BP Bioprocess 2164-5566 Scientific Research Publishing 10.12677/BP.2024.141004 BP-83438 BP20240100000_81065408.pdf 生命科学 无尾两栖类一雌多雄制进化机制研究进展 Research Progress on Evolutionary Mechanism of Monogyny and Polygyny in Tailless Amphibians 1 2 null 浙江师范大学生命科学学院,浙江 金华 08 03 2024 14 01 23 33 © Copyright 2014 by authors and Scientific Research Publishing Inc. 2014 This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/

物种的婚配制度与性选择之间具有密切联系。对于无尾两栖类来说,一雌多雄的婚配制度广泛存在,并通过交配前性选择和交配后性选择来体现。因此,在巨大的选择压力下,无尾目动物产生了各种进化机制。本文综述了婚配制度和性选择的相关概念,阐述了无尾两栖类一雌多雄制和性选择进化机制的研究进展,并对进化机制的研究作出总结和展望,为今后研究提供了参考。 There is a close relationship between the animal’s mating system and sexual selection. For the Anura amphibian, the polyandry exists extensively, and is manifested by precopulatory sexual selection and postcopulatory sexual selection. As a result, Anura amphibian have produced various evolutionary mechanisms under tremendous selection pressure. This paper reviews the related concepts of mating system and sexual selection, expounds the research progress on the evolutionary mechanisms of polyandry and sexual selection of the Anura amphibian, and finally summarizes and prospects the research on evolutionary mechanisms.

无尾目,一雌多雄制,性选择,精子竞争,进化机制, Anura Polyandry Sexual Selection Sperm Competition Evolutionary Mechanism
摘要

物种的婚配制度与性选择之间具有密切联系。对于无尾两栖类来说,一雌多雄的婚配制度广泛存在,并通过交配前性选择和交配后性选择来体现。因此,在巨大的选择压力下,无尾目动物产生了各种进化机制。本文综述了婚配制度和性选择的相关概念,阐述了无尾两栖类一雌多雄制和性选择进化机制的研究进展,并对进化机制的研究作出总结和展望,为今后研究提供了参考。

关键词

无尾目,一雌多雄制,性选择,精子竞争,进化机制

Research Progress on Evolutionary Mechanism of Monogyny and Polygyny in Tailless Amphibians<sup> </sup>

Jing Li

College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua Zhejiang

Received: Jan. 24th, 2024; accepted: Mar. 20th, 2024; published: Mar. 28th, 2024

ABSTRACT

There is a close relationship between the animal’s mating system and sexual selection. For the Anura amphibian, the polyandry exists extensively, and is manifested by precopulatory sexual selection and postcopulatory sexual selection. As a result, Anura amphibian have produced various evolutionary mechanisms under tremendous selection pressure. This paper reviews the related concepts of mating system and sexual selection, expounds the research progress on the evolutionary mechanisms of polyandry and sexual selection of the Anura amphibian, and finally summarizes and prospects the research on evolutionary mechanisms.

Keywords:Anura, Polyandry, Sexual Selection, Sperm Competition, Evolutionary Mechanism

Copyright © 2024 by author(s) and beplay安卓登录

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

无尾目包括两栖纲的大部分种类,约为两栖动物总数的88% [ 1 ] 为分布范围最广泛的一类。无尾两栖类属外温动物,多为体外受精,且生活史经历了从水生变态到陆生的转变 [ 2 ] ,其生活史大多分为卵、蝌蚪和成体三个阶段,这3个生活史阶段的动物由于各自的结构和生理机能的制约,分别生活在迥异的栖息环境中,形成了各自阶段的生态适应特点 [ 3 ] 。

在无尾两栖动物中,一雌多雄的婚配制度广泛存在。雌性通过与多个雄性交配,可能获得直接或间接利益,进而提高后代适合度。雌性也可能会在获得较少利益时,与多个雄性婚配 [ 4 ] [ 5 ] [ 6 ] 。无尾两栖类在维持物种多样性和生态系统稳定性方面发挥着重要的作用,利用无尾两栖类消灭农田害虫是重要生物防治手段之一。但是由于全球气候变化和人类活动,无尾两栖类动物数量呈显著下降趋势 [ 7 ] ,这引起生物保护者的重视。因此,对该类动物婚配制度、性选择及进化机制进行深入研究,有助于深入理解有性生殖、生殖隔离、物种形成和进化 [ 8 ] ,为其多样性保护、人工繁育、资源增值等提供科学依据。

2. 婚配制度与性选择 2.1. 婚配制度

婚配制度(mating system)最早由达尔文于1871年提出,婚配制度是指种群内不同的婚配模式,包括配偶数目、两性特征、亲代抚育等,是繁殖期个体为获得最大繁殖收益而采取的多种繁殖策略 [ 9 ] ,主要分单个雄性与单个雌性在几个繁殖季节单独婚配(一雄一雌制);一个雄性和几个雌性在连续的几个婚配季节婚配(一雄多雌制);单个雌性和多个雄性在连续的几个婚配季节婚配(一雌多雄制);雌雄性之间没有固定的婚配关系,彼此均有多个配偶(混交制) [ 10 ] [ 11 ] 。对动物婚配制度的判断传统上是依据动物在繁殖季节获得配偶的数量。随着分子生物学技术的发展,科学家们发现动物在繁殖过程中,所观察到的配偶数目(社会婚配制度)并不一定能准确代表其遗传上获得的配偶数目(遗传婚配制度),因此雌雄双方获得的来自于不同配偶的配子数目才是判定其婚配制度的更有力依据 [ 12 ] [ 13 ] 。

2.2. 性选择

性选择(sexual selection)最早是达尔文在1859年在《物种起源》提出 [ 14 ] ,性选择的准确定义在1871年,性选择是指雌雄之间的一种竞争和选择关系,是自然选择的一种特殊形式,是由于同性之间个体之间争夺或者选择配偶而产生的,物种的性选择与婚配制度密切相关。性选择是动物交配体制的重要组成部分,在时间上可分为交配前性选择和交配后性选择。

2.2.1. 交配前性选择

交配前选择是对某些特征、直接或间接的利益价值、高生育力或繁殖力的个体、模仿或欺骗行为、基因互补性或相容性、资源或者社会地位等的选择,进而增强竞争力,获得更多的交配机会 [ 15 ] ,主要分为性别内选择和性别间选择。性别内选择是指雄性个体通过竞争来争夺配偶或争取交配机会,性别间选择是指雌性个体通过选择高质量的配偶以获得更高的繁殖成功率 [ 16 ] [ 17 ] 。雄性个体的第二性征作为性选择产物,包括直接雄性–雄性战斗中使用的武器(内部选择) [ 18 ] 和用于向雌性展示的装饰(两性选择或配偶选择) [ 16 ] 。武器和装饰主要涉及配偶竞争的早期阶段,包括建立领域、垄断对雌性重要的资源,以及吸引交配的雌性。这些阶段先于交配,因此雄性武器和装饰在交配前性选择中发展 [ 19 ] 。

2.2.2. 交配后性选择

在交配完成之后,很多物种的雌性个体会与两个或更多雄性个体交配,以获得更优质的基因和更高存活率的后代,雄性个体为了确保自己的精子成功与雌性个体产生的卵细胞受精而不被其他竞争对手的精子取代,许多的精子就开始产生竞争机制作为雄性竞争交配的手段 [ 20 ] 。性选择可以在动物交配后继续进行,有实验研究表明,雌性进行两次间隔很短的交配时,第二个与雌性交配的雄性会将第一个与雌性交配的雄性的精子从雌性体内移除,从而让自己的精子成功与雌性的卵子受精 [ 21 ] [ 22 ] ,对影响雄性竞争性受精成功的特性进行选择,即为两个或多个雄性为给卵子受精而发生的精子竞争 [ 23 ] 。精子竞争在很多物种中广泛存在,这为研究由自然选择、性选择和对抗选择相互作用所带来的适应性变化提供了机会 [ 24 ] 。1994年,Andersson [ 25 ] 提出性选择理论,指出雄性将交配努力用于交配活动中,使得雄性之间发生激烈的竞争,这正是所谓的交配后性选择,即精子竞争(Sperm competition),其通过精子竞争风险(多雄性抱合率)和精子竞争强度(参与抱合的雄性数量) [ 25 ] 两种不同的互补方式来反映,并与隐秘的雌性选择 [ 26 ] 一起支持雄性行为、形态和生理特征的演变,这些特征会影响雌性的重新定位,以及精子的储存和利用。由于交配不一定等同于受精,交配后性选择可能是交配前性选择的重要调节因子 [ 27 ] 。Buzatto等指出性选择的实质是在自然条件下,某一性别个体在寻找配偶的过程中相比于其他同性个体所表现出的具有竞争力的特征,并指出精子竞争理论是提高交配成功率的交配前性状和提高受精率的交配后性状之间进行的权衡 [ 28 ] 。因此,交配前性选择和交配后性选择对动物受精成功乃至繁育成功缺一不可。

3. 无尾目两栖类一雌多雄制进化机制

目前,已在无尾目七科的动物中发现具有一雌多雄婚配制度(有效性比偏向雄性),包括了从树栖到陆栖,以及水栖生活的物种,有蟾蜍科、雨蛙科、鬼蟾科、细趾蛙科、滑跖蟾科、树蛙科和蛙科 [ 8 ] 。

3.1. 繁殖成功率

曾有研究指出在非洲树蛙(Chiromantis xerampelina)中,1只雌性可以同时和1~12只雄性交配 [ 29 ] 。在峨眉树蛙(Rhacophorus omeimontis)中,一只雌性可以同时和1~8只雄性交配,随着交配中雄蛙数量的增加,受精率也随之增加 [ 30 ] 。一雌多雄的婚配制度增加了后代的繁殖成功率,这成为影响两栖动物物种适合度因素之一。

3.2. 身体特征

在漫长的进化过程中,无尾目的一些身体特征为雌性产卵提供了便利。例如在水中进行繁殖的澳大利亚佐治亚索蟾(Crania georgiana),其具有雌性比雄性大的两性异形,在水的浮力作用下,雌蛙可以支撑多只雄性的体重,从而进行一雌多雄的抱团繁殖 [ 31 ] 。在树蛙科中,雌性大树蛙(Rhacophorus dennysi)的四肢带有吸盘,可以承受多只雄性同时抱对繁殖 [ 23 ] 。在峨眉树蛙中,雌性个体并没有从一雌多雄中得到利益,也无法阻止雄性加入到多雄抱对中来,雄性追求更高的繁殖利益驱动了这种婚配制度在峨眉树蛙中的进化 [ 32 ] [ 33 ] 。

3.3. 体外受精

两栖类的体外受精方式,卵子有机会与其他精子结合,故其社会婚配制度可能与遗传婚配制度不一致。此外,体外受精决定了雌性无法阻止与多个雄性同时进行交配的可能,常导致其形成一雌多雄的抱对,称为“抱对球”,进而可能产生精子竞争和多重父权 [ 31 ] 。

3.4. 亲代抚育

亲代抚育指亲代对子代的保护、照顾和喂养等一切有利于子代生存的活动行为 [ 34 ] 。研究发现在两栖纲无尾目动物中,箭毒蛙科(Dendrobatidae)只有网纹箭毒蛙(Ranitomeya imitator)等极少的物种存在稳定的单配制婚配制度,其亲本会直接参与对后代的抚育 [ 35 ] 。其他物种极少观察到抚育后代的行为,它们可能花费更多的精力和时间用来竞争和选择配偶,从而进化出一雌多雄制的婚配制度。

4. 无尾目动物性选择进化机制 4.1. 身体大小

雄性两栖无尾类在繁殖过程中,身体大小对其竞争的激烈程度和繁殖成功起到了关键作用。身体大小往往了决定雄性的打斗能力,能占据更有力的抱对位置,且在求偶鸣叫和第二性征的炫耀上有更多的能量分配 [ 31 ] 。如在峨眉树蛙的研究中发现,大的个体具有更强的竞争力,能获得更优势的抱对位置 [ 36 ] 。通过对后代的父权鉴定,发现正抱雄性子代的比例显著高于侧抱雄性 [ 24 ] 。也有研究表明雄性繁殖成功与身体大小无显著相关,甚至在有些蛙中,雌性更偏向于选择体型较小的雄性作为配偶。如田野林蛙(Rana arvalis),19只雌性中有13只选择身体较小的配偶,仅有6只选择大的个体 [ 37 ] 。

4.2. 前肢形态

两性异形的前肢形态在无尾两栖类中很常见,雄性通常具有更长或更宽阔前肢,宽阔的前肢形态不仅与生境和系统发育之间有关 [ 38 ] ,也反映了雄性屈肌具有更大的发育力和发育强度 [ 39 ] 。在产卵前或产卵期间,雄性利用前臂进行竞争 [ 40 ] 和获得雌性 [ 41 ] 。因此,雄性宽阔的前臂被认为是交配前性选择的进化产物 [ 42 ] ,用于提高雄性直接竞争的成功率。Buzatto等人分析了澳大利亚佐治亚索蟾的臂力在交配前性选择中的作用,并探讨了争夺雌性的竞争雄性个体数与雄性武器能量支出之间的关系。结果表明臂力的优势具有密度制约性,即雄性密度较低时,宽阔的前肢更具有竞争优势,可获得更多与雌性交配的机会 [ 28 ] 。

4.3. 有效性比

有效性比(operational sex ratio, OSR),指性成熟雄性数量与发情雌性数量的比值,可作为测量性选择强度的指标 [ 43 ] 。繁殖过程中,当有效性比偏向于某一个性别时,另一性别便成为稀缺配偶资源,导致同性内产生剧烈竞争,并可能影响竞争个体的繁殖成功率 [ 9 ] 。在无尾两栖动物繁殖场内普遍存在偏向雄性的有效性比,随着有效性比的增加,雄性个体之间的竞争激烈程度也有所增加,这种激烈的竞争模式对物种进化有一定促进作用 [ 44 ] [ 45 ] [ 46 ] 。Buzatto等 [ 28 ] 在对澳大利亚佐治亚索蟾的研究中指出有效性比的增加导致抱对性比的增加。王慧 [ 30 ] 利用微卫星分子标记对峨眉树蛙的子代进行了父权鉴定,指出抱对性比与受精率之间呈显著正相关。

5. 无尾目动物精子竞争及进化机制 5.1. 精子竞争与一雌多雄婚配制度关系

在动物界,不同物种的精子大小和形态都有显著差异性 [ 47 ] [ 48 ] ,无尾两栖类动物中亦是如此。所谓精子竞争,就是在繁殖期中,一个雌性个体与两个或者两个以上的雄性个体交配,当不同雄性的精子试图使同一组卵子受精时,就会发生精子竞争 [ 49 ] [ 50 ] 。因此,为了应对激烈的精子竞争,雄性将增加对精子产生的投资,同时,精子竞争使雄性产生更有利于使卵子受精的精子 [ 51 ] [ 52 ] [ 53 ] ,并促进雄性产生更多的精子,使它们在受精过程中更具有优势 [ 54 ] 。

无尾目动物一雌多雄交配方式中的雄性比单配制的雄性遭受更高的精子竞争风险 [ 55 ] [ 56 ] 。有研究证明,与单配制的雄性相比,一雌多雄制中雄性的睾丸、精子大小、以及精子形态都与雄性个体数量存在相关性 [ 57 ] [ 58 ] ,且当雄性密度较高或者精子竞争强度较大时,无尾目动物就会采取一雌多雄制这种交配策略 [ 59 ] 。

5.2. 精子竞争的形成机制 5.2.1. 精子层化假说

精子层化(sperm stratification)是指储存于雌性体内的不同雄性精子呈层状排列的现象 [ 60 ] 。该概念最早是由Parker提出的,他认为雌性储存精子的器官是一个盲囊,而最后进入盲囊的精子会相比于之前进入的精子更接近出口,更容易使雌性单配制的雄性成功受精 [ 61 ] 。但该假说目前也存在一些争议,甚至有的实验结果与假说完全相反 [ 62 ] [ 63 ] 。例如,在对阿尔卑斯蝾螈(Triturus alpestris)的研究中发现,一个雌性与两个雄性交配产生的所有后代中,这两只雄性的后代比例约为1:1,说明这样的结果不支持精子层化假说,作者认为可能发生了精子混合 [ 64 ] 。

5.2.2. 精子移除假说

精子移除(sperm removal)是指雄性个体利用自身生殖器的特殊结构,移除雌性储精器官中已储存的精子,是雄性生殖器在形态学上的改变 [ 65 ] 。在一些昆虫交配行为中,后来发生交配的雄性个体会利用自己的生殖器排出已储存在雌性个体体内的精子,从而达到移除其他个体精子的目的,提高自己的父权偏向 [ 65 ] [ 66 ] ,这种现象在一些蜻蜓中也有发现 [ 67 ] 。

5.2.3. 精子失能假说

精子失能(sperm incapacitation)是指在多重交配情况下,后面交配的雄性产生的精子能够干扰或杀死之前储存在雌性体内的精子,影响其受精能力 [ 68 ] 。精子失能作用的产生离不开失能作用物的参与,而这种失能作用物保持活性时间较短,需要在交配前释放,且具有识别自身精子的功能 [ 69 ] 。精子失能既可以发生在第二次雄性精子充沛的时候,也可以发生在精子很少的时候,但此时必须要延长时间 [ 68 ] 。但也有Snook等对精子失能假说表示了质疑,因为还没有类似实验可证明一个动物的精子可杀死其竞争者的精子,同时又保证不伤害自己的精子,他们认为精子失能可能是由于精子衰老所致 [ 70 ] 。

5.2.4. 精子取代假说

精子取代(sperm displacement)又被称为精子冲洗,是指储存在雌性储精器中的第一个雄性的精子被后来交配的雄性所喷射的精液冲洗出来的现象 [ 65 ] 。当前一雄性的让精液充满雌性的储精器官时,那么随后进入储精器官的精液可冲洗而排除先前存储的精子,导致不同雄性的精子很难交迭,精子竞争风险很小 [ 71 ] 。

5.3. 精子竞争进化机制 5.3.1. 射精投资

在澳大利亚佐治亚索蟾,繁殖行为包括一种“守卫策略”,其中雄性通过召唤来保护产卵场并吸引雌性,以及使用一种“潜行战术”。Byrne [ 31 ] 通过方差分析证明了在雄性澳大利亚的佐治亚索蟾竞争中守卫者,或在潜行者加入,两者在射精支出上存在着不显著变化,表明雄性澳大利亚佐治亚索蟾不能兼顾性地调整射精投资以应对精子竞争的各种强度的波动。

5.3.2. 睾丸大小

相对睾丸大小是最常用作为精子竞争强度的指标 [ 72 ] [ 73 ] 。多个雄性的交配系统导致的精子竞争,被认为是影响睾丸大小的最大压力之一 [ 74 ] 。在此之前,Byrne等 [ 75 ] 就通过行为学观察以及测量澳大利亚佐治亚索蟾的睾丸大小,总结出睾丸大小与精子竞争风险指数的正相关关系,进一步得出精子竞争选择有利于增加澳大利亚佐治亚索蟾的睾丸质量,为精子竞争风险模型提供了依据。

5.3.3. 睾丸组织

在脊椎动物中,精子是在睾丸生精小管中精母细胞通过减数分裂产生的,从而形成圆形的精子细胞,随后进入一个形态转变期,最后形成成熟的精子细胞,这一过程叫做精子发生 [ 76 ] 。但精子产量也并不完全由睾丸的大小决定,同时精子质量还依赖于睾丸生精组织的数量和生精周期长度 [ 77 ] [ 78 ] 。无尾目两栖动物不同物种间的睾丸组织差异较大,其中重要的关键生精组织所占比例在14.45%~85.27%。除去生精小管对精子大小的影响,由于随着精子水平的提高,会导致无尾两栖类动物的雄性选择更少的生精组织,因此这也影响了睾丸组织结构的变化,而睾丸的组织结构也直接影响了精子的数量和质量,例如在家鼠(Mus musculus)中,增加精子的数量最有效的方法就是增加睾丸组织的大小 [ 79 ] 。

5.3.4. 精子形态与功能

与睾丸大小研究相比,针对精子形态和功能的研究可能更具针对性和可靠性。自杀式精子假说(kamikaze sperm hypothesis)认为,自然选择有利于自杀式精子的产生,这类精子专门用于杀死其它雄性个体的精子,而不是使卵受精 [ 80 ] 。

现已经证实,在昆虫、蛙类、鸟类、哺乳动物、鱼类和蠕虫中,精子竞争对精子的形态具有显著影响。例如,对澳大利亚100种两栖动物所作的系统发生分析发现,精子形态的差异与与卵子的大小也有一定的关系,例如由于较大的卵子在具有精子竞争的物种中,雄蛙所产生的精子尾巴往往比较长 [ 81 ] ,长尾精子的游动速度比短尾精子快,故有利于提高卵的受精率。此外,对于一些无尾两栖动物中,睾丸的不对称性研究以及不同海拔或纬度对两栖动物睾丸以及精子形态的研究都有过报道 [ 82 ] [ 83 ] ,因而精子形态的差异也就影响其运动性和寿命 [ 73 ] [ 84 ] 。也有研究表明,在精子竞争的前提下,游动速度更快的精子更有可能使卵子受精 [ 85 ] 。在一雌多雄制的婚配模式下,精子活动性是精子竞争成功的主要决定因素,而不是精子数量 [ 86 ] [ 87 ] 。Sherman等 [ 88 ] 通过人工授精表明树蛙(Litoria peronii)繁殖成功与雄性排出精子中的存活精子比例无关。

5.3.5. 精子大小

在一些研究中发现,精子竞争风险较大的脊椎动物的雄性个体会产生更长的精子,以提高竞争受精的能力 [ 89 ] [ 90 ] [ 91 ] ,在无尾目两栖动物中,精子长度与相对长度呈正相关。然而,在一些物种的种内研究发现精子长度与相对睾丸大小呈负相关 [ 92 ] [ 93 ] ,因为雄性在更多的精子数量和更长的精子长度之间做出了权衡 [ 94 ] 。在一些精子竞争模型预测中,精子竞争有利于较小的精子,这一理论可以用于解释异性婚配的进化和维持 [ 95 ] 。在一些脊椎动物中,精子竞争风险会影响精子数量的射精策略,但不会影响脊椎动物的精子大小 [ 96 ] 。更有甚者,精子长度与精子竞争没有显著性的关系,也因此导致在与性选择之间没有必然的联系。不同物种的精子大小与精子竞争关系各不相同,高风险的精子竞争物种会最大限度地提高其精子输出,即提高每日精子生成率(DSP, daily sperm production rate) [ 97 ] [ 98 ] 。

5.3.6. 遗传兼容性与性选择

交配后性选择过程,不仅涉及雄性的精子竞争,还涉及隐秘的雌性选择。遗传兼容假说认为,遗传多样性是决定于亲本的基因,雌雄之间遗传非相似性系数(Genetic Dissimilarity)是衡量雌性选择和繁殖成功的重要因素之一 [ 99 ] 。因此雌性通过选择遗传相似性低的配偶来提高受精率以及子代的适合度 [ 100 ] 。例如,具有高水平的遗传不兼容性的亲代非洲树蛙,其雌性个体的繁殖成功与具有遗传兼容性的亲代相比呈显著差异 [ 101 ] 。但是,Sherman等 [ 88 ] 通过人工授精实验发现树蛙雄性与雌性具有高度遗传相似性时受精率更高,进而能繁育更多的后代。因此,遗传兼容对雌性选择如何起作用还需要进一步研究。

6. 总结与展望

无尾目动物一雌多雄婚配制度的形成、性选择及进化机制,至今有着不同解释,其证据仍旧缺乏。对无尾目的交配前性选择来说,一些物种的雄性个体为了自身繁殖达到最大收益,积极争夺配偶 [ 102 ] [ 103 ] ,也有一些物种是由雌性扮演选择者,它们偏好具有优质表型和基因型的雄性 [ 104 ] 。然而,性别内选择和性别间选择是彼此不可分割且相互影响的,雄性竞争促进了雌性的选择,而雌性选择反过来又加强了雄性个体间的竞争 [ 105 ] 。因此,若能对一个物种的性别内选择和性别间选择同时研究,并找出相关证据,对于理解该物种的性选择机制及物种进化策略具有重要意义 [ 106 ] 。而对于无尾目的交配后性选择,有研究者认为是隐秘的雌性选择导致了精子利用的差异并提高了后代的适合度,有的认为是精子竞争的结果。

随着科学技术的发展,繁殖行为学、分子生物学为物种婚配制度和性选择的研究提供了更好的契机。多角度系统地了解无尾两栖动物婚配的方式及其进化,对深入了解无尾两栖类动物一雌多雄婚配制度和性选择的具有深远的意义。

基金项目

浙江省重点研发计划项目(No. 2021C02044),永康市野生动物资源本底调查项目。

文章引用

李 靖. 无尾两栖类一雌多雄制进化机制研究进展 Research Progress on Evolutionary Mechanism of Monogyny and Polygyny in Tailless Amphibians[J]. 生物过程, 2024, 14(01): 23-33. https://doi.org/10.12677/BP.2024.141004

参考文献 References Mcdonough, K. (2014) Amphibian Species of the World: An Online Reference (Version 6). Reference Reviews, 28, 32.
https://doi.org/10.1108/RR-05-2014-0125
Wells, K.D. (2010) The Ecology and Behavior of Amphibians. Austral Ecology, 34, 116.
https://doi.org/10.1111/j.1442-9993.2008.01952.x
李成, 江建平. 无尾两栖类在不同生活史阶段的栖息环境[J]. 四川动物, 2016, 35(6): 950-955. Reichard, M., Comber, S.C. and Smith, C. (2007) Sneaking from a Fe-male Perspective. Animal Behaviour, 74, 679-688.
https://doi.org/10.1016/j.anbehav.2007.03.005
Lee, P.L. and Hays, G.C. (2004) Polyandry in a Marine Turtle: Females Make the Best of a Bad Job. Proceedings of the National Academy of Sciences of the United States of America, 101, 6530-6535.
https://doi.org/10.1073/pnas.0307982101
Fitze, P.S., Galliard, J.F.L., Federici, P., et al. (2005) Conflict over Multiple-Partner Mating between Males and Females of the Polygynandrous Common Lizards. Evolution, 59, 2451-2459.
https://doi.org/10.1111/j.0014-3820.2005.tb00954.x
卢自勇, 冉景丞. 两栖动物面临的威胁及保护对策探讨[J]. 环保科技, 2012, 18(2): 21-27. Roberts, J.D. and Byrne, P.G. (2011) Chapter 1—Polyandry, Sperm Com-petition and the Evolution of Anuran Amphibians. Advances in the Study of Behavior, 43, 1-53.
https://doi.org/10.1016/B978-0-12-380896-7.00001-0
彭延. 猫气味重复暴露对褐家鼠配偶选择的影响[D]: [硕士学位论文]. 扬州: 扬州大学, 2021. Claw, K.G., George, R.D., Maccoss, M.J. and Swanson, W.J. (2018) Quantitative Evolutionary Proteomics of Seminal Fluid from Primates with Different Mating Systems. BMC Ge-nomics, 19, Article No. 488.
https://doi.org/10.1186/s12864-018-4872-x
刘春燕, 堪立新, 王政昆, 等. 哺乳动物的婚配制度研究[J]. 绿色科技, 2019(16): 5-9. Kokko, H. and Johnstone, R.A. (2002) Why Is Mutual Mate Choice Not the Norm? Operational Sex Ratios, Sex Roles and the Evolution of Sexually Dimorphic and Monomorphic Signalling. Philosophical Transactions of the Royal Society of London, 357, 319-330.
https://doi.org/10.1098/rstb.2001.0926
Simmons, L.W. and Kvarnemo, C. (2006) Costs of Breeding and Their Effects on the Direction of Sexual Selection. Proceedings of the Royal Society B Biological Sciences, 273, 465-470.
https://doi.org/10.1098/rspb.2005.3309
Darwin, C. (2009) Origin of Species 150th Anniversary Edition. Bridge-Logos Foundation, Alachua. 刘文芬. 短蛸微卫星标记开发及交配模式与性选择机制研究[D]: [硕士学位论文]. 上海: 上海海洋大学, 2018. Andersoon, M. and Simmons, L.W. (2006) Sexual Selection and Mate Choice. Trends in Ecology & Evolution, 21, 296-302.
https://doi.org/10.1016/j.tree.2006.03.015
Dale, J., Dunn, P.O., Figuerola, J., et al. (2007) Sexual Selection Explains Rensch’s Rule of Allometry for Sexual Size Dimorphism. The Royal Society Proceedings B, 274, 2971-2979.
https://doi.org/10.1098/rspb.2007.1043
Emlen, D.J. (2008) The Evolution of Animal Weapons. Annual Review of Ecology Evolution and Systematics, 39, 387-413.
https://doi.org/10.1146/annurev.ecolsys.39.110707.173502
Andersson, S. (1994) Costs of Sexual Advertising in the Lekking Jackson’s Widowbird. Condor, 96, 1-10.
https://doi.org/10.2307/1369058
卫松山. 蟪蛄(半翅目: 蝉科)性选择行为研究[D]: [硕士学位论文]. 咸阳: 西北农林科技大学, 2020. Ablard, K.M., Simonetto, K., Weir, L.K., et al. (2014) First-Male Sperm Precedence and Precopulatory and Postcopulatory Rituals in the Parasitoid Wasp Ooencyrtus kuvanae (Hymenoptera: Encyrtidae). Canadian Entomologist, 146, 548-559.
https://doi.org/10.4039/tce.2014.7
Piasecka, M., Fraczek, M., Gaczar-zewicz, D., et al. (2014) Novel Morphological Findings of Human Sperm Removal by Leukocytes in in Vivo and in Vitro Conditions: Preliminary Study. American Journal of Reproductive Immunology, 72, 348-358.
https://doi.org/10.1111/aji.12284
程明阳. 大凉螈的精子竞争[D]: [硕士学位论文]. 北京: 中国科学院大学, 2021. Rice, W.R. (1996) Sexually Antagonistic Male Adaptation Triggered by Experimental Arrest of Female Evolution. Nature, 381, 232-234.
https://doi.org/10.1038/381232a0
Parker, G.A. (2010) Sperm Competition and Its Evolutionary Consequence in the Insects. Biological Reviews, 45, 525-567.
https://doi.org/10.1111/j.1469-185X.1970.tb01176.x
Eberhard, W.G. and Cordero, C. (1995) Sexual Selection by Cryptic Female Choice on Male Seminal Products—A New Bridge between Sexual Selection and Reproductive Physiology. Trends in Ecology & Evolution, 10, 493-496.
https://doi.org/10.1016/S0169-5347(00)89205-8
Kvarnemo, C. and Simmons, L.W. (2013) Polyandry as a Mediator of Sexual Selection before and after Mating. Philosophical Transactions of the Royal Society of London, 368, Article ID: 20120042.
https://doi.org/10.1098/rstb.2012.0042
Buzatto, B.A., Roberts, J.D. and Simmon, L.W. (2015) Sperm Compe-tition and the Evolution of Precopulatory Weapons: Increasing Male Density Promotes Sperm Competition and Reduces Selection on Arm Strength in a Chorusing Frog. Evolution, 69, 2613-2624.
https://doi.org/10.1111/evo.12766
Byrne, P.G. and Whiting, M.J. (2008) Simultaneous Polyandry Increases Fertilization Success in an African Foam-Nesting Treefrog. Animal Behaviour, 76, 1157-1164.
https://doi.org/10.1016/j.anbehav.2008.05.019
王慧. 峨眉树蛙体长与抱对性比对繁殖成功的影响[D]: [硕士学位论文]. 武汉: 华中师范大学, 2014. Byrne, P.G. and Roberts, J.D. (2004) Intrasexual Selection and Group Spawning in Quacking Frogs (Crinia Georgiana). Behavioral Ecology, 15, 872-882.
https://doi.org/10.1093/beheco/arh100
Luo, Z., Li, C., Wang, H., et al. (2016) Male-Male Competition Drives Sexual Selection and Group Spawning in the Omei Treefrog, (Rhacophorus Omeimontis). Behavioral Ecology and So-ciobiology, 70, 593-605.
https://doi.org/10.1007/s00265-016-2078-2
Zhao, M., Li, C., Zhang, W., et al. (2016) Male Pursuit of Higher Reproductive Success Drives Female Polyandry in the Omei Treefrog. Animal Behaviour, 111, 101-110.
https://doi.org/10.1016/j.anbehav.2015.10.007
尚玉昌. 动物的亲代抚育行为[J]. 生物学通报, 1999(10): 7-9. Brown, J.L., Morales, V. and Summers, K. (2010) A Key Ecological Trait Drove the Evolution of Biparental Care and Monogamy in an Amphibian. The American Naturalist, 175, 436-446.
https://doi.org/10.1086/650727
李辰亮. 峨眉树蛙的婚配制度与性选择[D]: [博士学位论文]. 武汉: 华中师范大学, 2016. Sherman, C.D.H., Sagvik, J. and Olsson, M. (2010) Female Choice for Males with Greater Fertilization Success in the Swedish Moor Frog, (Rana Arvalis). PLOS ONE, 5, e13634.
https://doi.org/10.1371/journal.pone.0013634
杨曈, 姜德纯, 党宁馨, 李家堂. 蛙类前肢形态对树栖环境的适应性演化[J]. 四川动物, 2018, 37(4): 400-405. Navas, C.A. and James, S. (2007) Sexual Dimorphism of Extensor Carpi Radialis Muscle Size, Isometric Force, Relaxation Rate and Stamina during the Breeding Season of the Frog (Rana Temporaria) Linnaeus 1758. Journal of Experimental Biology, 210, 715-721.
https://doi.org/10.1242/jeb.000646
Buzatto, B.A., Roberts, J.D. and Simmons, L.W. (2015) Sperm Competition and the Evolution of Precopulatory Weapons: Increasing Male Density Promotes Sperm Competition and Reduces Selection on Arm Strength in a Chorusing Frog. Evolution, 69, 2613-2614
https://doi.org/10.1111/evo.12766
Davies, N.B. and Halliday, T.R. (1979) Competitive Mate Searching in Male Common Toads, (Bufo Bufo). Animal Behaviour, 27, 1253-1267.
https://doi.org/10.1016/0003-3472(79)90070-8
Emerson, S.B. (1991) A Biomechanical Perspective on the Use of Forelimb Length as a Measure of Sexual Selection in Frogs. Journal of Evolutionary Biology, 4, 671-678.
https://doi.org/10.1046/j.1420-9101.1991.4040671.x
Weir, L.K., Grant, J.W.A. and Hutchings, J.A. (2011) The Influence of Operational Sex Ratio on the Intensity of Competition for Mates. American Naturalist, 177, 167-176.
https://doi.org/10.1086/657918
Elmberg, J. (1990) Long-Term Survival, Length of Breeding Season, and Op-erational Sex Ratio in a Boreal Population of Common Frogs, (Rana Temporaria L). Revue Canadienne De Zoologie, 68, 121-127.
https://doi.org/10.1139/z90-017
Friedl, T.W.P. and Klump, G.M. (2005) Sexual Selection in the Lek-Breeding European Treefrog: Body Size, Chorus Attendance, Random Mating and Good Genes. Animal Behaviour, 70, 1141-1154.
https://doi.org/10.1016/j.anbehav.2005.01.017
Lu, X., Ma, X., Li, Y. and Fan, L.Q. (2009) Breeding Behavior and Mating System in Relation to Body Size in (Rana Chensinensis), a Temperate Frog Endemic to Northern China. Journal of Ethology, 27, 391-400.
https://doi.org/10.1007/s10164-008-0132-x
Pitnick, S., Hosken, D.J. and Birkheadt, R. (2009) Sperm Mor-phological Diversity. In: Birkhead, T.R., Hosken, D.J. and Pitnick, S., Eds., Sperm Biology, Academic Press, Cambridge, 69-149.
https://doi.org/10.1016/B978-0-12-372568-4.00003-3
Simmons, L.W. and Fitzpatrickj, L. (2012) Sperm Wars and the Evolution of Male Fertility. Reproduction, 144, 519-534.
https://doi.org/10.1530/REP-12-0285
Koenig, L.A. and Allant, J.R. (2021) Sperm Competition, Sexual Selection and the Diverse Reproductive Biology of Osteoglos-siformes. Journal of Fish Biology, 99, 740-754.
https://doi.org/10.1111/jfb.14779
Birkhead, T.R. (1998) Sperm Competition and Sexual Selection. Academic Press, Cambridge. Gage, M., Macfarlane, C.P., Yeates, S., et al. (2004) Spermatozoa Traits and Sperm Competition in Atlantic Salmon: Relative Sperm Velocity Is the Primary De-terminant of Fertilization Success. Current Biology, 14, 44-47.
https://doi.org/10.1016/S0960-9822(03)00939-4
Malo, A.F., Garde, J.J., Soler, A.J., et al. (2005) Male Fertil-ity in Natural Populations of Red Deer Is Determined by Sperm Velocity and the Proportion of Norma1 Spermatozoa. Biology of Reproduction, 72, 822-829.
https://doi.org/10.1095/biolreprod.104.036368
Katz, D.F., Drobnis, E.Z. and Overstreet, J.W. (2010) Factors Regulating Mammalian Sperm Migration through the Female Reproductive Tract and Oocyte Vestments. Gamete Re-search, 22, 443-469.
https://doi.org/10.1002/mrd.1120220410
Gomendio, M. and Roldan, E.R. (1991) Sperm Competition Influ-ences Sperm Size in Mammals. Proceeding Biological Sciences, 243, 181-185.
https://doi.org/10.1098/rspb.1991.0029
Humphries, S., Evans, J.P. and Simmons, L.W. (2008) Sperm Com-petition: Linking Form to Function. BMC Evolutionary Biology, 8, Article No. 319.
https://doi.org/10.1186/1471-2148-8-319
Hettyey, A. and Roberts, J.D. (2006) Sperm Traits of the Quacking Frog, Crinia Georgiana: Intra- and Interpopulation Variation in a Species with a High Risk of Sperm Competition. Be-havioral Ecology & Sociobiology, 59, 389-396.
https://doi.org/10.1007/s00265-005-0062-3
Simpson, J.L., Humphries, S., Evans, J.P., et al. (2014) Relation-ships between Sperm Length and Speed Differ among Three Internal and Three External Fertilization Species. Evolution, 68, 92-104.
https://doi.org/10.1111/evo.12199
Prakash, S., Prithiviraj, E., Suresh, S., et al. (2014) Mor-phological Diversity of Sperm: A Mini Review. International Journal of Reproductive BioMedicine, 12, 239-242. Dziminski, M.A., Roberts, J.D., Beveridge, M., et al. (2009) Sperm Competitiveness in Frogs: Slow and Steady Wins the Race. Proceedings of the Royal Society B: Biological Sciences, 276, 3955-3961.
https://doi.org/10.1098/rspb.2009.1334
滕兆乾, 张青文. 昆虫精子竞争及其避免机制[J]. 中国农业大学学报, 2006, 11(6): 7-12. 王会琴, 李金钢. 昆虫精子竞争的研究进展[J]. 安徽农学通报, 2011, 17(9): 41-44. Carbone, S.S. and Rivera, A.C. (2003) Fertility and Paternity in the Eucalyptus Snout-Beetle Gonipterus Scutellatus: Females Might Benefit from Sperm Mixing. Ethology Ecology and Evolution, 15, 283-294.
https://doi.org/10.1080/08927014.2003.9522673
Xu, J. and Wang, Q. (2010) Mechanisms of Last Male Precedence in a Moth: Sperm Displacement at Ejaculation and Storage Sites. Behavioral Ecology, 21, 714-721.
https://doi.org/10.1093/beheco/arq044
Rafinski, J. and Osikowski, A. (2002) Sperm Mixing in the Alpine Newt (Triturus Alpestris). Revue Canadienne De Zoologie, 80, 1293-1298.
https://doi.org/10.1139/z02-099
Cordero-Rivera, A. (2016) Sperm Removal during Copulation Confirmed in the Oldest Extant Damselfly, Hemiphlebia mirabilis. PeerJ, 4, e2077.
https://doi.org/10.7717/peerj.2077
周泽霖. 长颚斗蟋翅二型雄虫精子竞争能力的研究[D]: [硕士学位论文]. 长沙: 中南林业科技大学, 2021. Si-va-Jothy, M.T. and Tsubaki, Y. (1989) Variation in Copulation Duration in Mnais pruinosa pruinosa Selys(Odonata: Calopterygidae). Behavioral Ecology and Sociobiology, 25, 261-267.
https://doi.org/10.1007/BF00300052
Price, C.S.C., Dyer, K.A. and Coyne, J.A. (1999) Sperm Competition between Drosophila Males Involves Both Displacement and Incapacitation. Nature, 400, 449-452.
https://doi.org/10.1038/22755
Oguejiofor, C.F., Ifeanyi, E.G. and Anya, K. (2020) Antifertility Effects of Azadirachta Indica Methanol Seed Extract on Canine Spermatozoa in Vitro. Asian Pacific Journal of Reproduction, 9, 135-141.
https://doi.org/10.4103/2305-0500.284271
Snook, R.R. and Hosken, D.J. (2004) Sperm Death and Dumping in Drosophila. Nature, 428, 939-941.
https://doi.org/10.1038/nature02455
Simmons, L.W. (2001) Sperm Competition and Its Evolutionary Conse-quences in the Insects. Pricetion University Press, Princetion.
https://doi.org/10.1515/9780691207032
Moore, H. and Akhondi, M.A. (1996) Fertilizing Capacity of Rat Spermatozoa Is Correlated with Decline in Straight-Line Veloc-ity Measured by Continuous Computer-Aided Sperm Analysis: Epididymal Rats Perm Atozoa from the Proximal Cauda Have a Greater Fertilizing Capacity in Vitro than Those from the Distal Cauda or Vas Deferens. Journal of Andrology, 17, 50-60.
https://doi.org/10.1002/j.1939-4640.1996.tb00586.x
Birkhea, T.R., Martinez, J.G., Burke, T. and Fro-man, D.P. (1999) Sperm Mobility Determines the Outcome of Sperm Competition in the Domestic Fowl. Proceedings Biological Sciences, 266, 1759-1764.
https://doi.org/10.1098/rspb.1999.0843
Byrne, P.G. and Roberts, J.D. (2012) Evolutionary Causes and Con-sequences of Sequential Polyandry in Anuran Amphibians. Biological Reviews, 87, 209-228.
https://doi.org/10.1111/j.1469-185X.2011.00191.x
Byrne, P.G., Roberts, J.D. and Simmons, L.W. (2002) Sperm Competition Selects for Increased Testes Mass in Australian Frogs. Journal of Evolutionary Biology, 15, 347-355.
https://doi.org/10.1046/j.1420-9101.2002.00409.x
Hackiewicz, K., Rozenblut-Kocisty, B. and Ogielska, M. (2017) Prespermatogenesis and Early Spermatogenesis in Frogs. Zoology, 122, 63-79.
https://doi.org/10.1016/j.zool.2017.01.003
Montoto, L.G., Arregui, L., Sanchez, N.M., et al. (2012) Postnatal Testicular Development in Mouse Species with Different Levels of Sperm Competition. Reproduction, 143, 333-346.
https://doi.org/10.1530/REP-11-0245
Moreira, J.R., Clarke, J.R. and Macdonald, D.W. (1997) 1997 the Testis of Capybaras (Hydrochoerus Hydrochaeris). Journal of Mammalogy, 78, 1096-1100.
https://doi.org/10.2307/1383052
Hettyey, A., Laurila, A., Herczeg, G., et al. (2005) Does Testis Weight De-cline towards the Subarctic? A Case Study on the Common Frog, Rana Temporaria. The Science of Nature, 92, 188-192.
https://doi.org/10.1007/s00114-005-0607-3
Boulton, R.A., Cook, N., Green, J., et al. (2018) Sperm Blocking Is Not a Male Adaptation to Sperm Competition in a Parasitoid Wasp. Behavioral Ecology, 29, 253-263.
https://doi.org/10.1093/beheco/arx156
Byrne, P.G., Simmons, L.W. and Roberts, J.D. (2003) Sperm Competi-tion and the Evolution of Gamete Morphology in Frogs. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270, 2079-2086.
https://doi.org/10.1098/rspb.2003.2433
Chen, C., Huang, Y.Y., Liao, W.B., et al. (2016) A Comparison of Testes Size and Sperm Length between Polypedates megacephalus Populations at Different Altitudes. The Herpetologi-cal Journal, 26, 249-252. Jetz, W. and Pyron, RA. (2018) The Interplay of Past Diversification and Evolutionary Isolation with Present Imperilment across the Amphibian Tree of Life. Nature Ecology and Evolution, 2, 850-858.
https://doi.org/10.1038/s41559-018-0515-5
Reuter, M., Linklater, J.R., Lehmann, L., Fowler, K., Chapman, T. and Hurst, G.D.D. (2008) Adaptation to Experimental Alterations of the Operational Sex Ratio in Populations of Dro-sophila melanogaster. Evolution, 62, 401-412.
https://doi.org/10.1111/j.1558-5646.2007.00300.x
Rowley, A.G. and Fitzpatrick, J.L. (2016) Sperm Competi-tion. In: Kliman, R.M., Ed., Encyclopedia of Evolutionary Biology, Academic Press, Cambridge, 245-249.
https://doi.org/10.1016/B978-0-12-800049-6.00158-X
Hodgson, A.N. (2009) Sperm Biology: An Evolution-ary Perspective. Animal Biology, 59, 969-970.
https://doi.org/10.1163/157075509X12499949744388
Snook, R.R., Robertson, A., Crudgington, H.S. and Ritchie, M.G. (2005) Experimental Manipulation of Sexual Selection and the Evolution of Courtship Song in Drosophila pseudoobscura. Behavior Genetics, 35, 245-255.
https://doi.org/10.1007/s10519-005-3217-0
Sherman, C.D.H., Wapstra, E., Uller, T. and Olsson, M. (2008) Males with High Genetic Similarity to Females Sire More Offspring in Sperm Competition in Peron’s Tree Frog Litoria peronii. Proceedings Biological Sciences, 275, 971-978.
https://doi.org/10.1098/rspb.2007.1626
Simmons, L.W. and Kotiaho, J.S. (2010) Evolution of Ejaculation: Patterns of Phenotypic and Genotypic Variation and Conditional Dependence in Sperm Competition Traits. Evolution, 56, 1622-1631.
https://doi.org/10.1111/j.0014-3820.2002.tb01474.x
Schulte-Hostedde, A.I., Millar, J.S. and Hickling, G.J. (2005) Condition Dependence of Testis Size in Small Mammals. Evolutionary Ecology Research, 7, 143-149. Par-ker, G.A. (1998) Sperm Competition and the Evolution of Ejaculates: Towards a Theory Base. In: Birkhead, T.R. and Møller, A.P., Eds., Sperm Competition and Sexual Selection, Academic Press, Cambridge, 3-54.
https://doi.org/10.1016/B978-012100543-6/50026-X
Mi, Z.P., Liao, W.B., et al. (2016) Altitudinal Variation in M Ale Reproductive Investment in a Polyandrous Frog Species (Hyla Gongshanensis Jingdongensis). Animal Biology, 66, 289-303.
https://doi.org/10.1163/15707563-00002505
刘巧. 在不同精子竞争压力下26种无尾两栖动物精子大小与睾丸组织的适应关系[D]: [硕士学位论文]. 南充: 西华师范大学, 2021. Noirault, J., Brillard, J.P. and Bakst, M.R. (2006) Sperm Atogenesis in the Turkey (Meleagris Gallopavo): Quantitative Approach in Immature and Adult Males Subjected to Various Photoperiods. Theriogenology, 65, 845-859.
https://doi.org/10.1016/j.theriogenology.2005.01.012
Castillo, D.M. and Moyle, L.C, (2019) Conspecific Sperm Precedence Is Reinforced, But Postcopulatory Sexual Selection Weakened, in Sympatric Populations of Drosoph-ila. Proceedings of the Royal Society B: Biological Sciences, 286, 1-10.
https://doi.org/10.1098/rspb.2018.2535
Iwata, Y., et al. (2021) Sperm Competition Risk Affects Ejaculate Strategy in Terms of Sperm Number but Not Sperm Size in Squid. Journal of Evolutionary Biology, 34, 1352-1361.
https://doi.org/10.1111/jeb.13894
Boschetto, C., Gasparini, C. and Pilastro, A. (2011) Sperm Number and Velocity Affect Sperm Competition Success in the Guppy (Poecilia Reticulata). Behavioral Ecology and Sociobiology, 65, 813-821.
https://doi.org/10.1007/s00265-010-1085-y
Gupta, G., Maikhuri, J.P., Setty, B.S., et al. (2000) Seasonal Var-iations in Daily Sperm Production Rate of Rhesus and Bonnet Monkeys. Journal of Medical Primatology, 29, 411-414.
https://doi.org/10.1111/j.1600-0684.2000.290605.x
Neff, B.D. and Pitcher, T.E. (2005) Genetic Quality and Sexual Selection: An Integrated Framework for Good Genes and Compatible Genes. Molecular Ecology, 14, 19-38.
https://doi.org/10.1111/j.1365-294X.2004.02395.x
Evans, J.P. and Marshall, D.J. (2005) Male-by-Female In-teractions Influence Fertilization Success and Mediate the Benefits of Polyandry in the Sea Urchin Heliocidaris erythrogramma. Evolution, 59, 106-112. Zeh, J.A. and Zeh, D.W. (1997) The Evolution of Polyandry II: Post-Copulatory Defences against Genetic Incompatibility. Proceedings of the Royal Society B: Biological Sciences, 264, 69-75.
https://doi.org/10.1098/rspb.1997.0010
Chapman, T., Liddle, L.F., Kalb, J.M., et al. (1995) Cost of Mating in Drosophila melanogaster Females Is Mediated by Male Accessory Gland Products. Nature, 373, 241-244.
https://doi.org/10.1038/373241a0
Friberg, U. and Arnqvist, G. (2010) Fitness Effects of Female Mate Choice: Preferred Males Are Detrimental for Drosophila melanogaster Females. Journal of Evolutionary Biology, 16, 797-811.
https://doi.org/10.1046/j.1420-9101.2003.00597.x
Tregenza, T. and Wedell, N. (2000) Genetic Compatibility, Mate Choice and Patterns of Parentage: Invited Review. Molecular Ecology, 9, 1013-1027.
https://doi.org/10.1046/j.1365-294x.2000.00964.x
Wong, B.B.M. and Candolin, U. (2005) How Is Female Mate Choice Affected by Male Competition? Biological Reviews, 80, 559-571.
https://doi.org/10.1017/S1464793105006809
Qvarnström, A. and Forsgren, E. (1998) Should Females Prefer Dominant Males? Trends in Ecology & Evolution, 13, 498-501.
https://doi.org/10.1016/S0169-5347(98)01513-4
Baidu
map