高分子链间通过非共价交联作用能够形成超分子聚合物网络(SPNs),这类材料具有动态可逆性、刺激响应性、自愈性和形状记忆等优点,目前已在高分子科学、超分子化学、自适应材料和生物医学材料等诸多领域取得广泛应用。基于大环主体的主客体相互作用是构筑超分子聚合物网络的一类重要非共价驱动力,本文按照大环主体的种类介绍了不同类型主–客体作用交联的超分子聚合物网络的构筑策略,以及它们的刺激响应组装行为和功能调控相关研究进展。同时,讨论了该领域面临的问题和挑战,为发展其他新颖超分子聚合物网络材料提供参考。 The noncovalent crosslinking of polymer chains can lead to the formation of supramolecular poly-mer networks (SPNs) featuring with unique dynamic, stimuli-responsive, self-healing and shape memory etc, which have enabled widespread applications in polymer science, supramolecular chemistry, adaptive materials as well as biomedical materials. The macrocyclic host based host-guest interactions are an important class of non covalent driving force for constructing SPNs. This review mainly summarize the representative construction strategies for SPNs crosslinked by different host-guest interactions according to the types of macrocyclic hosts, as well as the research progress related to their stimuli-responsive assembly behavior and functional regulation. Mean-while, the challenges and perspectives will be discussed to provide valuable references for the de-velopment of other novel SPNs materials.
The noncovalent crosslinking of polymer chains can lead to the formation of supramolecular polymer networks (SPNs) featuring with unique dynamic, stimuli-responsive, self-healing and shape memory etc, which have enabled widespread applications in polymer science, supramolecular chemistry, adaptive materials as well as biomedical materials. The macrocyclic host based host-guest interactions are an important class of non covalent driving force for constructing SPNs. This review mainly summarize the representative construction strategies for SPNs crosslinked by different host-guest interactions according to the types of macrocyclic hosts, as well as the research progress related to their stimuli-responsive assembly behavior and functional regulation. Meanwhile, the challenges and perspectives will be discussed to provide valuable references for the development of other novel SPNs materials.
李文婷,刘傲冉. 基于大环分子主–客体相互作用的超分子聚合物网络研究进展The Review Focuses on the Supramolecular Polymer Network Formed by Macrocyclic Molecules through Host-Guest Interactions[J]. 分析化学进展, 2024, 14(01): 7-20. https://doi.org/10.12677/AAC.2024.141002
参考文献References
Brunsveld, L., Folmer, B.J.B., Meijer, E.W. and Sijbesma, R.P. (2001) Supramolecular Polymers. Chemical Reviews, 101, 4071-4098. https://doi.org/10.1021/cr990125q
De Greef, T.F.A., Smulders, M.M.J., Wolffs, M., Schenning, A.P.H.J., Sijbesma, R.P. and Meijer, E.W. (2009) Supramolecular Polymerization. Chemical Reviews, 109, 5687-5754. https://doi.org/10.1021/cr900181u
Fox, J.D. and Rowan, S.J. (2009) Supramolecular Polymerizations and Main-Chain Supramolecular Polymers. Macromolecules, 42, 6823-6835. https://doi.org/10.1021/ma901144t
Seiffert, S. and Sprakel, J. (2012) Physical Chemistry of Supramolecular Polymer Networks. Chemical Society Reviews, 41, 909-930. https://doi.org/10.1039/C1CS15191F
Besenius, P. and Cormack, P.A.G. (2012) Supramolecular Chemistry in Poly-mer Networks. Wiley, Hoboken. https://doi.org/10.1002/9780470661345.smc140
Voorhaar, L. and Hoogenboom, R. (2016) Supramolecular Polymer Networks: Hydrogels and Bulk Materials. Chemical Society Reviews, 45, 4013-4031. https://doi.org/10.1039/C6CS00130K
Wang, R., Sing, M.K., Avery, R.K., Souza, B.S., Kim, M. and Olsen, B.D. (2016) Classical Challenges in the Physical Chemistry of Polymer Networks and the Design of New Materials. Accounts of Chemical Research, 49, 2786-2795. https://doi.org/10.1021/acs.accounts.6b00454
Herbst, F., Dohler, D., Michael, P. and Binder, W.H. (2013) Self-Healing Polymers via Supramolecular Forces. Macromolecular Rapid Communications, 34, 203-220. https://doi.org/10.1002/marc.201200675
An, S.Y., Arunbabu, D., Noh, S.M., Song, Y.K. and Oh, J.K. (2015) Re-cent Strategies to Develop Self-Healable Crosslinked Polymeric Networks. Chemical Communications, 51, 13058-13070. https://doi.org/10.1039/C5CC04531B
Zhang, G., Zhao, Q., Zou, W., Luo, Y. and Xie, T. (2016) Unusual Aspects of Supramolecular Networks: Plasticity to Elasticity, Ultrasoft Shape Memory, and Dynamic Mechanical Properties. Advanced Functional Materials, 26, 931-937. https://doi.org/10.1002/adfm.201504028
Jiang, Z.C., Xiao, Y.Y., Kang, Y., Pan, M., Li, B.J. and Zhang, S. (2017) Shape Memory Polymers Based on Supramolecular Interactions. ACS Applied Materials & Interfaces, 9, 20276-20293. https://doi.org/10.1021/acsami.7b03624
Wu, X., Wang, J., Huang, J. and Yang, S. (2019) Robust, Stretchable, and Self Healable Supramolecular Elastomers Synergistically Cross-Linked by Hydrogen Bonds and Coordination Bonds. ACS Ap-plied Materials & Interfaces, 11, 7387-7396. https://doi.org/10.1021/acsami.8b20303
Liao, X., Chen, G. and Jiang, M. (2013) Hydrogels Locked by Molecular Recognition Aiming at Responsiveness and Functionality. Polymer Chemistry, 4, 1733-1745. https://doi.org/10.1039/C2PY20693E
Hart, L.R., Harries, J.L., Greenland, B.W., Colquhoun, H.M. and Hayes, W. (2013) Healable Supramolecular Polymers. Polymer Chemistry, 4, 4860-4870. https://doi.org/10.1039/c3py00081h
Kaitz, J.A., Possanza, C.M., Song, Y., Diesendruck, C.E., Spiering, A.J.H., Meijer, E.W. and Moore, J.S. (2014) Depolymerizable, Adaptive Supramolecular Polymer Nanoparticles and Networks. Poly-mer Chemistry, 5, 3788-3794. https://doi.org/10.1039/C3PY01690K
Saboktakin, M.R. and Tabatabaei, R.M. (2015) Supramolecular Hydrogelsas Drug Delivery Systems. International Journal of Biological Macromolecules, 75, 426-436. https://doi.org/10.1016/j.ijbiomac.2015.02.006
Callari, M., Thomas, D.S. and Stenzel, M.H. (2016) The Dual-Role of Pt(iv) Complexes as Active Drug and Crosslinker for Micelles Based on β-Cyclodextrin Grafted Polymer. Journal of Materials Chemistry B, 4, 2114-2123. https://doi.org/10.1039/C5TB02429C
Heinzmann, C., Weder, C. and de Espinosa, L.M. (2016) Supramolecular Polymer Adhesives: Advanced Materials Inspired by Nature. Chemical Society Reviews, 45, 342-358. https://doi.org/10.1039/C5CS00477B
Amabilino, D.B., Smith, D.K. and Steed, J.W. (2017) Supramolecular Materi-als. Chemical Society Reviews, 46, 2404-2420. https://doi.org/10.1039/C7CS00163K
Lu, W., Le, X., Zhang, J., Huang, Y. and Chen, T. (2017) Supramolecular Shape Memory Hydrogels: A New Bridge between Stimuli-Responsive Poly-mers and Supramolecular Chemistry. Chemical Society Reviews, 46, 1284-1294. https://doi.org/10.1039/C6CS00754F
Webber, M.J. and Langer, R. (2017) Drug Delivery by Supramolecular Design. Chemical Society Reviews, 46, 6600-6620. https://doi.org/10.1039/C7CS00391A
Lowenberg, C., Balk, M., Wischke, C., Behl, M. and Lendlein, A. (2017) Shape-Memory Hydrogels: Evolution of Structural Principles to Enable Shape Switching of Hydrophilic Polymer Networks. Accounts of Chemical Research, 50, 723-732. https://doi.org/10.1021/acs.accounts.6b00584
Huynh, T.P., Sonar, P. and Haick, H. (2017) Advanced Materials for Use in Soft Self-Healing Devices. Advanced Materials, 29, Article ID: 1604973. https://doi.org/10.1002/adma.201604973
Zhao, R., Zhao, T., Jiang, X., Liu, X., Shi, D., Liu, C., Yang, S. and Chen, E.-Q. (2017) Thermoplastic High Strain Multishape Memory Polymer: Side-Chain Polynorbornene with Columnar Liquid Crystalline Phase. Advanced Materials, 29, Article ID: 1605908. https://doi.org/10.1002/adma.201605908
Huang, G., Li, F., Zhao, X., Ma, Y., Li, Y., Lin, M., Jin, G., Lu, T.J., Genin, G.M. and Xu, F. (2017) Functional and Biomimetic Materials for Engineering of the Three-Dimensional Cell Microenvironment. Chemical Reviews, 117, 12764-12850. https://doi.org/10.1021/acs.chemrev.7b00094
Yan, X., Liu, Z., Zhang, Q., Lopez, J., Wang, H., Wu, H.C., Niu, S., Yan, H., Wang, S., Lei, T., Li, J., Qi, D., Huang, P., Huang, J., Zhang, Y., Wang, Y., Li, G., Tok, J. B., Chen, X. and Bao, Z. (2018) Quadruple H-Bonding Cross-Linked Supramolecular Polymeric Materials as Substrates for Stretchable, Antitearing, and Self-Healable Thin Film Electrodes. Journal of the American Chemical Society, 140, 5280-5289. https://doi.org/10.1021/jacs.8b01682
Dahlke, J., Tepper, R., Geitner, R., Zechel, S., Vitz, J., Kampes, R., Popp, J., Hager, M.D. and Schubert, U.S. (2018) A Healing Ionomer Crosslinked by a Bis-Bidentate Halogen Bond Linker: A Route to Hard and Healable Coatings. Polymer Chemistry, 9, 2193-2197. https://doi.org/10.1039/C8PY00149A
Zhou, B., Jo, Y.H., Wang, R., He, D., Zhou, X., Xie, X. and Xue, Z. (2019) Self-Healing Composite Polymer Electrolyte Formed via Su-pramolecular Networks for High-Performance Lithium-Ion Batteries. Journal of Materials Chemistry A, 7, 10354-10362. https://doi.org/10.1039/C9TA01214A
Schäfer, S. and Kickelbick, G. (2018) Double Reversible Networks: Im-provement of Self-Healing in Hybrid Materials via Combination of Diels-Alder Cross-Linking and Hydrogen Bonds. Macro-molecules, 51, 6099-6110. https://doi.org/10.1021/acs.macromol.8b00601
Hua, Z., Wilks, T.R., Keogh, R., Herwig, G., Stavros, V.G. and O’Reilly, R.K. (2018) Entrapment and Rigidification of Adenine by a Photo Cross-Linked Thymine Network Leads to Fluores-cent Polymer Nanoparticles. Chemistry of Materials, 30, 1408-1416. https://doi.org/10.1021/acs.chemmater.7b05206
Chang, X., Geng, Y., Cao, H., Zhou, J., Tian, Y., Shan, G., Bao, Y., Wu, Z.L. and Pan, P. (2018) Dual-Crosslink Physical Hydrogels with High Toughness Based on Synergistic Hydrogen Bond-ing and Hydrophobic Interactions. Macromolecular Rapid Communications, 39, e1700806. https://doi.org/10.1002/marc.201700806
Wang, Y.J., Zhang, X.N., Song, Y., Zhao, Y., Chen, L., Su, F., Li, L., Wu, Z.L. and Zheng, Q. (2019) Ultrastiff and Tough Supramolecular Hydrogels with a Dense and Robust Hydrogen Bond Network. Chemistry of Materials, 31, 1430-1440. https://doi.org/10.1021/acs.chemmater.8b05262
McKee, J.R., Appel, E.A., Seitsonen, J., Kontturi, E., Scherman, O.A. and Ikkala, O. (2014) Healable, Stable and Stiff Hydrogels: Combining Conflicting Properties Using Dynamic and Selective Three-Component Recognition with Reinforcing Cellulose Nanorods. Advanced Func-tional Materials, 24, 2706-2713. https://doi.org/10.1002/adfm.201303699
Ma, X. and Zhao, Y. (2015) Biomedical Applications of Supramolecular Systems Based on Host-Guest Interactions. Chemical Reviews, 115, 7794-7839. https://doi.org/10.1021/cr500392w
Yang, X., Yu, H., Wang, L., Tong, R., Akram, M., Chen, Y. and Zhai, X. (2015) Self-Healing Polymer Materials Constructed by Macrocycle-Based Host-Guest Interactions. Soft Matter, 11, 1242-1252. https://doi.org/10.1039/C4SM02372B
Yu, Z., Zhang, J., Coulston, R.J., Parker, R.M., Biedermann, F., Liu, X., Scherman, O.A. and Abell, C. (2015) Supramolecular Hydrogel Microcapsules via Cucurbit[8]uril Host-Guest Interactions with Triggered and UV-Controlled Molecular Permeability. Chemical Science, 6, 4929-4933. https://doi.org/10.1039/C5SC01440A
Fu, T., Li, Z., Zhang, Z., Zhang, X. and Wang, F. (2017) Supramolecular Cross-Linking and Gelation of Conjugated Polycarbazoles via Hydrogen Bond Assisted Molecular Tweezer/Guest Complexa-tion. Macromolecules, 50, 7517-7525. https://doi.org/10.1021/acs.macromol.7b01149
Xiao, T., Xu, L., Zhou, L., Sun, X.-Q., Lin, C. and Wang, L. (2019) DynamicHydrogels Mediated by Macrocyclic Host-Guest Interactions. Journal of Materials Chemistry B, 7, 1526-1540. https://doi.org/10.1039/C8TB02339E
Bentz, K.C. and Cohen, S.M. (2018) Supramolecular Metallopolymers: From Linear Materials to Infinite Networks. Angewandte Chemie International Edition, 57, 14992-15001. https://doi.org/10.1002/anie.201806912
Liu, H., Peng, H., Xin, Y. and Zhang, J. (2019) Metal-Organic Frameworks: A Universal Strategy towards Super-Elastic Hydrogels. Polymer Chemistry, 10, 2263-2272. https://doi.org/10.1039/C9PY00085B
Hart, L.R., Hunter, J.H., Nguyen, N.A., Harries, J.L., Greenland, B.W., Mac-kay, M.E., Colquhoun, H.M. and Hayes, W. (2014) Multivalency in Healable Supramolecular Polymers: The Effect of Supra-molecular Cross-Link Density on the Mechanical Properties and Healing of Non-Covalent Polymer Networks. Polymer Chem-istry, 5, 3680-3688. https://doi.org/10.1039/C4PY00292J
Hayes, W. and Greenland, B.W. (2015) Donor-Acceptor π-π Stacking Interac-tions: From Small Molecule Complexes to Healable Supramolecular Polymer Networks. In: Seiffert, S., Ed., Supramolecular Polymer Networks and Gels, Springer International Publishing, Cham, 143-166.
Wang, H., Ji, X., Li, Y., Li, Z., Tang, G. and Huang, F. (2018) An ATP/ATPase Responsive Supramolecular Fluorescent Hydrogel Constructed via Electrostatic Interac-tions between Poly(Sodium p-Styrenesulfonate) and a Tetraphenylethene Derivative. Journal of Materials Chemistry B, 6, 2728-2733. https://doi.org/10.1039/C8TB00366A
Tepper, R., Bode, S., Geitner, R., Jager, M., Gorls, H., Vitz, J., Dietzek, B., Schmitt, M., Popp, J., Hager, M.D. and Schubert, U.S. (2017) Polymeric Halogen-Bond-Based Donor Systems Showing Self-Healing Behavior in Thin Films. Angewandte Chemie International Edition, 56, 4047-4051. https://doi.org/10.1002/anie.201610406
Pedersen, C.J. (1988) The Discovery of Crown Ethers. Science, 241, 536-540. https://doi.org/10.1126/science.241.4865.536
Price, T.L. and Gibson, H.W. (2011) Supramolecular Polymer Chemis-try. Wiley-VCH, Amsterdam.
Ge, Z., Hu, J., Huang, F. and Liu, S. (2009) Responsive Supramolecular Gels Constructed by Crown Ether Based Molecular Recognition. Angewandte Chemie International Edition, 48, 1798-1802. https://doi.org/10.1002/anie.200805712
Ji, X., Yao, Y., Li, J., Yan, X. and Huang, F. (2013) A Supramolecular Cross Linked Conjugated Polymer Network for Multiple Fluorescent Sensing. Journal of the American Chemical Society, 135, 74-77. https://doi.org/10.1021/ja3108559
Liu, Y.H., Wan, J.J., Zhao, X.Y., et al. (2023) Highly Strong and Tough Supra-molecular Polymer Networks Enabled by Cryptand-Based Host-Guest Recognition. Angewandte Chemie International Edition, 62, e202302370. https://doi.org/10.1002/anie.202302370
Yasen, W., Dong, R., Zhou, L., Wu, J., Cao, C., Aini, A. and Zhu, X. (2017) Synthesis of a Cationic Supramolecular Block Copolymer with Covalent and Noncovalent Polymer Blocks for Gene Delivery. ACS Applied Materials & Interfaces, 9, 9006-9014. https://doi.org/10.1021/acsami.6b15919
Minato, K., Mayumi, K., Maeda, R., Kato, K., Yokoyama, H. and Ito, K. (2017) Mechanical Properties of Supramolecular Elastomers Prepared from Polymer-Grafted Polyrotaxane. Polymer, 128, 386-391. https://doi.org/10.1016/j.polymer.2017.02.090
Takashima, Y., Hayashi, Y., Osaki, M., Kaneko, F., Yamaguchi, H. and Harada, A. (2018) A Photoresponsive Polymeric Actuator Topologically Cross-Linked by Movable Units Based on a [2]Rotaxane. Macromolecules, 51, 4688-4693. https://doi.org/10.1021/acs.macromol.8b00939
Hou, J.B., Zhang, X.Q., Wu, D., Feng, J.F., Ke, D., Li, B.J. and Zhang, S. (2019) Tough Self-Healing Elastomers Based on the Host-Guest Inter-action of Polycyclodextrin. ACS Applied Materials & Interfaces, 11, 12105-12113. https://doi.org/10.1021/acsami.9b00626
Shi, W.W., Zhang, D.Q., Han, L.Y., et al. (2023) Supramolecular Chi-tin-Based Hydrogels with Self-Adapting and Fast-Degradation Properties for Enhancing Wound Healing. Carbohydrate Poly-mers, 323, Article ID: 121374. https://doi.org/10.1016/j.carbpol.2023.121374
Zhu, W., Gou, P. and Shen, Z. (2008) Applications of Calixarenes in Polymer Synthesis. Macromolecular Symposia, 261, 74-84. https://doi.org/10.1002/masy.200850110
Villari, V., Gattuso, G., Notti, A., Pappalardo, A. and Micali, N. (2012) Self Assembled Calixarene Derivative as a Supramolecular Poly-mer. The Journal of Physical Chemistry B, 116, 5537-5541. https://doi.org/10.1021/jp300848n
Pappalardo, A., Bal-listreri, F.P., Destri, G.L., Mineo, P.G., Tomaselli, G.A., Toscano, R.M. and Trusso Sfrazzetto, G. (2012) Supramolecular Polymer Networks Based on Calix[5]arene Tethered Poly(p-phenyleneethynylene). Macromolecules, 45, 7549-7556. https://doi.org/10.1021/ma3015239
Wang, K.P., Chen, Y. and Liu, Y. (2015) A Polycation-Induced Secondary As-sembly of Amphiphilic Calixarene and Its Multi-Stimuli Responsive Gelation Behavior. Chemical Communications, 51, 1647-1649. https://doi.org/10.1039/C4CC08721F
Marquez, C., Hudgins, R.R. and Nau, W.M. (2004) Mechanism of Host-Guest Complexation by Cucurbituril. Journal of the American Chemical Society, 126, 5806-5816. https://doi.org/10.1021/ja0319846
Angelos, S., Yang, Y.W., Patel, K., Stoddart, J.F. and Zink, J.I. (2008) pH Re-sponsive Supramolecular Nanovalves Based on Cucurbit[6]uril Pseudorotaxanes. Angewandte Chemie International Edition, 47, 2222-2226. https://doi.org/10.1002/anie.200705211
Li, C., Rowland, M.J., Shao, Y., Cao, T., Chen, C., Jia, H., Zhou, X., Yang, Z., Scherman, O.A. and Liu, D. (2015) Responsive Double Network Hydrogels of Interpenetrating DNA and CB[8] Host-Guest Supramolecular Systems. Advanced Materials, 27, 3298-3304. https://doi.org/10.1002/adma.201501102
Wu, Y., Shah, D.U., Wang, B., Liu, J., Ren, X., Ramage, M.H. and Scher-man, O.A. (2018) Biomimetic Supramolecular Fibers Exhibit Water Induced Supercontraction. Advanced Materials, 30, e1707169. https://doi.org/10.1002/adma.201707169
Wang, P., Xing, H., Xia, D. and Ji, X. (2015) A Novel Supramolecular Polymer Gel Constructed by Crosslinking Pillar[5]arene-Based Supramolecular Polymers through Metal-Ligand Interactions. Chemical Communications, 51, 17431-17434. https://doi.org/10.1039/C5CC07252B
Wang, Y., Ping, G. and Li, C. (2016) Efficient Complexation between Pillar[5]arenes and Neutral Guests: From Host-Guest Chemistry to Functional Materials. Chemical Communications, 52, 9858-9872. https://doi.org/10.1039/C6CC03999E
Wang, Y., Sun, C.-L., Niu, L.-Y., Wu, L.Z., Tung, C.-H., Chen, Y.-Z. and Yang, Q.-Z. (2017) Photoresponsive AA/BB Supramolecular Polymers Comprising Stiff-Stilbene Based Guests and Bispil-lar[5]arenes. Polymer Chemistry, 8, 3596-3602. https://doi.org/10.1039/C7PY00326A
Chang, J., Zhao, Q., Kang, L., Li, H., Xie, M. and Liao, X. (2016) Multiresponsive Supramolecular Gel Based on Pillararene-Containing Polymers. Macro-molecules, 49, 2814-2820. https://doi.org/10.1021/acs.macromol.6b00270
Boominathan, M., Kiruthika, J. and Aru-nachalam, M. (2019) Construction of Anion-Responsive Crosslinked Polypseudorotaxane Based on Molecular Recognition of Pillar[5]arene. Journal of Polymer Science, Part A: Polymer Chemistry, 57, 1508-1515. https://doi.org/10.1002/pola.29413
Yang, H., Duan, Z.Z., Liu, F.B., Zhao, Y.Y. and Liu, S. (2023) Cucur-bit[7]uril-Based Supramolecular DNA Nanogel for Targeted Codelivery of Chemo/Photodynamic Drugs. ACS Macro Letters, 12, 295-301. https://doi.org/10.1021/acsmacrolett.2c00763