大型高炉长寿化是实现炼铁工艺节能、减排、平衡成本与高产量的重要手段,而影响高炉寿命最重要的因素则是高炉炉缸炭砖的破损情况。本文对我国某4000 m3高炉炉缸炭砖的侵蚀行为进行了详细的分析,研究了炭砖的化学成分和物理性能的变化,讨论了残余炭砖热面的微观结构组成,得出了炉缸炭砖的侵蚀机理。结果表明,该4000 m3高炉炉缸炭砖的侵蚀在高度和圆周方向上较不均匀,在高度方向上,出铁口中心线以下2.1 m处的炭砖最为严重,圆周方向侵蚀最严重处则主要发生在铁口正下方与靠近铁口周围区域,炉缸侵蚀形貌整体“象脚形”。使用近15年后的高炉炭砖耐压强度大大降低,灰分含量明显增加,炭砖热面处富集有大量氧化锌与氧化钾及氧化钠。在炉缸炭砖砖缝间和炭砖脆化层内部发现有大量的锌沉积,有效证明了锌蒸气通过在炭砖表面的沉积和渗入是促进炭砖脆性层形成、降低炭砖抗铁水侵蚀能力、增加炉缸炭砖破裂的风险的重要原因。 The prolonged operation of large-scale blast furnaces is an important means to achieve energy saving, emission reduction, cost balance, and high productivity in ironmaking processes. The most critical factor affecting the lifespan of a blast furnace is the damage to the hearth carbon bricks. In this paper, a detailed analysis of the erosion behavior of the hearth carbon bricks in a 4000 m3blast furnace in China was conducted. The changes in the chemical composition and physical properties of the carbon bricks were studied, and the micro structural composition of the residual carbon bricks on the hot face was discussed, leading to the establishment of the erosion mechanism of the hearth carbon bricks. The results indicate that the erosion of the hearth carbon bricks in the 4000 m3blast furnace is uneven in both the height and circumference directions. In the height direction, the most severe erosion occurs at a distance of 2.1 m below the centerline of the iron tapping hole. In the circumference direction, the most severe erosion mainly occurs directly below the iron tapping hole and in the surrounding area. The overall erosion morphology of the hearth resembles an “elephant foot” shape. After nearly 15 years of usage, the compressive strength of the blast furnace carbon bricks significantly decreased, while the ash content increased noticeably. A large amount of zinc deposition was found between the cracks of the carbon bricks in the furnace and inside the brittle layer of the carbon bricks, effectively proving that the deposition and infiltration of zinc vapor on the surface of the carbon bricks are important reasons for promoting the formation of the brittle layer of the carbon bricks, reducing the resistance of the carbon bricks to molten iron erosion, and increasing the risk of fracture of the furnace carbon bricks.
大型高炉长寿化是实现炼铁工艺节能、减排、平衡成本与高产量的重要手段,而影响高炉寿命最重要的因素则是高炉炉缸炭砖的破损情况。本文对我国某4000 m3高炉炉缸炭砖的侵蚀行为进行了详细的分析,研究了炭砖的化学成分和物理性能的变化,讨论了残余炭砖热面的微观结构组成,得出了炉缸炭砖的侵蚀机理。结果表明,该4000 m3高炉炉缸炭砖的侵蚀在高度和圆周方向上较不均匀,在高度方向上,出铁口中心线以下2.1 m处的炭砖最为严重,圆周方向侵蚀最严重处则主要发生在铁口正下方与靠近铁口周围区域,炉缸侵蚀形貌整体“象脚形”。使用近15年后的高炉炭砖耐压强度大大降低,灰分含量明显增加,炭砖热面处富集有大量氧化锌与氧化钾及氧化钠。在炉缸炭砖砖缝间和炭砖脆化层内部发现有大量的锌沉积,有效证明了锌蒸气通过在炭砖表面的沉积和渗入是促进炭砖脆性层形成、降低炭砖抗铁水侵蚀能力、增加炉缸炭砖破裂的风险的重要原因。
大型高炉,炉缸,炭砖,破损调查,侵蚀机理
Xiaodong Sun, Baoliang Wen, Ao Mi, Zhenghong Hu, Chunyin Zhang, Jialong Yang*
School of Metallurgical Engineering, Anhui University of Technology, Ma’anshan Anhui
Received: Dec. 13th, 2023; accepted: Mar. 8th, 2024; published: Mar. 18th, 2024
The prolonged operation of large-scale blast furnaces is an important means to achieve energy saving, emission reduction, cost balance, and high productivity in ironmaking processes. The most critical factor affecting the lifespan of a blast furnace is the damage to the hearth carbon bricks. In this paper, a detailed analysis of the erosion behavior of the hearth carbon bricks in a 4000 m3blast furnace in China was conducted. The changes in the chemical composition and physical properties of the carbon bricks were studied, and the micro structural composition of the residual carbon bricks on the hot face was discussed, leading to the establishment of the erosion mechanism of the hearth carbon bricks. The results indicate that the erosion of the hearth carbon bricks in the 4000 m3blast furnace is uneven in both the height and circumference directions. In the height direction, the most severe erosion occurs at a distance of 2.1 m below the centerline of the iron tapping hole. In the circumference direction, the most severe erosion mainly occurs directly below the iron tapping hole and in the surrounding area. The overall erosion morphology of the hearth resembles an “elephant foot” shape. After nearly 15 years of usage, the compressive strength of the blast furnace carbon bricks significantly decreased, while the ash content increased noticeably. A large amount of zinc deposition was found between the cracks of the carbon bricks in the furnace and inside the brittle layer of the carbon bricks, effectively proving that the deposition and infiltration of zinc vapor on the surface of the carbon bricks are important reasons for promoting the formation of the brittle layer of the carbon bricks, reducing the resistance of the carbon bricks to molten iron erosion, and increasing the risk of fracture of the furnace carbon bricks.
Keywords:Large-Scale Blast Furnace, Hearth, Carbon Bricks, Damage Investigation, Erosion Mechanism
Copyright © 2024 by author(s) and beplay安卓登录
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/
钢铁在现代社会中扮演着重要角色,对于经济发展、基础设施建设和科技进步都具有不可替代的作用。2022年世界钢铁年产量达到了18.5亿吨,预测到2050年,钢铁年产量则将达到25~30亿吨。在中国,高炉炼铁工艺仍是生产炼钢和铸造用铁水的重要方法,电炉钢产量则仅占粗钢总产量的10%,尽管伴随着工业水平的发展,目前正在开发新的替代工艺,然而这些工艺的经济效益和生产率还不足以与高炉竞争 [
4000 m3级大型高炉是高炉炼铁先进技术的集中体现,世界范围内共有57座4000 m3级高炉在运行,目前4000 m3级高炉生产的铁水产量占中国铁水总产量的5.5%。大型高炉可以进行连续、稳定的高负荷运行,是实现炼铁工艺节能、减排、平衡成本与高产量的重要手段,而大型高炉的长寿化则是体现高炉大型化优势的最核心内容之一 [
高炉大修是对高炉侵蚀进行宏观认识的重要机遇和有效手段 [
本文首先对我国4000 m3高炉大修过程中炭砖的侵蚀形貌进行了分析,随后利用从炉缸炭砖不同高度采集的样品,研究了炭砖的物理性能和化学成分的变化,最后基于炉缸炭砖宏观形貌、化学成分组成、光学显微分析、SEM-EDS分析结果探讨了高炉的侵蚀机理。
高炉炉缸的设计结构如图1所示,此次调查的高炉的实际炉容为4060 m3,共36个风口和4个铁口,炉缸石墨炭砖共19层,1层为高导热炭砖,2~4层为半石墨炭砖,5-14层为微孔炭砖,15~19层为半石墨炭砖,炭砖有陶瓷杯壁。铁口区域在13~19层,风口与铁口对应关系为36号~1号,7号~8号,18号~19号,25号~26号风口对应1、2、3、4号铁口。炉缸中心设有中心砖。
图1. 高炉炉缸设计图
该4000 m3高炉大修采用了“大型高炉分段推移快速大修技术”炉缸进行了整体出,铁口下炭砖保存完好。为明确高炉4个铁口的侵蚀情况,对铁口下炉缸炭砖纵向与周向剖面炭砖侵蚀情况进行了调查研究,高炉出铁口纵向侵蚀线如图2所示,8层炭砖高炉炭砖周向侵蚀线图3所示。炭砖侵蚀主要集中在炉缸侧壁6至10层,8层炭砖受侵蚀最为严重,靠炉底炭砖受侵蚀较小,炉缸炭砖整体侵蚀形貌呈现“象脚形” [
图2. 高炉出铁口纵向侵蚀线
图3. 高炉8层炭砖周向侵蚀线
为研究高炉炉缸炭砖热面脆化层与冷面的化学成分变化,对6至10层侵蚀最严重处取得的炭砖芯样热面脆化层与冷面进行了元素分析,元素分析结果如图4所示,可见,热面与冷面炭砖中SiO2、C、Ti、Fe含量变化不大,而K2O、Na2O、Zn含量则明显增加,其中Zn含量的增加最为明显。
图4. 炭砖芯样元素分析结果
为研究6至10层侵蚀最严重处高炉炉缸冷热面炭砖的物理性能变化,根据国标GB/T2997-2015检测了冷热面炭砖的显气孔率、根据国标GB/T5072-2008检测了冷热面炭砖的抗压强度,利用德国NETZSCH LFA467激光导热仪测量了冷热面炭砖的导热系数。检测结果如图5所示,使用前后炭砖体积密度降低不明显、灰分增加、导热系数降低、显气孔率显著提高、耐压强度明显降低。
图5. 高炉使用前后残余炭砖热面物理性能分析
热面炭砖沉研究样本取自8层5#风口炭砖热表面,并尽可能使其保持其原始形状如图6(a)所示,使用蔡司光学显微镜观察了炭砖脆化层的显微结构,使用JSM-6510LV对脆化层进行了微观上的形貌观测及元素分析。可以发现炉缸炭砖热面存在有大量白色沉积物,其沉积不光在表面更在炭砖内部形成了裂纹如图6(b)所示,更渗入进了炭砖内部如图6(e)所示(图中银白色为ZnO),使用扫描电子显微镜(SEM)观察脆化层表面的微观形貌,如图6(c)和图6(d)所示,可以发现炭砖白面白色沉积物为点状结构,结合炭砖热面元素分析结果如图6(f)所示,白色点状结构元素组成主要为C与Zn和O,这证明了Zn会附着在炭砖表面并通过炭砖表面裂纹渗入至炭砖内部,从而引起炭砖体积膨胀与炭砖结构脆化和物理性能的下降。
图6. 炉缸炭砖热面显微分析与SEM-EDS分析
炉缸炭砖砖缝间的锌沉积形成机理如图7所示,在对炉缸炭砖进行逐层解剖过程时,发现在炉缸炭砖间存在有大量的锌沉积,集中在炭砖上下层(图7(c))与同层(图7(d))的间隙处,一般炉缸炭砖砌筑砖缝要求小于1 mm而这种锌的沉积则在很大程度上破坏了炭砖的砌筑结构 [
锌(Zn)单质熔点419℃,沸点907℃,固体氧化锌[ZnO(s)]熔点为1975℃,沸点2360℃。进入高炉炉内的锌主要为铁酸盐(ZnO·Fe2O3)、硅酸盐(2ZnO∙SiO2)、氧化锌(ZnO)、及硫化锌(ZnS),高炉内部锌的还原和氧化反应可以用以下表达式来描述:
ZnO ( s ) + CO ( g ) = Zn ( g ) + CO 2 ( g ) T > 1320 ˚ C (1)
ZnO ( s ) + C ( s ) = Zn ( g ) + CO ( g ) T > 950 ˚ C (2)
Zn ( g ) + CO ( g ) = ZnO ( s ) + C ( s ) T < 950 ˚ C (3)
ZnO ( l ) + C ( s ) = Zn ( g ) + CO ( g ) T > 870 ˚ C (4)
ZnO ( l ) + Fe ( l ) = Zn ( g ) + FeO T > 1020 ˚ C (5)
图7. 炉缸炭砖砖缝间的锌沉积形成机理
由于固体氧化锌[ZnO(s)]熔点较高,其经过软熔带后才会形成液体氧化锌[ZnO(l)],部分液体氧化锌[ZnO(l)]会通过软熔带沿冷却壁下行至风口区域,与风口组合砖衬进行反应被还原成锌蒸气[Zn(g)],部分液体氧化锌[ZnO(l)]在滴落过程遇到焦炭[C(s)]、铁液[Fe(l)]、一氧化碳[CO(g)]时则会在炉腹区域被还原成锌蒸气[Zn(g)],锌蒸气[Zn(g)]侵入风口组合砖缝,冷凝成固体锌[Zn(s)],并聚集生长,在砖缝中的沉积会引起风口组合砖体积膨胀,产生内应力,从而导致风口上翘和变形。
W.Z. Luo [
炉缸炭砖脆化层形成机理分析如图8所示,炭砖脆化层形成位置如图8(a)所示,从与铁水接触侧至炉壳,炭砖结构可分为:1. 溶损层、2. 保护层、3. 凝铁层、4. 脆化层、5. 微变层、6. 完好层。熔融铁水渗透进入炭砖孔隙并使碳砖发生溶解,至1150℃等温线时铁水凝固如图8(c),进一步增加了炭砖裂纹的形成,随着碳溶损的进行,1150℃等温线向冷侧移动,铁水溶蚀炭砖的方式以渐进的方式发生。
铁水炉缸中存在锌蒸气[Zn(g)],这些锌蒸气[Zn(g)]能够渗入炭砖微裂纹中并在靠近800℃等温线时成为液体锌[Zn(l)],这增加了炭砖的脆性,并形成了疏松多孔的脆化层结构,液体锌[Zn(l)]在经过500℃等温线后凝固成固体锌[Zn(s)],进一步加剧了微裂纹的扩展和炭砖的破坏 [
图8. 炉缸炭砖脆化层形成机理
1) 该4000 m3高炉炉缸炭砖的侵蚀较不均匀,在高度方向上,出铁口中心线以下2.1 m处的炭砖最为严重,圆周方向侵蚀最严重处则主要发生在靠近铁口周围区域,炉缸侵蚀形貌整体为“象脚形”。
2) 使用近15年后的高炉炭砖耐压强度大大降低,灰分含量明显增加,炭砖热面处富集有大量氧化锌与氧化钾及氧化钠。
3) 锌蒸气通过在炭砖表面的沉积和渗入是促进炭砖脆性层形成、降低炭砖抗铁水侵蚀能力、增加炉缸炭砖破裂的风险的重要原因。
孙晓东,温宝良,米 澳,胡正洪,张纯银,杨佳龙. 某4000 m3级高炉炭砖侵蚀机理研究A Study on the Erosion Mechanism of Carbon Bricks in a 4000 m3Blast Furnace[J]. 冶金工程, 2024, 11(01): 18-26. https://doi.org/10.12677/MEng.2024.111003
https://doi.org/10.1002/srin.201200041
https://doi.org/10.2355/isijinternational.ISIJINT-2019-029
https://doi.org/10.2355/isijinternational.ISIJINT-2019-142
https://doi.org/10.1002/srin.202200266
https://doi.org/10.1007/BF02650077
https://doi.org/10.2355/isijinternational.49.470
https://doi.org/10.1080/00084433.2019.1617508
https://doi.org/10.2355/isijinternational.43.321