国内生产总值(GDP)是国民经济核算的重要指标,用于衡量一个国家或地区的经济状况。传统的GDP统计数据提供了地区宏观经济状况的数值信息,但无法反映地区内部的空间差异。为了更好地理解地区经济差异和经济状况,本文利用NPP-VIIRS夜间灯光数据,采用相关和回归分析,建立了综合灯光指数(CNLI)与青海省GDP之间的关系模型。通过该模型,对青海省GDP的空间分布进行了初步模拟,并采用线性调整的方法对各像元的GDP模拟值进行了修正,最终生成了青海省2016~2020年的GDP空间密度图。结果表明,该模型在对青海省各市级行政区的GDP进行模拟时表现出较高的准确度,有力地展现了青海省的经济分布和增长状况。夜间灯光数据与青海省各地区的经济活动水平呈现显著关联,展现出一定的空间分布规律。具体而言,在空间分布上,五年间青海省的GDP密度分布格局为东部高于西部,西南部最低,并以西宁市和海东市为聚集中心,向四周逐渐呈放射状递减。尤其是西宁市表现出市区经济占主导地位的特点,其主城区的经济发展水平明显高于其他区域。研究结果可为青海省未来的区域发展规划和政策制定提供重要参考。 Gross Domestic Product (GDP) is an important indicator used to measure the economic conditions of a country or region. Traditional GDP statistics provide numerical information on the macroeconomic situation of regions, but they fail to reflect internal spatial variations. To better understand regional economic disparities and conditions, this study utilized NPP-VIIRS nighttime light data and employed correlation and regression analysis to establish a relationship model between the Composite Nighttime Light Index (CNLI) and GDP in Qinghai Province. Through this model, the spatial distribution of GDP in Qinghai Province was preliminarily simulated, and linear adjustments were made to the simulated GDP values of each pixel. This resulted in the generation of a spatial density map of GDP for the years 2016~2020 in Qinghai Province. The results demonstrated that the model exhibited a high level of accuracy in simulating the GDP of various municipal-level administrative regions in Qinghai Province, effectively depicting the economic distribution and growth. Nighttime light data showed a significant correlation with the level of economic activity in different regions of Qinghai Province, revealing certain spatial distribution patterns. Specifically, in terms of spatial distribution, the density of GDP in Qinghai Province over the five years was higher in the eastern region compared to the western region, with the southwestern part being the lowest. Xining City and Haidong City emerged as the focal points of economic concentration, with a gradual radial decrease in GDP density towards the surrounding areas. Particularly, Xining City displayed the characteristic of the dominance of the urban area’s economy, with significantly higher levels of economic development compared to other regions. The research findings can provide important references for future regional development planning and policy formulation in Qinghai Province.
国内生产总值(GDP)是国民经济核算的重要指标,用于衡量一个国家或地区的经济状况。传统的GDP统计数据提供了地区宏观经济状况的数值信息,但无法反映地区内部的空间差异。为了更好地理解地区经济差异和经济状况,本文利用NPP-VIIRS夜间灯光数据,采用相关和回归分析,建立了综合灯光指数(CNLI)与青海省GDP之间的关系模型。通过该模型,对青海省GDP的空间分布进行了初步模拟,并采用线性调整的方法对各像元的GDP模拟值进行了修正,最终生成了青海省2016~2020年的GDP空间密度图。结果表明,该模型在对青海省各市级行政区的GDP进行模拟时表现出较高的准确度,有力地展现了青海省的经济分布和增长状况。夜间灯光数据与青海省各地区的经济活动水平呈现显著关联,展现出一定的空间分布规律。具体而言,在空间分布上,五年间青海省的GDP密度分布格局为东部高于西部,西南部最低,并以西宁市和海东市为聚集中心,向四周逐渐呈放射状递减。尤其是西宁市表现出市区经济占主导地位的特点,其主城区的经济发展水平明显高于其他区域。研究结果可为青海省未来的区域发展规划和政策制定提供重要参考。
夜间灯光,NPP-VIIRS,青海省,GDP空间化
Chunlin Pu
Faculty of Geography, Yunnan Normal University, Kunming Yunnan
Received: Dec. 21st, 2023; accepted: Feb. 23rd, 2024; published: Feb. 29th, 2024
Gross Domestic Product (GDP) is an important indicator used to measure the economic conditions of a country or region. Traditional GDP statistics provide numerical information on the macroeconomic situation of regions, but they fail to reflect internal spatial variations. To better understand regional economic disparities and conditions, this study utilized NPP-VIIRS nighttime light data and employed correlation and regression analysis to establish a relationship model between the Composite Nighttime Light Index (CNLI) and GDP in Qinghai Province. Through this model, the spatial distribution of GDP in Qinghai Province was preliminarily simulated, and linear adjustments were made to the simulated GDP values of each pixel. This resulted in the generation of a spatial density map of GDP for the years 2016~2020 in Qinghai Province. The results demonstrated that the model exhibited a high level of accuracy in simulating the GDP of various municipal-level administrative regions in Qinghai Province, effectively depicting the economic distribution and growth. Nighttime light data showed a significant correlation with the level of economic activity in different regions of Qinghai Province, revealing certain spatial distribution patterns. Specifically, in terms of spatial distribution, the density of GDP in Qinghai Province over the five years was higher in the eastern region compared to the western region, with the southwestern part being the lowest. Xining City and Haidong City emerged as the focal points of economic concentration, with a gradual radial decrease in GDP density towards the surrounding areas. Particularly, Xining City displayed the characteristic of the dominance of the urban area’s economy, with significantly higher levels of economic development compared to other regions. The research findings can provide important references for future regional development planning and policy formulation in Qinghai Province.
Keywords:Nighttime Light, NPP-VIIRS, Qinghai Province, Spatialization of GDP
Copyright © 2024 by author(s) and beplay安卓登录
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/
国内生产总值(GDP)作为衡量一个国家或地区在特定时期内生产活动最终结果的指标,常用于评估其经济实力和发展状况 [
夜间灯光遥感的起源可以追溯到20世纪70年代,最初是通过美国国防气象卫星计划的卫星(DMSP)上搭载的OLS传感器获取的夜间灯光数据。除此之外,近年来发布的Suomi-NPPVIIRS、SAC-C、SAC-D、EROS-D和国际空间站等卫星也提供了夜间灯光数据 [
近几十年来,学者们利用夜间灯光数据进行了多方面的研究,形成了一个相对完善的研究体系。Elvidge等 [
本文主要通过美国国家极轨合作仪件–可见红外成像辐射计套件(NPP-VIIRS)夜间灯光数据建立其与青海省GDP统计数据间的回归模型,生成青海省2016-2020年的GDP空间密度图,从而反映出青海省各市级行政区内部GDP的空间分布及增长情况,为未来青海省经济社会发展政策的制定提供辅助信息,以便实现精准施策的目标。此外,本研究探讨了夜间灯光数据在区域经济研究中的应用潜力,并提出了一些未来进一步深入研究的可能方向,以期为基于遥感数据的区域经济分析提供参考和指导。
青海省,简称“青”,是中华人民共和国省级行政区,省会西宁。位于中国西北内陆,青海介于北纬31˚36′~39˚19′,东经89˚35′~103˚04′之间,北部和东部同甘肃相接,西北部与新疆相邻,南部和西南部与西藏毗连,东南部与四川接壤,位于四大地理区划的青藏地区。青海省地形地貌多样,包括高原、山地、丘陵、盆地等地貌类型。这里的地势高低不平,是中国的天然水塔,蕴藏着丰富的水资源。气候类型多样,以高原季风气候为主,有高寒缺氧、寒冷干燥的特点。夏季短而凉爽,冬季漫长而寒冷,是典型的高寒气候区域。
青海省总面积72.23万平方公里,辖2个地级市、6个自治州,青海省行政区划图如图1所示。2021全年全省完成生产总值3346.63亿元,比上年同期增长5.7%,两年平均增长3.6%。其中,第一产业增加值352.65亿元,同比增长4.5%,两年平均增长4.5%;第二产业增加值1332.61亿元,同比增长6.5%,两年平均增长4.5%;第三产业增加值1661.37亿元,同比增长5.4%,两年平均增长2.7%。截至2021年末,常住人口594万人,比上年末增加1万人。按城乡分,城镇常住人口362.5万人,增加6.2万人,占常住人口的比重(常住人口城镇化率)为61.02%,提高0.94个百分点。
夜间灯光数据来源于NPP-VIIRS数据集(https://www.ngdc.noaa.gov/eog/viirs/download_dnb_composites.html)。NPP-VIIRS传感器数据集来源于美国国家极轨道伙伴卫星(National Polar-orbiting Partnership Satellite)上的Visible Infrared Imaging Radiometer Suite (可见光红外成像辐射计套件)。该传感器是由美国国家航空航天局(NASA)和国家海洋和大气管理局(NOAA)联合开发和运营的。青海省各市级行政区的GDP统计数据来源于青海省统计局各年度的《青海省统计年鉴》(http://tjj.qinghai.gov.cn/tjData/qhtjnj/)。青海省市界以及区市行政区划数据来源于中科院地理所《资源环境与数据中心》网站(https://www.resdc.cn/data.aspx?DATAID=284)。
图1. 青海省行政区划图
在青海省GDP空间化过程中,首先需要对对各年的NPP-VIIRS夜间灯光数据进行预处理操作,包括年度数据合成、连续性校正等步骤,以确保数据的准确性和一致性。然后利用夜间灯光数据、GDP统计数据以及其他辅助数据,模拟生成青海省的GDP空间化密度图。最后,基于获得的GDP密度图,结合其他数据进行青海省GDP的特征分析。青海省GDP空间化技术路线如图2所示。
图2. 青海省GDP空间化技术路线图
研究考虑到NPP-VIIRS夜间灯光影像在原始坐标系下存在纬度增大影像网格缩小的问题 [
为了去除影像中的负值和极高值的影响,并合成研究区域各年的年度影像数据,本研究采用了阈值法和均值法 [
D N i = { 0 , D N i < 0 D N i , D N i ≥ 0 (1)
为了消除合成年度影像中极高值的影响,通常会将经济发展最为显著的区域作为参考。在本研究中,选定了青海省经济发展相对较好的西宁市,利用该地区夜间灯光数据中的最高值作为最大灯光阈值(DNM),将合成后的年度影像中高于该阈值的灯光值判定为极高值,并采用该阈值进行替代处理。利用ArcGIS栅格计算器,按照公式(2)对图像数据进行处理,以有效消除合成年度影像中潜在的极高值对研究结果的影响。
D N i = { D N i , x ≤ D N M D N M , x > D N M (2)
上述公式中DNi表示各市州行政区域内第i级像元灰度值;DNM为最大灰度阈值。通过上述处理后即可得到青海省各年度NPP-VIIRS夜间灯光影像。
本文选用2016~2020年连续5年夜间灯光数据参与青海省的GDP空间化模拟,连续年份的分析结果便于比较数据之间的差异性。夜间灯光指数可以反映区域的经济发展程度和城市化进展,是对城市综合经济发展状况的数值表现形式。已有研究表明,综合夜间灯光指数CNLI (Compounded Night Light Index)与GDP间具有显著的相关性 [
CNLI = I × S (3)
其中:
I = 1 N L × D N M × ∑ i = 1 D N M ( D N i × n i ) (4)
S = A r e a N A r e a (5)
上述公式中,DNi和ni分别表示各市级行政区域内第i级像元灰度值及该灰度级像元个数;DNM为最大灰度值阈值;NL、AreaN分别为各市级行政区内DN值位于1至DNM之间的像元总数和所占的面积;Area为各市级行政区的总面积。
计算得到青海省2016~2020年间各年度的CNLI值,并利用SPSS软件对该值与各市级行政区的GDP统计数据进行了相关和回归分析。通过分析结果得到了青海省各年度GDP与CNLI的回归模型(详见表1)。研究结果显示,NPP-VIIRS夜间灯光影像与GDP之间呈现出较好的指数回归关系,表明夜间灯光影像与GDP之间存在着较高的相关性。
年份 | 回归方程 | R2 |
---|---|---|
2016 | y = 80.901e2E−06x | R2= 0.8604 |
2017 | y = 100.12e2E−06x | R2= 0.7097 |
2018 | y = 81.295e2E−06x | R2= 0.8005 |
2019 | y = 90.829e2E−06x | R2= 0.7902 |
2020 | y = 94.12e2E−06x | R2= 0.8323 |
表1. 基于NPP-VIIRS影像的青海省GDP与CNLI回归模型
为了纠正模拟的GDP空间分布的误差,我们可以利用公式(6)进行线性纠正,在纠正过程中,将预测值和实际统计值相结合,对研究区内各像元模拟的GDP值进行调整,从而更准确地反映每个像元的GDP情况,并提高模拟结果的准确性与真实性。纠正公式如下:
G D P T = G D P j ( G D P t / G D P a l l ) (6)
式中,GDPT为线性纠正过的GDP值;GDPj为单个像元j预测出的GDP值;GDPt为统计数据的GDP值;GDPall为整体区域预测的GDP值。
将纠正后的GDP值直接求和即可得到该地区的GDP总值,生成的2016~2020年青海省GDP密度图如图3~7所示。从时间维度上看,2016~2020年青海省GDP空间化成果中的像元值总体呈上升态势,但经济增长量趋势缓慢;从空间分布上看,五年间青海省的GDP密度呈现出东部高于西部的趋势,而西南部地区的GDP密度最低。特别是在西宁市和海东市这两个地区,经济活动明显聚集,且以这两个地方为中心,向周边地区逐渐减少。经济相对发达的西宁市、海东市、海西州的夜间灯光值最高,其中GDP密度最高的是西宁市,它是青海省的省会和经济中心,具有较大的经济规模,包括商业、金融、服务业、制造业等。其次是海东市,该市具有较好的地理位置和交通优势,有利于经济发展和贸易往来。
图3. 2016年青海省GDP空间密度图
图4. 2017年青海省GDP空间密度图
图5. 2018年青海省GDP空间密度图
图6. 2019年青海省GDP空间密度图
图7. 2020年青海省GDP空间密度图
本研究基于NPP-VIIRS夜间灯光数据与青海省2016~2020年的GDP统计数据的综合分析,构建了GDP空间化模型,揭示了青海省在这五年间GDP密度的空间分布情况。该模型在各市级行政区对GDP的模拟上准确度较高,有力地展示了青海省的经济分布和增长情况。青海省GDP空间化的像元值总体呈现上升趋势,尽管经济增长的速度相对缓慢,但该趋势仍反映了青海省经济的整体发展态势。从空间分布上看,青海省的GDP密度呈现出东部高于西部的趋势,而西南部地区的GDP密度相对较低。特别是西宁市和海东市这两个地区,经济活动明显集中,并以这两个地区为中心向周边地区逐渐呈放射状递减。西宁市作为青海省的省会和经济中心,具有较大的经济规模,其主城区的经济发展水平显著高于其他区域,这表明西宁市在青海省的经济中起着主导作用。这项研究结果为了解青海省经济格局的空间演变和各区域经济增长趋势提供了强有力的支持,对于未来的区域发展规划和政策制定具有重要参考价值。
夜间灯光数据在区域经济研究中具有广泛的应用潜力。这些数据源于遥感观测,能够反映地表光照变化,间接呈现人类经济活动的空间分布和密度。以下是夜间灯光数据可能在区域经济研究中的一些应用:
① 经济活动评估:作为人类活动的指标之一,夜间灯光数据能提供区域内经济活动水平的评估。这种数据有助于了解经济活动的分布和密度,帮助评估城市化程度和经济发展情况。
② 城市规划与管理:夜间灯光数据可用于城市规划和资源管理。分析城市区域的灯光强度与分布有助于确定城市扩张方向、城市规模及发展趋势,指导城市基础设施和资源的合理配置。
③ 区域经济比较分析:夜间灯光数据提供了不同地区经济活动的视觉指标,有利于区域之间的比较分析。比较不同地区的灯光密度和分布能揭示经济发展水平差异,促进区域间的合作和发展。
④ 经济增长趋势分析:夜间灯光数据可用于预测和分析经济增长趋势。通过长期监测灯光变化,可以发现经济增长的周期性和趋势性,为未来发展提供决策支持。
⑤ 灾害影响评估:灾害事件后,夜间灯光数据可以反映受灾区的恢复情况。通过对比前后灯光数据的变化,可评估自然灾害对经济的影响,指导灾后重建和恢复。
尽管夜间灯光数据在区域经济研究中有着巨大的潜力,但该数据仅是区域经济研究的辅助指标之一,还需结合其他经济指标和多种数据源进行综合分析,避免片面性结论或误判。同时,对数据的精确性和解释性也需要谨慎评估,确保研究的可信度和准确性。
浦春林. 基于NPP-VIIRS夜间灯光数据的青海省GDP空间化研究Spatialization of GDP in Qinghai Province Based on NPP-VIIRS Nighttime Light Data[J]. 地理科学研究, 2024, 13(01): 47-56. https://doi.org/10.12677/GSER.2024.131006
https://doi.org/10.1080/014311697218485
https://doi.org/10.3390/rs9111165
https://doi.org/10.3390/en20300595
https://doi.org/10.3390/rs6021705