonnet Monkeys. Journal of Medical Primatology, 29, 411-414. https://doi.org/10.1111/j.1600-0684.2000.290605.x
Neff, B.D. and Pitcher, T.E. (2005) Genetic Quality and Sexual Selection: An Integrated Framework for Good Genes and Compatible Genes. Molecular Ecology, 14, 19-38. https://doi.org/10.1111/j.1365-294X.2004.02395.x
Evans, J.P. and Marshall, D.J. (2005) Male-by-Female In-teractions Influence Fertilization Success and Mediate the Benefits of Polyandry in the Sea Urchin Heliocidaris erythrogramma. Evolution, 59, 106-112.
Zeh, J.A. and Zeh, D.W. (1997) The Evolution of Polyandry II: Post-Copulatory Defences against Genetic Incompatibility. Proceedings of the Royal Society B: Biological Sciences, 264, 69-75. https://doi.org/10.1098/rspb.1997.0010
Chapman, T., Liddle, L.F., Kalb, J.M., et al. (1995) Cost of Mating in Drosophila melanogaster Females Is Mediated by Male Accessory Gland Products. Nature, 373, 241-244. https://doi.org/10.1038/373241a0
Friberg, U. and Arnqvist, G. (2010) Fitness Effects of Female Mate Choice: Preferred Males Are Detrimental for Drosophila melanogaster Females. Journal of Evolutionary Biology, 16, 797-811. https://doi.org/10.1046/j.1420-9101.2003.00597.x
Tregenza, T. and Wedell, N. (2000) Genetic Compatibility, Mate Choice and Patterns of Parentage: Invited Review. Molecular Ecology, 9, 1013-1027. https://doi.org/10.1046/j.1365-294x.2000.00964.x
Wong, B.B.M. and Candolin, U. (2005) How Is Female Mate Choice Affected by Male Competition? Biological Reviews, 80, 559-571. https://doi.org/10.1017/S1464793105006809
Qvarnström, A. and Forsgren, E. (1998) Should Females Prefer Dominant Males? Trends in Ecology & Evolution, 13, 498-501. https://doi.org/10.1016/S0169-5347(98)01513-4