水杨酸是一种重要的植物激素,参与植物的生长、发育和防御反应。最近研究表明,水杨酸及其衍生物阿司匹林对环境微生物、肠道微生物和病原微生物也具有生物学功能。本文系统综述了水杨酸对多种微生物的影响,包括抑制某些微生物的生长和复制、影响微生物的代谢及毒力因子的表达、提高微生物对部分抗生素的敏感性、诱导某些微生物内在的多重抗生素耐药表型;同时对水杨酸的这些生物学功能背后的分子机制进行了探讨。这些研究结果有助于我们全面认识水杨酸的生物学功能,为更深入的研究提供理论指导。 Salicylic acid (SA) is an important plant hormone and is involved in plant growth, development and defense. Recent findings revealed that SA and its derivative such as Aspirin also have biological functions on environmental microbes, gut microbes and pathogenic microbes. This review summarized the effects of SA on these microbes, including inhibiting the growth and replication of certain microbes, affecting microbial metabolism and expression of virulence factors, increasing microbial sensitivity to certain antibiotics, and inducing the intrinsic multi-antibiotic resistance phenotype of certain microbes. This review also explored the molecular mechanisms underlying the SA-regulated functions. These findings represent a more comprehensive understanding of the role of SA and provide theoretical guidance for further research.
水杨酸,微生物,生物学功能,分子机制, Salicylic Acid
Microbes
Biological Function
Molecular Mechanism
摘要
The Biological Functions of Plant Hormone Salicylic Acid in Microbes and the Underlying Molecular Mechanisms
Lin Li, Kai Song, Ya-Wen He
Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University (SJTU), Shanghai
Received: Jan. 15th, 2024; accepted: Mar. 6th, 2024; published: Mar. 18th, 2024
ABSTRACT
Salicylic acid (SA) is an important plant hormone and is involved in plant growth, development and defense. Recent findings revealed that SA and its derivative such as Aspirin also have biological functions on environmental microbes, gut microbes and pathogenic microbes. This review summarized the effects of SA on these microbes, including inhibiting the growth and replication of certain microbes, affecting microbial metabolism and expression of virulence factors, increasing microbial sensitivity to certain antibiotics, and inducing the intrinsic multi-antibiotic resistance phenotype of certain microbes. This review also explored the molecular mechanisms underlying the SA-regulated functions. These findings represent a more comprehensive understanding of the role of SA and provide theoretical guidance for further research.
李 林,宋 凯,何亚文. 植物激素水杨酸在微生物中的功能与作用机制The Biological Functions of Plant Hormone Salicylic Acid in Microbes and the Underlying Molecular Mechanisms[J]. 微生物前沿, 2024, 13(01): 14-27. https://doi.org/10.12677/AMB.2024.131002
参考文献References
An, C. and Mou, Z. (2011) Salicylic Acid and Its Function in Plant Immunity. Journal of Integrative Plant Biology, 53, 412-428. https://doi.org/10.1111/j.1744-7909.2011.01043.x
Gong, Q., Wang, Y., He, L., et al. (2023) Molecular Basis of Methyl-Salicylate-Mediated Plant Airborne Defence. Nature, 622, 139-148. https://doi.org/10.1038/s41586-023-06533-3
Desborough, M.J.R. and Keeling, D.M. (2017) The Aspirin Story—from Willow to Wonder Drug. British Journal of Haematology, 177, 674-683. https://doi.org/10.1111/bjh.14520
Montinari, M.R., Minelli, S. and De Caterina, R. (2019) The First 3500 Years of Aspirin History from Its Roots—A Concise Summary. Vascular Pharmacology, 113, 1-8. https://doi.org/10.1016/j.vph.2018.10.008
Patrignani, P. and Patrono, C. (2016) Aspirin and Cancer. Journal of the American College of Cardiology, 68, 967-976. https://doi.org/10.1016/j.jacc.2016.05.083
Ding, P. and Ding, Y (2020) Stories of Salicylic Acid: A Plant Defense Hormone. Trends in Plant Science, 25, 549-565. https://doi.org/10.1016/j.tplants.2020.01.004
Wildermuth, M.C., Dewdney, J., Wu, G., et al. (2001) Isochorismate Synthase Is Required to Synthesize Salicylic Acid for Plant Defence. Nature, 414, 562-565. https://doi.org/10.1038/35107108
Rekhter, D., Lüdke, D., Ding, Y., et al. (2019) Isochorismate-Derived Biosynthesis of the Plant Stress Hormone Salicylic Acid. Science, 365, 498-502. https://doi.org/10.1126/science.aaw1720
Dempsey, D.A., Vlot, A.C., Wildermuth, M.C., et al. (2011) Salicylic Acid Biosynthesis and Metabolism. The Arabidopsis Book, 9, e0156. https://doi.org/10.1199/tab.0156
White, R.F. (1979) Acetylsalicylic Acid (Aspirin) Induces Resistance to Tobacco Mosaic Virus in Tobacco. Virology, 99, 410-412. https://doi.org/10.1016/0042-6822(79)90019-9
Kumar, S., Zavaliev, R., Wu, Q., et al. (2022) Structural Basis of NPR1 in Activating Plant Immunity. Nature, 605, 561-566. https://doi.org/10.1038/s41586-022-04699-w
Klessig, D.F., Choi, H.W. and Dempsey, D.A. (2018) Systemic Acquired Resistance and Salicylic Acid: Past, Present, and Future. Molecular Plant-Microbe Interactions, 31, 871-888. https://doi.org/10.1094/MPMI-03-18-0067-CR
Grobelak, A. and Hiller, J (2017) Bacterial Siderophores Promote Plant Growth: Screening of Catechol and Hydroxamate Siderophores. International Journal of Phytoremediation, 19, 825-833. https://doi.org/10.1080/15226514.2017.1290581
Mishra, A.K. and Baek, K.H. (2021) Salicylic Acid Biosynthesis and Metabolism: A Divergent Pathway for Plants and Bacteria. Biomolecules, 11, Article 705. https://doi.org/10.3390/biom11050705
Islam, M.N., Ali, M.S., Choi, S.J., et al. (2019) Salicylic Acid-Producing Endophytic Bacteria Increase Nicotine Accumulation and Resistance against Wildfire Disease in Tobacco Plants. Microorganisms, 8, Article 31. https://doi.org/10.3390/microorganisms8010031
Gross, H. and Loper, J.E. (2009) Genomics of Secondary Metabolite Production by Pseudomonas Spp. Natural Product Reports, 26, 1408-1446. https://doi.org/10.1039/b817075b
Serino, L., Reimmann, C., Baur, H., et al. (1995) Structural Genes for Salicylate Biosynthesis from Chorismate in Pseudomonas Aeruginosa. Molecular and General Genetics MGG, 249, 217-228. https://doi.org/10.1007/BF00290369
Ghssein, G. and Ezzeddine, Z. (2022) A Review of Pseudomonas Aeruginosa Metallophores: Pyoverdine, Pyochelin and Pseudopaline. Biology, 11, Article 1711. https://doi.org/10.3390/biology11121711
Bakker, P.A.H.M., Ran, L. and Mercado-Blanco, J. (2014) Rhizobacterial Salicylate Production Provokes Headaches! Plant and Soil, 382, 1-16. https://doi.org/10.1007/s11104-014-2102-0
Manos-Turvey, A., Bulloch, E.M.M., Rutledge, P.J., et al. (2010) Inhibition Studies of Mycobacterium Tuberculosis Salicylate Synthase (MbtI). ChemMedChem, 5, 1067-1079. https://doi.org/10.1002/cmdc.201000137
Kaduskar, R.D., Scala, G.D., Al Jabri, Z.J.H., et al. (2017) Promysalin Is a Salicylate-Containing Antimicrobial with a Cell-Membrane-Disrupting Mechanism of Action on Gram-Positive Bacteria. Scientific Reports, 7, Article No. 8861. https://doi.org/10.1038/s41598-017-07567-0
Chubiz, L.M. and Rao, C.V. (2011) Role of the Mar-Sox-Rob Regulon in Regulating Outer Membrane Porin Expression. Journal of Bacteriology, 193, 2252-2260. https://doi.org/10.1128/JB.01382-10
Cohen, S.P., Levy, S.B., Foulds, J., et al. (1993) Salicylate Induction of Antibiotic Resistance in Escherichia Coli: Activation of the Mar Operon and a Mar-Independent Pathway. Journal of Bacteriology, 175, 7856-7862. https://doi.org/10.1128/jb.175.24.7856-7862.1993
Aumercier, M., Murray, D.M. and Rosner, J.L. (1990) Potentiation of Susceptibility to Aminoglycosides by Salicylate in Escherichia Coli. Antimicrobial Agents and Chemotherapy, 34, 786-791. https://doi.org/10.1128/AAC.34.5.786
O’Toole, G., Kaplan, H.B. and Kolter, R. (2000) Biofilm Formation as Microbial Development. Annual Review of Microbiology, 54, 49-79. https://doi.org/10.1146/annurev.micro.54.1.49
Shirtliff, M.E., Mader, J.T. and Camper, A.K. (2002) Molecular Interactions in Biofilms. Cell Chemical Biology, 9, 859-871. https://doi.org/10.1016/S1074-5521(02)00198-9
Kunin, C.M., Hua, T.H. and Bakaletz, L.O. (1995) Effect of Salicylate on Expression of Flagella by Escherichia Coli and Proteus, Providencia, and Pseudomonas Spp. Infection and Immunity, 63, 1796-1799. https://doi.org/10.1128/iai.63.5.1796-1799.1995
Kang, G., Balasubramanian, K.A., Koshi, A.R., et al. (1998) Salicylate Inhibits Fimbriae Mediated HEp-2 Cell Adherence of and Haemagglutination by Enteroaggregative Escherichia Coli. FEMS Microbiology Letters, 166, 257-265. https://doi.org/10.1111/j.1574-6968.1998.tb13899.x
Vila, J. and Soto, S.M. (2012) Salicylate Increases the Expression of MarA and Reduces in Vitro Biofilm Formation in Uropathogenic Escherichia Coli by Decreasing Type 1 Fimbriae Expression. Virulence, 3, 280-285. https://doi.org/10.4161/viru.19205
Cattò, C., Grazioso, G., Dell’Orto, S., et al. (2017) The Response of Escherichia Coli Biofilm to Salicylic Acid. Biofouling, 33, 235-251. https://doi.org/10.1080/08927014.2017.1286649
Uhlich, G.A., Koppenhöfer, H.S., Gunther, N.W., et al. Control of Escherichia coli Serotype O157:H7 Motility and Biofilm Formation by Salicylate and Decanoate: MarA/SoxS/Rob and PchE Interactions. Applied and Environmental Microbiology, 88, e01891-21. https://doi.org/10.1128/AEM.01891-21
Zimmermann, P. and Curtis, N. (2017) Antimicrobial Effects of Antipyretics. Antimicrobial Agents and Chemotherapy, 61, e02268-16. https://doi.org/10.1128/AAC.02268-16
Wang, W.H., Wong, W.M., Dailidiene, D., et al. (2003) Aspirin Inhibits the Growth of Helicobacter Pylori and Enhances Its Susceptibility to Antimicrobial Agents. Gut, 52, 490-495. https://doi.org/10.1136/gut.52.4.490
Zhang, X.P., Wang, W.H., Tian, Y., et al. (2009) Aspirin Increases Susceptibility of Helicobacter Pylori to Metronidazole by Augmenting Endocellular Concentrations of Antimicrobials. World Journal of Gastroenterology, 15, 919-926. https://doi.org/10.3748/wjg.15.919
Bazyleu, A. and Kumar, A. (2014) Incubation Temperature, Osmolarity, and Salicylate Affect the Expression of Resistance-Nodulation-Division Efflux Pumps and Outer Membrane Porins in Acinetobacter BaumanniiATCC19606T. FEMS Microbiology Letters, 357, 136-143. https://doi.org/10.1111/1574-6968.12530
Sumita, Y. and Fukasawa, M. (1993) Transient Carbapenem Resistance Induced by Salicylate in Pseudomonas Aeruginosa Associated with Suppression of Outer Membrane Protein D2 Synthesis. Antimicrobial Agents and Chemotherapy, 37, 2743-2746. https://doi.org/10.1128/AAC.37.12.2743
Burns, J.L. and Clark, D.K. (1992) Salicylate-Inducible Antibiotic Resistance in Pseudomonas Cepacia Associated with Absence of a Pore-Forming Outer Membrane Protein. Antimicrobial Agents and Chemotherapy, 36, 2280-2285. https://doi.org/10.1128/AAC.36.10.2280
Domenico, P., Hopkins, T. and Cunha, B.A. (1990) The Effect of Sodium Salicylate on Antibiotic Susceptibility and Synergy in Klebsiella Pneumoniae. Journal of Antimicrobial Chemotherapy, 26, 343-351. https://doi.org/10.1093/jac/26.3.343
Randall, L.P. and Woodward, M.J. (2001) Multiple Antibiotic Resistance (Mar) Locus in Salmonella Enterica Serovar Typhimurium DT104. Applied and Environmental Microbiology, 67, 1190-1197. https://doi.org/10.1128/AEM.67.3.1190-1197.2001
Puig, M., Palomar, J., Lorén, J.G., et al. (1995) Modification by Analgesics of the Susceptibility to Antibiotics in Serratia Marcescens. New Microbiologica, 18, 385-390.
Shen, Z., Pu, X.Y. and Zhang, Q. (2011) Salicylate Functions as an Efflux Pump Inducer and Promotes the Emergence of Fluoroquinolone-Resistant Campylobacter Jejuni Mutants. Applied and Environmental Microbiology, 77, 7128- 7133. https://doi.org/10.1128/AEM.00763-11
Hannula, M. and Hänninen, M.L. (2008) Effect of Putative Efflux Pump Inhibitors and Inducers on the Antimicrobial Susceptibility of Campylobacter Jejuni and Campylobacter Coli. Journal of Medical Microbiology, 57, 851-855. https://doi.org/10.1099/jmm.0.47823-0
Randall, L.P., Ridley, A.M., Cooles, S.W., et al. (2003) Prevalence of Multiple Antibiotic Resistance in 443 Campylobacter Spp. Isolated from Humans and Animals. Journal of Antimicrobial Chemotherapy, 52, 507-510. https://doi.org/10.1093/jac/dkg379
Song, K., Chen, B., Cui, Y., et al. (2022) The Plant Defense Signal Salicylic Acid Activates the RpfB-Dependent Quorum Sensing Signal Turnover via Altering the Culture and Cytoplasmic PH in the Phytopathogen Xanthomonas Campestris. mBio, 13, e03644-21. https://doi.org/10.1128/mbio.03644-21
Liu, B., Zheng, D., Zhou, S., et al. (2021) VFDB 2022: A General Classification Scheme for Bacterial Virulence Factors. Nucleic Acids Research, 50, D912-D917. https://doi.org/10.1093/nar/gkab1107
Fuqua, W.C., Winans, S.C. and Greenberg, E.P. (1994) Quorum Sensing in Bacteria: The LuxR-LuxI Family of Cell Density-Responsive Transcriptional Regulators. Journal of Bacteriology, 176, 269-275. https://doi.org/10.1128/jb.176.2.269-275.1994
Zhou, L., Zhang, L.H., Cámara, M., et al. (2017) The DSF Family of Quorum Sensing Signals: Diversity, Biosynthesis, and Turnover. Trends in Microbiology, 25, 293-303. https://doi.org/10.1016/j.tim.2016.11.013
Papenfort, K. and Bassler, B. (2016) Quorum-Sensing Signal-Response Systems in Gram-Negative Bacteria. Nature Reviews Microbiology, 14, 576-588. https://doi.org/10.1038/nrmicro.2016.89
Ahmed, S.A.K.S., Rudden, M., Smyth, T.J., et al. (2019) Natural Quorum Sensing Inhibitors Effectively Downregulate Gene Expression of Pseudomonas Aeruginosa Virulence Factors. Applied Microbiology and Biotechnology, 103, 3521-3535. https://doi.org/10.1007/s00253-019-09618-0
Gerner, E., Almqvist, S., Thomsen, P., et al. (2021) Sodium Salicylate Influences the Pseudomonas Aeruginosa Biofilm Structure and Susceptibility Towards Silver. International Journal of Molecular Sciences, 22, Article 1060. https://doi.org/10.3390/ijms22031060
Da, M.L., Heroux, A.K. and Pakzad, Z. (2010) Salicylic Acid Attenuates Biofilm Formation But Not Swarming InPseudomonas Aeruginosa. Journal of Experimental Microbiology and Immunology, 14, 69-73.
Dotto, C., Lombarte Serrat, A., Ledesma, M., et al. (2021) Salicylic Acid Stabilizes Staphylococcus Aureus Biofilm by Impairing the Agr Quorum-Sensing System. Scientific Reports, 11, Article No. 2953. https://doi.org/10.1038/s41598-021-82308-y
Dotto, C., Lombarte Serrat, A., Cattelan, N., et al. (2017) The Active Component of Aspirin, Salicylic Acid, Promotes Staphylococcus Aureus Biofilm Formation in a PIA-Dependent Manner. Frontiers in Microbiology, 8, Article 4. https://doi.org/10.3389/fmicb.2017.00004
Kupferwasser, L.I., Yeaman, M.R., Nast, C.C., et al. (2003) Salicylic Acid Attenuates Virulence in Endovascular Infections by Targeting Global Regulatory Pathways in Staphylococcus Aureus. Journal of Clinical Investigation, 112, 222-233. https://doi.org/10.1172/JCI200316876
Farber, B.F. and Wolff, A.G. (1992) The Use of Nonsteroidal Antiinflammatory Drugs to Prevent Adherence of Staphylococcus Epidermidis to Medical Polymers. The Journal of Infectious Diseases, 166, 861-865. https://doi.org/10.1093/infdis/166.4.861
Muller, E., Al-Attar, J., Wolff, A.G., et al. (1998) Mechanism of Salicylate-Mediated Inhibition of Biofilm in Staphylococcus Epidermidis. The Journal of Infectious Diseases, 177, 501-503. https://doi.org/10.1086/517386
Lemos, M., Borges, A., Teodósio, J., et al. (2014) The Effects of Ferulic and Salicylic Acids on Bacillus Cereus and Pseudomonas Fluorescens Single- and Dual-Species Biofilms. International Biodeterioration & Biodegradation, 86, 42-51. https://doi.org/10.1016/j.ibiod.2013.06.011
Smith-Becker, J., Marois, E., Huguet, E.J., et al. (1998) Accumulation of Salicylic Acid and 4-Hydroxybenzoic Acid in Phloem Fluids of Cucumber During Systemic Acquired Resistance Is Preceded by a Transient Increase in Phenylalanine Ammonia-Lyase Activity in Petioles and Stems. Plant Physiology, 116, 231-238. https://doi.org/10.1104/pp.116.1.231
Yalpani, N., Leon, J., Lawton, M.A., et al. (1993) Pathway of Salicylic Acid Biosynthesis in Healthy and Virus-Inoculated Tobacco. Plant Physiology, 103, 315-321. https://doi.org/10.1104/pp.103.2.315
Bai, K., Xu, X., Wang, X., et al. (2023) Transcriptional Profiling of Xanthomonas Campestris pv. Campestris in Viable But Nonculturable State. BMC Genomics, 24, Article No. 105. https://doi.org/10.1186/s12864-023-09200-z
He, W., Luo, W., Zhou, J., et al. (2023) Pectobacterium carotovorum Subsp. Brasiliense Causing Soft Rot in Eggplant in Xinjiang, China. Microorganisms, 11, Article 2662. https://doi.org/10.3390/microorganisms11112662
Joshi, J.R., Burdman, S., Lipsky, A., et al. (2015) Plant Phenolic Acids Affect the Virulence of Pectobacterium Aroidearum and P. Carotovorum ssp. brasiliense via Quorum Sensing Regulation. Molecular Plant Pathology, 17, 487-500. https://doi.org/10.1111/mpp.12295
Joshi, J.R., Khazanov, N., Khadka, N., et al. (2020) Direct Binding of Salicylic Acid to Pectobacterium N-Acyl- Homoserine Lactone Synthase. ACS Chemical Biology, 15, 1883-1891. https://doi.org/10.1021/acschembio.0c00185
Hu, M., Li, J., Chen, R., et al. (2018) Dickeya Zeae Strains Isolated from Rice, Banana and Clivia Rot Plants Show Great Virulence Differentials. BMC Microbiology, 18, Article No. 136. https://doi.org/10.1186/s12866-018-1300-y
Hu, A., Hu, M., Chen, S., et al. (2022) Five Plant Natural Products Are Potential Type III Secretion System Inhibitors to Effectively Control Soft-Rot Disease Caused by Dickeya. Frontiers in Microbiology, 13, Article 839025. https://doi.org/10.3389/fmicb.2022.839025
Bourras, S., Rouxel, T. and Meyer, M (2015) Agrobacterium Tumefaciens Gene Transfer: How a Plant Pathogen Hacks the Nuclei of Plant and Nonplant Organisms. Phytopathology, 105, 1288-1301. https://doi.org/10.1094/PHYTO-12-14-0380-RVW
Yuan, Z.C., Edlind, M.P., Liu, P., et al. (2007) The Plant Signal Salicylic Acid Shuts Down Expression of the Vir Regulon and Activates Quormone-Quenching Genes in Agrobacterium. Proceedings of the National Academy of Sciences of the United States of America, 104, 11790-11795. https://doi.org/10.1073/pnas.0704866104
Wang, C., Ye, F., Chang, C., et al. (2019) Agrobacteria Reprogram Virulence Gene Expression by Controlled Release of Host-Conjugated Signals. Proceedings of the National Academy of Sciences of the United States of America, 116, 22331-22340. https://doi.org/10.1073/pnas.1903695116
(1983) New Facts about Fungi in Food and Feet. The Lancet, 322, 1124-1125. https://doi.org/10.1016/S0140-6736(83)90634-7
Ponde, N.O., Lortal, L., Ramage, G., et al. (2021) Candida albicans Biofilms and Polymicrobial Interactions. Critical Reviews in Microbiology, 47, 91-111. https://doi.org/10.1080/1040841X.2020.1843400
Alem, M.A.S. and Douglas, .LJ. (2004) Effects of Aspirin and Other Nonsteroidal Anti-Inflammatory Drugs on Biofilms and Planktonic Cells of Candida Albicans. Antimicrobial Agents and Chemotherapy, 48, 41-47. https://doi.org/10.1128/AAC.48.1.41-47.2004
Carvalho, A.P., Gursky, L.C., Rosa, R.T., et al. (2010) Non-Steroidal Anti-Inflammatory Drugs May Modulate the Protease Activity of Candida albicans. Microbial Pathogenesis, 49, 315-322. https://doi.org/10.1016/j.micpath.2010.07.007
Wang, K., Ngea, G.L.N., Godana, E.A., et al. (2023) Recent Advances in Penicillium expansum Infection Mechanisms and Current Methods in Controlling P. expansum in Postharvest Apples. Critical Reviews in Food Science and Nutrition, 63, 2598-2611. https://doi.org/10.1080/10408398.2021.1978384
Da Rocha Neto, A.C., Maraschin, M. and Di Piero, R.M. (2015) Antifungal Activity of Salicylic Acid against Penicillium expansum and Its Possible Mechanisms of Action. International Journal of Food Microbiology, 215, 64-70. https://doi.org/10.1016/j.ijfoodmicro.2015.08.018
Dean, R., Van, Kan J.A.L., Pretorius, Z.A., et al. (2012) The Top 10 Fungal Pathogens in Molecular Plant Pathology. Molecular Plant Pathology, 13, 414-430. https://doi.org/10.1111/j.1364-3703.2011.00783.x
Wu, H.S., Raza, W., Fan, J.Q., et al. (2008) Antibiotic Effect of Exogenously Applied Salicylic Acid on in Vitro Soilborne Pathogen, Fusarium oxysporum f.sp.niveum. Chemosphere, 74, 45-50. https://doi.org/10.1016/j.chemosphere.2008.09.027
Li, L., Zhu, T., Song, Y., et al. (2021) Salicylic Acid Fights against Fusarium Wilt by Inhibiting Target of Rapamycin Signaling Pathway in Fusarium oxysporum. Journal of Advanced Research, 39, 1-13. https://doi.org/10.1016/j.jare.2021.10.014
Amborabé, B.E., Fleurat-Lessard, P., Chollet, J.F., et al. (2002) Antifungal Effects of Salicylic Acid and Other Benzoic Acid Derivatives towards Eutypa lata: Structure-Activity Relationship. Plant Physiology and Biochemistry, 40, 1051-1060. https://doi.org/10.1016/S0981-9428(02)01470-5
Speir, E., Yu, Z.X., Ferrans, V.J., et al. (1998) Aspirin Attenuates Cytomegalovirus Infectivity and Gene Expression Mediated by Cyclooxygenase-2 in Coronary Artery Smooth Muscle Cells. Circulation Research, 83, 210-216. https://doi.org/10.1161/01.RES.83.2.210
Liao, C.L., Lin, Y.L., Wu, B.C., et al. (2001) Salicylates Inhibit Flavivirus Replication Independently of Blocking Nuclear Factor κ B Activation. Journal of Virology, 75, 7828-7839. https://doi.org/10.1128/JVI.75.17.7828-7839.2001
Mazur, I., Wurzer, W.J., Ehrhardt, C., et al. (2007) Acetylsalicylic Acid (ASA) Blocks Influenza Virus Propagation via Its NF-κB-Inhibiting Activity. Cellular Microbiology, 9, 1683-1694. https://doi.org/10.1111/j.1462-5822.2007.00902.x
Trujillo-Murillo, K., Rincón-Sánchez, A.R., Martínez-Rodríguez, H., et al. (2008) Acetylsalicylic Acid Inhibits Hepatitis C Virus RNA and Protein Expression through Cyclooxygenase 2 Signaling Pathways. Hepatology, 47, 1462-1472. https://doi.org/10.1002/hep.22215
Yin, P. and Zhang, L. (2016) Aspirin Inhibits Hepatitis C Virus Entry by Downregulating Claudin-1. Journal of Viral Hepatitis, 23, 62-64. https://doi.org/10.1111/jvh.12446
Rivas-Estilla, A.M., Bryan-Marrugo, O.L., Trujillo-Murillo, K., et al. (2012) Cu/Zn Superoxide Dismutase (SOD1) Induction Is Implicated in the Antioxidative and Antiviral Activity of Acetylsalicylic Acid in HCV-Expressing Cells. American Journal of Physiology-Gastrointestinal and Liver Physiology, 302, G1264-G1273. https://doi.org/10.1152/ajpgi.00237.2011
Ríos-Ibarra, C.P., Lozano-Sepulveda, S., Muñoz-Espinosa, L., et al. (2014) Downregulation of Inducible Nitric Oxide Synthase (INOS) Expression Is Implicated in the Antiviral Activity of Acetylsalicylic Acid in HCV-Expressing Cells. Archives of Virology, 159, 3321-3328. https://doi.org/10.1007/s00705-014-2201-5