Figure 4. Schematic diagram of the experimental setup for resonant cavity SHG of a phase-modulated few-frequency fiber laser [37]--图4. 相位调制的少频光纤激光器谐振腔SHG实验装置示意图[37]--4.2. 角度相位匹配下的外腔谐振倍频
References
Sakuma, J., Asakawa, Y. and Obara, M. (2004) Generation of 5-W Deep-UV Continuous-Wave Radiation at 266 nm by an External Cavity with a CsLiB
6O
10Crystal. Optics Letters, 29, 92-94. >https://doi.org/10.1364/OL.29.000092
Mizell, G.J. (1999) 355-nm CW Laser Emission Using a Contact-Bonded Crystal Assembly Pumped with a 1-W 808-nm Diode. Laser Material Crystal Growth and Nonlinear Materials and Devices, 3610, 54-56. >https://doi.org/10.1117/12.349219
Li, F.Q., Shi, Z., Li, Y.M., et al. (2011) Tunable Single-Frequency Intracavity Frequency-Doubled Ti:Sapphire Laser around 461 nm. Chinese Physics Letters, 28, Article ID: 124205. >https://doi.org/10.1088/0256-307X/28/12/124205
Strössner, U., Peters, A., Mlynek, J., et al. (1999) Single-Frequency Continuous-Wave Radiation from 0.77 to 1.73 µM Generated by a Green-Pumped Optical Parametric Oscillator with Periodically Poled LiTaO
3. Optics Letters, 24, 1602-1604. >https://doi.org/10.1364/OL.24.001602
Engler, S., Ramsayer, R. and Poprawe, R. (2011) Process Studies on Laser Welding of Copper with Brilliant Green and Infrared Lasers. Physics Procedia, 12, 339-346. >https://doi.org/10.1016/j.phpro.2011.03.142
Zhao, S., Wei, H., Zhu, M., et al. (2016) Green Laser Interferometric Metrology System with Sub-Nanometer Periodic Nonlinearity. Applied Optics, 55, 3006-3011. >https://doi.org/10.1364/AO.55.003006
Pricking, S., Dold, E.M., Kaiser, E., et al. (2020) 2 KW CW Laser in the Green Wavelength Regime for Copper Welding. In: Clarkson, W.A. and Shori, R.K., Eds., Solid State Lasers XXIX: Technology and Devices, SPIE, San Francisco, 56. >https://doi.org/10.1117/12.2546224
Yin, Q., Lu, H., Su, J., et al. (2016) High Power Single-Frequency and Frequency-Doubled Laser with Active Compensation for the Thermal Lens Effect of Terbium Gallium Garnet Crystal. Optics Letters, 41, 2033-2036. >https://doi.org/10.1364/OL.41.002033
Chen, C., Wu, Y., Jiang, A., et al. (1989) New Nonlinear-Optical Crystal: LiB
3O
5. Journal of the Optical Society of America B, 6, 616-621. >https://doi.org/10.1364/JOSAB.6.000616
Ukachi, T., Lane, R.J., Bosenberg, W.R., et al. (1990) Measurements of Noncritically Phase-Matched Second-Harmonic Generation in a LiB
3O
5Crystal. Applied Physics Letters, 57, 980-982. >https://doi.org/10.1063/1.104275
Jarrett, S.M., Shellikeri, G.P. and Varela, O. (2010) A 200 MW, CW, 355 nm Laser Based on DPSS Side Pumped, Internally Frequency Tripled Technology. Solid State Lasers XIX: Technology and Devices, 7578, 193-200. >https://doi.org/10.1117/12.854939
Chuangtian, C., Bochang, W., Aidong, J., et al. (1985) A New-Type Ultraviolet SHG Crystal——β-BaB
2O
4. Science in China Series B-Chemistry, Biological, Agricultural, Medical&Earth Sciences, 28, 235-243.
Masuda, H., Kimura, K., Eguchi, N., et al. (2001) All-Solid-State, Continuous-Wave, 195 nm Light Generation in β-BaB
2O
4. Advanced Solid-State Lasers (2001), Paper WA6. Optica Publishing Group, Washington DC, WA6. >https://doi.org/10.1364/ASSL.2001.WA6
Boyd, G.D., Miller, R.C., Nassau, K., et al. (1964) LiNbO
3: An Efficient Phase Matchable Nonlinear Optical Material. Applied Physics Letters, 5, 234-236. >https://doi.org/10.1063/1.1723604
Kim, Y.S. and Smith, R.T. (1969) Thermal Expansion of Lithium Tantalate and Lithium Niobate Single Crystals. Journal of Applied Physics, 40, 4637-4641. >https://doi.org/10.1063/1.1657244
Shukla, M.K., Kumar, S. and Das, R. (2015) Single-Pass Multi-Watt Second-Harmonic-Generation in Congruent and Stoichiometric LiTaO
3. IEEE Photonics Technology Letters, 27, 1379-1382. >https://doi.org/10.1109/LPT.2015.2421643
Gapontsev, V., Avdokhin, A., Kadwani, P., et al. (2014) SM Green Fiber Laser Operating in CW and QCW Regimes and Producing over 550W of Average Output Power. SPIE LASE, San Francisco, 8964, Article ID: 896407. >https://doi.org/10.1117/12.2058733
Ahmadi, P., Creeden, D., Aschaffenburg, D., et al. (2020) Generating KW Laser Light at 532 nm via Second Harmonic Generation of a High Power Yb-Doped Fiber Amplifier. In: Schunemann, P.G. and Schepler, K.L., Eds., Nonlinear Frequency Generation and Conversion: Materials and Devices XIX, SPIE, San Francisco, 40. >https://doi.org/10.1117/12.2546377
Su, M., You, Y., Quan, Z., et al. (2021) 321 W High-Efficiency Continuous-Wave Green Laser Produced by Single-Pass Frequency Doubling of Narrow-Linewidth Fiber Laser. Applied Optics, 60, Article No. 3836. >https://doi.org/10.1364/AO.422514
苏梦琪, 尤阳, 全昭, 等. 高效率单通倍频实现610 W连续波单模绿光输出[J]. 中国激光, 2021, 48(13): 213-216.
Chang-Seok, K. and Kang, J.U. (2001) Second Harmonic Generation of Polarization Maintaining Yb-Doped Fiber Laser Using Periodically-Poled Lithium Niobate. LEOS 2001. 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society, San Diego, 12-13 November 2001, 58-59.
Shirakawa, A., Hiwada, K., Hasegawa, S., et al. (2005) All-Fiber Linearly-Polarized Yb-Doped Fiber Laser Yielding 2.2-W Green Second Harmonics. 2005 Pacific Rim Conference on Lasers&Electro-Optics, Tokyo, 11-14 July 2005, 410-411.
Samanta, G.K., Kumar, S.C., Mathew, M., et al. (2008) High-Power, Continuous-Wave, Second-Harmonic Generation at 532 nm in Periodically Poled KTiOPO
4. Optics Letters, 33, 2955-2957. >https://doi.org/10.1364/OL.33.002955
Sinha, S., Hum, D.S., Urbanek, K.E., et al. (2008) Room-Temperature Stable Generation of 19 Watts of Single-Frequency 532-nm Radiation in a Periodically Poled Lithium Tantalate Crystal. Journal of Lightwave Technology, 26, 3866-3871. >https://doi.org/10.1109/JLT.2008.928396
Samanta, G.K., Kumar, S.C. and Ebrahim-Zadeh, M. (2009) Stable, 9.6 W, Continuous-Wave, Single-Frequency, Fiber-Based Green Source at 532 nm. Optics Letters, 34, 1561-1563. >https://doi.org/10.1364/OL.34.001561
An, H.B., Su, B.H., Niu, L.H., et al. (2012) Green Generation by Single-Pass Frequency-Doubling in a Periodically Poled MgO:LiNbO
3at Room Temperature. Advanced Materials Research, 622-623, 1258-1261. >https://doi.org/10.4028/www.scientific.net/AMR.622-623.1258
焦梦丽, 吕新杰, 刘驰, 等. 周期极化钽酸锂倍频窄谱线全光纤连续激光放大器特性[J]. 中国激光, 2012, 39(3): 30-34.
Samanta, G.K., Chaitanya, K.S., Devi, K., et al. (2012) High-Power, Continuous-Wave Ti:Sapphire Laser Pumped by Fiber-Laser Green Source at 532 nm. Optics and Lasers in Engineering, 50, 215-219. >https://doi.org/10.1016/j.optlaseng.2011.09.001
郝丽云, 苏岑, 漆云凤, 等. 基于PPMgO:LN晶体的连续波全光纤激光器倍频特性[J]. 中国激光, 2013, 40(6): 76-81.
Lai, R., Hsu, C.S., Hsu, C.W., et al. (2019) Single Pass 7 Watts Continuous Wave 532 nm Generation by Focusing Optimized Second Harmonic Generation in MgO:PPLN. In: Schunemann, P.G. and Schepler, K.L., Eds., Nonlinear Frequency Generation and Conversion: Materials and Devices XVIII, SPIE, San Francisco, 4. >https://doi.org/10.1117/12.2510795
Zeng, X., Cui, S., Qian, J., et al. (2020) 10 W Low-Noise Green Laser Generation by the Single-Pass Frequency Doubling of a Single-Frequency Fiber Amplifier. Laser Physics, 30, Article ID: 075001. >https://doi.org/10.1088/1555-6611/ab908a
Dixneuf, C., Guiraud, G., Ye, H., et al. (2021) Robust 17 W Single-Pass Second-Harmonic-Generation at 532 nm and Relative-Intensity-Noise Investigation. Optics Letters, 46, 408-411. >https://doi.org/10.1364/OL.415532
Avdokhin, A.V., Gapontsev, V.P. and Grapov, Y.S. (2012) 170W Continuous-Wave Single-Frequency Single-Mode Green Fiber Laser. Fiber Lasers IX: Technology, Systems, and Applications, 8237, 19-20.
Meier, T., Willke, B. and Danzmann, K. (2010) Continuous-Wave Single-Frequency 532 nm Laser Source Emitting 130 W into the Fundamental Transversal Mode. Optics Letters, 35, 3742-3744. >https://doi.org/10.1364/OL.35.003742
许夏飞, 鲁燕华, 张雷, 等. 外腔谐振倍频8.7W连续单频绿光技术研究[J]. 中国激光, 2016, 43(11): 64-68.
Cui, S., Zhang, L., Jiang, H., et al. (2017) 33 W Continuous-Wave Single-Frequency Green Laser by Frequency Doubling of a Single-Mode YDFA. Chinese Optics Letters, 15, Article ID: 041402. >https://doi.org/10.3788/COL201715.041402
Zeng, X., Cui, S., Cheng, X., et al. (2020) Resonant Frequency Doubling of Phase-Modulation-Generated Few-Frequency Fiber Laser. Optics Letters, 45, 4944-4947. >https://doi.org/10.1364/OL.401348
Sudmeyer, T., Imai, Y., Masuda, H., et al. (2008) Efficient 2nd and 4th Harmonic Generation of a Single-Frequency, Continuous-Wave Fiber Amplifier. Optics Express, 16, 1546-1551. >https://doi.org/10.1364/OE.16.001546
Chen, H.Z., Liu, X.P., Wang, X.Q., et al. (2018) 30 W, Sub-KHz Frequency-Locked Laser at 532 nm. Optics Express, 26, 33756-33763. >https://doi.org/10.1364/OE.26.033756
Wang, X.K., Zhou, Z.Y., Li, M.D., et al. (2022) Low-Noise and High-Power Second Harmonic Generation of 532 nm Laser for Trapping Ultracold Atoms. Review of Scientific Instruments, 93, Article ID: 123002. >https://doi.org/10.1063/5.0117561