近年来,肥胖已成为严重的全球性公共卫生问题。肠道菌群被认为是调节宿主健康的主要因素,更被认为是参与维持能量稳态和预防治疗肥胖的关键因素。在这里,我们将报告肥胖的流行现状和影响因素、肠道菌群的组成和疾病的联系、肠道菌群代谢产物与肥胖的联系以及益生元褐藻寡糖与肥胖的联系。益生元能够被肠道菌群所利用,增加有益菌减少有害菌改善肥胖及其相关代谢紊乱。但尚未有研究表明益生元褐藻寡糖是否能够调控色氨酸代谢通路改善肥胖相关代谢综合征,这为其提供了研究思路。我们希望这能为褐藻寡糖开发利用提供理论基础和灵感。 In recent years, obesity has become a serious global public health problem. Gut microbiota is considered to be a major factor in regulating host health, and is also considered to be a key factor involved in main-taining energy homeostasis and preventing and treating obesity. Here, we report the prevalence status and influencing factors of obesity, the composition of gut microbiota and the association of disease, the relationship between the gut microbiome-derived metabolites and obesity, and the association of prebiotics, such as alginate oligosaccharide, with obesity. Prebiotics can be utilized by gut microbiota, increasing beneficial bacteria and reducing harmful bacteria to improve obesity and related metabolic disorders. However, no studies have shown whether alginate oligosaccharide can regulate tryptophan metabolic pathway to improve obesity-related metabolic syndrome, which provides research ideas. And we hope that this review will provide theoretical basis and inspiration for the development and utilization of algin oligosaccharides.
近年来,肥胖已成为严重的全球性公共卫生问题。肠道菌群被认为是调节宿主健康的主要因素,更被认为是参与维持能量稳态和预防治疗肥胖的关键因素。在这里,我们将报告肥胖的流行现状和影响因素、肠道菌群的组成和疾病的联系、肠道菌群代谢产物与肥胖的联系以及益生元褐藻寡糖与肥胖的联系。益生元能够被肠道菌群所利用,增加有益菌减少有害菌改善肥胖及其相关代谢紊乱。但尚未有研究表明益生元褐藻寡糖是否能够调控色氨酸代谢通路改善肥胖相关代谢综合征,这为其提供了研究思路。我们希望这能为褐藻寡糖开发利用提供理论基础和灵感。
褐藻寡糖,肠道菌群,色氨酸代谢,肥胖
—Alginate Oligosaccharide and Obesity
Zhentao Yao, Xianrong Xu
School of Public Health, Hangzhou Normal University, Hangzhou Zhejiang
Received: Jan. 4th, 2024; accepted: Feb. 22nd, 2024; published: Feb. 29th, 2024
In recent years, obesity has become a serious global public health problem. Gut microbiota is considered to be a major factor in regulating host health, and is also considered to be a key factor involved in maintaining energy homeostasis and preventing and treating obesity. Here, we report the prevalence status and influencing factors of obesity, the composition of gut microbiota and the association of disease, the relationship between the gut microbiome-derived metabolites and obesity, and the association of prebiotics, such as alginate oligosaccharide, with obesity. Prebiotics can be utilized by gut microbiota, increasing beneficial bacteria and reducing harmful bacteria to improve obesity and related metabolic disorders. However, no studies have shown whether alginate oligosaccharide can regulate tryptophan metabolic pathway to improve obesity-related metabolic syndrome, which provides research ideas. And we hope that this review will provide theoretical basis and inspiration for the development and utilization of algin oligosaccharides.
Keywords:Alginate Oligosaccharides, Gut Microbiota, Tryptophan Metabolic, Obesity
Copyright © 2024 by author(s) and beplay安卓登录
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/
肥胖是指可能损害健康的不正常或过度的脂肪积累,具有复杂性和多因素的特点 [
影响因素 | 描述 |
---|---|
遗传因素 | 单基因 [
|
表观遗传 | DNA甲基化 [
|
缺乏运动 | 体育活动减少 [
|
能量摄入过高 | 能量摄入过高引起肥胖 [
|
睡眠不足 | 睡眠调节葡萄糖代谢和内分泌功能 [
|
药物 | 激素水平、食欲增加和葡萄糖转化脂肪 [
|
内分泌干扰物 | 干扰内分泌激素 [
|
肠道菌群 | 肠道菌群失调 [
|
表1. 肥胖影响因素
肠道菌群在出生时就开始定植存在,在1~3年后趋于稳定,早期婴儿的肠道菌群结构与分娩前、分娩过程、分娩后环境密切相关 [
疾病 | 菌群变化描述 |
---|---|
肠道疾病 | |
溃疡性结肠炎 [
|
Clostridium symbiosum增多; Verrucomicrobia, Leuconostocaceae, Ruminococcaceae, Lachnospiraceae减少; |
克罗恩病 [
|
G. moniliformis, A. brassicicola, C. neoformans, Candida spp.增多; Synergistetes, Verrucomicrobia减少; |
肠易激综合症 [
|
Enterococcaceae, Yersiniaceae, Streptococcus sp.增多; |
结直肠癌 [
|
Aspergillus rambellii, Cordyceps sp. RAO-2017, Erysiphe pulchra, Moniliophthora perniciosa, Sphaerulina musiva, Phytophthora capsici增多; Aspergillus kawachii减少; |
乳糜泻 [
|
L. bacterium, D. invisus, Parabacteroides sp.增多; B. vulgatus_str_3775_S_1080 branch, B.unformis_ATCC_8492减少; |
肠外疾病 | |
肥胖 [
|
Firmicutes增多; Akkermansia muciniphila, Faecalibacterium prausnitzii, Bacteroides, Osillibacter, Alistipes减少; |
二型糖尿病 [
|
Dallella增多; Bifidobacteria, Akkermansia减少; |
非酒精性脂肪肝 [
|
Ruminococcus, F. prausnitzii, Coprococcus减少; |
心血管疾病 [
|
Prevotella, Tyzzerella增多; Alloprevotella, Catenibacterium减少; |
高血压 [
|
Prevotella增多; Faecalibacterium, Oscillibacter, Roseburia, Bifidobacterium, Coprococcus Butyrivibrio减少; |
动脉粥样硬化 [
|
Enterobacteriaceae and Streptococcus spp.增多; |
帕金森 [
|
Akkermansia, Catabacter, Lactobacillaceae, Akkermansiaceae增多; Roseburia, Faecalibacterium, LachnospiraceaeND3007, Lachnospiraceae减少; |
阿尔茨海默症 [
|
Ruminococcaceae, Enterococcaceae, Lactobacillaceae增多; Lanchnospiraceae, Bacteroidaceae, Veillonellaceae减少 |
自闭症谱系障碍 [
|
Lactobacillus, Bacteroides, Desulfovibrio, and Clostridium增多; Bifidobacterium, Blautia, Dialister, Prevotella, Veillonella, Turicibacter减少; |
肌萎缩侧索硬化 [
|
Lachnospira增多; Oscillibacter, Anaerostipes, Lachnospiraceae减少; |
焦虑抑郁 [
|
Coprococcus and Dialister减少; |
肿瘤 [
|
Pseudoxanthomona, Saccharopolsypora, Streptomyces增多 |
皮肤病 [
|
Akkermansia, Ruminoccocus减少 |
表2. 肠道菌群失调和肠道肠外疾病
肠道菌群代谢产物是肠道菌群产生的代谢物质,能够维持个体肠道和系统免疫稳态,在宿主健康和生理功能中发挥了重要作用。从目前研究来看,肠道菌群代谢产物以短链脂肪酸、胆汁酸、色氨酸作为主要的特定代谢物质。在这里,我们将介绍短链脂肪酸、胆汁酸、色氨酸与肥胖的关系。
短链脂肪酸(Short-chain fatty acids, SCFAs)是指6个碳原子以下的有机脂肪酸,是未消化碳水化合物(如膳食纤维和益生元)在结肠中发酵的主要产物,对能量代谢、肠道稳态和免疫调节具有巨大作用 [
胆汁酸(bile acid, BA)是一种两性分子,是肝细胞中产生的胆固醇衍生代谢物,在调节脂质、葡萄糖和能量代谢方面具有重要作用,与肥胖相关的代谢性疾病与胆汁酸稳态失调有关 [
色氨酸是一种必需的芳香族氨基酸,人体无法自行合成,必须从食物中获取。被人体摄入后大部分在小肠中被消化吸收,还有一部分能到达结肠被肠道菌群所利用作为大量微生物和宿主代谢物的生物合成前体。色氨酸影响多种病理生理功能,包括新陈代谢、炎症反应、氧化应激、免疫反应、肠道稳态等 [
主要分为3条途径(图1):1) 通过IDO1作用的免疫和上皮细胞的犬尿氨酸通路;2) 通过TpH1作用的肠嗜铬细胞的5-羟色胺途径;3) 通过肠道菌群作用的吲哚通路。
犬尿氨酸通路是最主要的色氨酸代谢通路,约90%的色氨酸通过犬尿氨酸通路降解为犬尿氨酸,犬尿烯酸,喹啉酸,2-吡啶甲酸,烟酰胺腺嘌呤二核苷酸 [
约3%的色氨酸经由TpH合成5-羟色胺和褪黑激素,5-羟色胺通过TpH2在大脑中产生,但是超过90%的5-羟色胺由肠道产生,作为胃肠道信号分子,影响肠道蠕动,肠源性血清素也能诱导食欲和饱腹感,在空腹时会上升,刺激脂肪组织的分解和肝细胞的糖异生 [
图1. 色氨酸代谢通路
4%~6%的色氨酸可以被肠道菌群直接利用代谢为吲哚及其衍生物,例如色胺、吲哚-3-乙酸、3-甲基吲哚、吲哚-3-甲醛、吲哚-3-乳酸和吲哚-3丙酸。肠道菌群中的生孢梭菌和瘤胃球菌属将色氨酸转化为色胺,拟杆菌和梭菌将色氨酸转化为吲哚-3-乙酸和3-甲级吲哚,乳杆菌将色氨酸转化为吲哚-3-醛,拟杆、梭菌和双歧菌将色氨酸转化为吲哚-3-乳酸,梭菌和链球菌将色氨酸转化为吲哚-3-丙酸 [
肠道菌群可以将未吸收的色氨酸转化为吲哚及其衍生物,肠道菌群产生的吲哚可以刺激肠内分泌细胞分泌GLP-1,诱导胰岛素释放,延迟胃排空增加饱腹感,通过减少胃动力改善肥胖 [
益生元概念于1995年由Glenn Gibson和Marcel Roberfroid首次提出被定义为“一种不易消化的食物成分,通过选择性地刺激结肠中的一种或少数几种细菌的生长或活动,对宿主产生有益影响”,并于2016年12月进行更新了益生元定义,“一种由宿主微生物选择性利用的底物,具有健康益处” [
益生元有很多种,包括果糖、半乳寡糖、淀粉和葡萄糖衍生的寡糖,其他寡糖,非碳水化合物寡糖,其中最为广泛的就是寡糖 [
褐藻寡糖是海藻酸盐降解得到的具有不同比例的聚合程度(DP)线性寡聚物,由β-D-甘露酸(M)和α-L-谷氨酸(G)组成,并由β-1,4-糖苷键连接,且相比于海藻酸盐,通过酸水解、氧化降解和酶降解产生的褐藻寡糖具有更低的分子量、粘度、溶解度和生物利用度 [
我们发现肥胖已经成为了全球公共卫生问题,并正处于迅速恶化发展阶段。虽然肥胖的病因是多因素的,是复杂的,但最近大量研究表明,肠道菌群及其代谢产物与肥胖密切相关。肠道菌群紊乱易导致肥胖和其相关疾病的发生发展。在益生元的干预下能一定程度改善菌群紊乱,这为我们提供了预防或治疗肥胖的机会。褐藻寡糖作为一种益生元,可以被利用降解,进而调节肠道菌群及其代谢产物短链脂肪酸,增加有益菌,减少有害菌。因此,补充褐藻寡糖可能是治疗肥胖及相关代谢疾病的方法。最近研究表明褐藻寡糖主要通过调节肠道菌群和激活AMPK信号通路发挥抗肥胖作用,然而通过肠道菌群调节的研究还在少数,缺乏褐藻寡糖与肠道菌群代谢产物色氨酸的相关研究,且研究尚未涉及人群临床实验。尽管存在这些问题,但褐藻寡糖具有巨大的研究意义和开发、应用价值。在未来的研究中,研究人员可以集中于褐藻寡糖与肠道菌群,尤其是褐藻寡糖是否能够调控色氨酸代谢通路改善肥胖相关代谢综合征,以提供更多的机制研究并应用到人群进行临床实验验证,使褐藻寡糖应用更具有可靠性和说服性。
姚震涛,徐贤荣. 褐藻寡糖与肠道菌群在肥胖中的研究进展 Research Progress on Alginate Oligosaccharide and Gut Microbiota in Obesity[J]. 食品与营养科学, 2024, 13(01): 143-154. https://doi.org/10.12677/HJFNS.2024.131018
https://doi.org/10.1007/s13679-023-00495-3
https://doi.org/10.1016/S0140-6736(16)30054-X
https://doi.org/10.1111/dom.15238
https://data.worldobesity.org/publications/?cat=19
https://doi.org/10.1210/er.2006-0032
https://doi.org/10.1016/S0140-6736(11)60813-1
https://doi.org/10.1038/nature05488
https://doi.org/10.1186/s12263-021-00703-6
https://doi.org/10.3389/fnut.2023.1291853
https://doi.org/10.1038/4441022a
https://doi.org/10.1038/nature05414
https://doi.org/10.12938/bmfh.2019-031
https://doi.org/10.1016/j.cmet.2022.12.013
https://doi.org/10.3389/fendo.2022.1025706
https://doi.org/10.3390/cells11182903
https://doi.org/10.3390/nu12113255
https://doi.org/10.1016/j.ando.2021.12.003
https://doi.org/10.3389/fgene.2018.00179
https://doi.org/10.1159/000445061
https://doi.org/10.1111/joim.13496
https://doi.org/10.1016/bs.pmbts.2023.01.003
https://doi.org/10.1021/acs.jafc.3c03042
https://doi.org/10.1016/j.cpcardiol.2023.102007
https://doi.org/10.1001/jamainternmed.2018.2933
https://doi.org/10.3945/ajcn.2009.28595
https://doi.org/10.1016/j.nut.2017.01.012
https://doi.org/10.1177/1559827614544437
https://doi.org/10.1038/ncomms12724
https://doi.org/10.2147/NDT.S113099
https://doi.org/10.1155/2021/5767306
https://doi.org/10.1530/EC-20-0578
https://doi.org/10.3390/ijerph13080765
https://doi.org/10.1016/j.biopha.2022.112678
https://doi.org/10.1038/s41591-021-01399-2
https://doi.org/10.1007/s13238-018-0546-3
https://doi.org/10.1128/MMBR.00036-17
https://doi.org/10.1007/s00253-022-12089-5
https://doi.org/10.1016/j.tem.2022.01.002
https://doi.org/10.1080/19490976.2018.1465157
https://doi.org/10.1136/gutjnl-2021-326789
https://doi.org/10.1080/19490976.2020.1725220
https://doi.org/10.1097/MCG.0000000000000035
https://doi.org/10.1016/j.cell.2020.08.007
https://doi.org/10.1053/j.gastro.2022.06.038
https://doi.org/10.1073/pnas.2020322118
https://doi.org/10.1007/s13679-019-00352-2
https://doi.org/10.1038/nm.4358
https://doi.org/10.1016/j.chom.2019.07.004
https://doi.org/10.1038/s41598-020-62224-3
https://doi.org/10.1038/s41598-018-19753-9
https://doi.org/10.3390/metabo11080493
https://doi.org/10.1186/s40168-016-0222-x
https://doi.org/10.1038/s41467-017-00900-1
https://doi.org/10.1159/000518147
https://doi.org/10.3233/JAD-180176
https://doi.org/10.1038/s41398-019-0389-6
https://doi.org/10.3389/fmicb.2016.01479
https://doi.org/10.1038/s41564-018-0337-x
https://doi.org/10.1016/j.cell.2019.07.008
https://doi.org/10.1080/19490976.2022.2096995
https://doi.org/10.3920/BM2020.0057
https://doi.org/10.1038/ncomms2852
https://doi.org/10.1016/B978-0-12-800100-4.00003-9
https://doi.org/10.1038/nature18309
https://doi.org/10.3390/molecules26030682
https://doi.org/10.1136/gutjnl-2014-307913
https://doi.org/10.1113/JP272613
https://doi.org/10.1177/0004563218817798
https://doi.org/10.1038/s41579-022-00805-x
https://doi.org/10.1084/jem.20171965
https://doi.org/10.1016/j.ebiom.2020.102766
https://doi.org/10.1016/j.lfs.2021.120152
https://doi.org/10.1016/j.chom.2018.05.003
https://doi.org/10.3389/fcimb.2018.00013
https://doi.org/10.1016/j.bbr.2014.07.027
https://doi.org/10.1089/met.2017.0097
https://doi.org/10.1016/j.cmet.2018.07.001
https://doi.org/10.1038/s41591-018-0060-4
https://doi.org/10.1016/j.cmet.2012.09.014
https://doi.org/10.1111/obr.13210
https://doi.org/10.1038/s41467-018-05470-4
https://doi.org/10.1080/19490976.2021.1997296
https://doi.org/10.1038/s41467-023-40552-y
https://doi.org/10.3390/nu11092062
https://doi.org/10.1016/j.biochi.2022.12.014
https://doi.org/10.3390/cells10071622
https://doi.org/10.1186/s40168-021-01205-8
https://doi.org/10.1186/s12866-020-02023-y
https://doi.org/10.1016/j.cmet.2023.04.015
https://doi.org/10.3389/fimmu.2020.00557
https://doi.org/10.1136/gutjnl-2021-324053
https://doi.org/10.3390/nu13103509
https://doi.org/10.1111/ijpo.270
https://doi.org/10.1111/febs.16470
https://doi.org/10.1038/nrgastro.2017.75
https://doi.org/10.1038/s41575-019-0173-3
https://doi.org/10.3390/foods8030092
https://doi.org/10.1016/j.carbpol.2021.118408
https://doi.org/10.3390/md18030144
https://doi.org/10.1039/C9FO00982E
https://doi.org/10.3390/md17090540
https://doi.org/10.1039/C9FO02857A