癌症是对生命构成最为严重威胁的疾病之一,现有的癌症治疗方法包括手术切除原发肿瘤、放疗和化疗等,但目前防止肿瘤转移扩散的效果并不理想。随着对耐受性、免疫性和免疫抑制调节抗肿瘤免疫反应的认识的不断提高,以及靶向治疗方法的出现,这些成功案例对患者的治愈率和存活率具有相当重大的意义。目前,对于免疫治疗的研究中,许多国内外学者提出了许多切实有效的治疗方法,包括免疫检查点抑制剂、CAR-T细胞疗法、疫苗治疗以及综合免疫治疗策略。为了在实际中更高效便捷地治疗肿瘤,本文综述了现有研究中免疫治疗的原理以及常用的几种免疫疗法,为临床应用提供一定的指导建议。 Cancer is one of the most serious life-threatening diseases. Existing cancer treatments, including surgical removal of the primary tumor, radiotherapy and chemotherapy, are not currently effective in preventing metastatic spread of tumors. With the increasing understanding of tolerance, im-munity and immunosuppression to regulate anti-tumor immune responses, and the emergence of targeted therapies, these successes are of considerable significance to the cure rate and survival rate of patients. Currently, many domestic and foreign scholars have proposed many effective ther-apeutic methods for immunotherapy, including immune checkpoint inhibitors, CAR-T cell therapy, vaccine therapy, and comprehensive immunotherapy strategies. In order to treat tumors more effi-ciently and conveniently in practice, this article reviews the principles of immunotherapy and sev-eral commonly used immunotherapies in the existing research, and provides certain guidance for clinical application.
免疫治疗,肿瘤,研究进展, Immunotherapy
Tumor
Research Progress
摘要
Cancer is one of the most serious life-threatening diseases. Existing cancer treatments, including surgical removal of the primary tumor, radiotherapy and chemotherapy, are not currently effective in preventing metastatic spread of tumors. With the increasing understanding of tolerance, immunity and immunosuppression to regulate anti-tumor immune responses, and the emergence of targeted therapies, these successes are of considerable significance to the cure rate and survival rate of patients. Currently, many domestic and foreign scholars have proposed many effective therapeutic methods for immunotherapy, including immune checkpoint inhibitors, CAR-T cell therapy, vaccine therapy, and comprehensive immunotherapy strategies. In order to treat tumors more efficiently and conveniently in practice, this article reviews the principles of immunotherapy and several commonly used immunotherapies in the existing research, and provides certain guidance for clinical application.
刘家俊,江幸燕,吴丽艳. 免疫治疗在肿瘤治疗中的应用综述A Review of Immunotherapy in the Treatment of Tumors[J]. 免疫学研究, 2024, 06(01): 11-14. https://doi.org/10.12677/IS.2024.61001
参考文献References
Marincola, F.M., Jaffee, E.M., Hicklin, D.J. and Ferrone, S. (2000) Escape of Human Solid Tumors from T-Cell Recog-nition: Molecular Mechanisms and Functional Significance. Advances in Immunology, 74, 181-273. https://doi.org/10.1016/S0065-2776(08)60911-6
Mellman, I., Coukos, G. and Dranoff, G. (2011) Cancer Immunotherapy Comes of Age. Nature, 480, 480-489. https://doi.org/10.1038/nature10673
Rosenberg, S.A. (2005) Cancer Immunotherapy Comes of Age. Nature Reviews Clinical Oncology, 2, Article No. 115. https://doi.org/10.1038/ncponc0101
Ren, X., Guo, S., Guan, X., Kang, Y., Liu, J. and Yang, X. (2022) Im-munological Classification of Tumor Types and Advances in Precision Combination Immunotherapy. Frontiers in Im-munology, 13, Article ID: 790113. https://doi.org/10.3389/fimmu.2022.790113
Chou, CS. and Friedman, A. (2016) Cancer-Immune Interaction. In: Chou, C.S. and Friedman, A., Eds., Introduction to Mathematical Biology, Springer, Cham, 137-146. https://doi.org/10.1007/978-3-319-29638-8_13
Kareva, I., Luddy, K.A., O’Farrelly, C., Gatenby, R.A. and Brown, J.S. (2021) Predator-Prey in Tumor-Immune Interactions: A Wrong Model or Just an Incomplete One? Frontiers in Immunology, 12, Article ID: 668221. https://doi.org/10.3389/fimmu.2021.668221
Schwartz, D.J., Rebeck, O.N. and Dantas, G. (2019) Complex Interactions between the Microbiome and Cancer Immune Therapy. Critical Reviews in Clinical Laboratory Sciences, 56, 567-585. https://doi.org/10.1080/10408363.2019.1660303
Perales-Puchalt, A., Wojtak, K., Duperret, E.K., Yang, X., Slager, A.M., Yan, J., Muthumani, K., Montaner, L.J. and Weiner, D.B. (2019) Engineered DNA Vaccination against Follicle-Stimulating Hormone Receptor Delays Ovarian Cancer Progression in Animal Models. Molecular Therapy, 27, 314-325. https://doi.org/10.1016/j.ymthe.2018.11.014
Hoteit, M., Oneissi, Z., Reda, R., et al. (2021) Cancer Immunotherapy: A Comprehensive Appraisal of Its Modes of Application. Oncology Letters, 22, 1-18. https://doi.org/10.3892/ol.2021.12916
Cornel, A.M., Mimpen, I.L. and Nierkens, S. (2020) MHC Class I Downregulation in Cancer: Underlying Mechanisms and Potential Targets for Cancer Immunotherapy. Cancers, 12, Ar-ticle No. 1760. https://doi.org/10.3390/cancers12071760
Sharma, P., Hu-Lieskovan, S., Wargo, J.A. and Ribas, A. (2017) Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy. Cell, 168, 707-723. https://doi.org/10.1016/j.cell.2017.01.017
Schuster, M., Nechansky, A. and Kircheis, R. (2006) Cancer Im-munotherapy. Biotechnology Journal: Healthcare Nutrition Technology, 1, 138-147. https://doi.org/10.1002/biot.200500044
Hanahan, D. (2022) Hallmarks of Cancer: New Dimensions. Cancer Discovery, 12, 31-46. https://doi.org/10.1158/2159-8290.CD-21-1059
Darvin, P., Toor, S.M., Sasidharan Nair, V., et al. (2018) Immune Checkpoint Inhibitors: Recent Progress and Potential Biomarkers. Experimental & Molecular Medicine, 50, 1-11. https://doi.org/10.1038/s12276-018-0191-1
李涛, 张侃, 杨文雨, 等. 免疫检查点抑制剂CTLA-4在实体肿瘤治疗中的临床应用[J]. 协和医学杂志, 2023, 14(3): 652-659.
Hodi, F.S., et al. (2010) Improved Survival with Ipilimumab in Patients with Metastatic Melanoma. The New England Journal of Medicine, 363, 711-723. https://doi.org/10.1056/NEJMoa1003466
Robert, C., et al. (2011) Ipilimumab plus Dacarbazine for Previously Untreated Metastatic Melanoma. The New England Journal of Medicine, 364, 2517-2526. https://doi.org/10.1056/NEJMoa1104621
Gibney, G.T., Weiner, L.M. and Atkins, M.B. (2016) Predictive Biomarkers for Checkpoint Inhibitor-Based Immunotherapy. The Lancet Oncology, 17, e542-e551. https://doi.org/10.1016/S1470-2045(16)30406-5
Inokuchi, J. and Eto, M. (2019) Profile of Pembrolizumab in the Treatment of Patients with Unresectable or Metastatic Urothelial Carcinoma. Cancer Management and Research, 11, 4519-4528. https://doi.org/10.2147/CMAR.S167708
Sun, X., Roudi, R., Dai, T., et al. (2019) Im-mune-Related Adverse Events Associated with Programmed Cell Death Protein-1 and Programmed Cell Death Ligand 1 Inhibitors for Non-Small Cell Lung Cancer: A Prisma Systematic Review and Meta-Analysis. BMC Cancer, 19, Article No. 558. https://doi.org/10.1186/s12885-019-5701-6
Ai, L.L., Chen, J., Yan, H., He, Q.J., Luo, P.H., Xu, Z.F. and Yang, X.C. (2020) Research Status and Outlook of PD-1/PD-L1 Inhibitors for Cancer Therapy. Drug Design, De-velopment and Therapy, 14, 3625-3649. https://doi.org/10.2147/DDDT.S267433
Balar, A.V. and Weber, J.S. (2017) PD-1 and PD-L1 Antibodies in Cancer: Current Status and Future Directions. Cancer Immunology, Immunotherapy, 66, 551-564. https://doi.org/10.1007/s00262-017-1954-6
陆林敏, 张卫平. PD-1/PDL-1及CTLA-4抑制剂治疗原发性肝癌的研究进展[J]. 浙江医学, 2018, 40(13): 1516-1519.
Sterner, R.C. and Sterner, R.M. (2021) CAR-T Cell Therapy: Current Limitations and Potential Strategies. Blood Cancer Journal, 11, Article No. 69. https://doi.org/10.1038/s41408-021-00459-7
Siddiqi, H.F., Staser, K.W. and Nambudiri, V.E. (2018) Re-search Techniques Made Simple: CAR T-Cell Therapy. Journal of Investigative Dermatology, 138, 2501-2504. https://doi.org/10.1016/j.jid.2018.09.002
Hill, L.Q., Lulla, P. and Heslop, H.E. (2019) CAR-T Cell Therapy for Non-Hodgkin Lymphomas: A New Treatment Paradigm. Advances in Cell and Gene Therapy, 2, e54. https://doi.org/10.1002/acg2.54
Langner, E. (2019) CAR T-Cell Therapy for Acute Lymphoblastic Leukemia. The Science Journal of the Lander College of Arts and Sciences, 12, 6.
Hodgson, K., Ferrer, G., Montserrat, E. and Moreno, C. (2011) Chronic Lymphocytic Leukemia and Autoimmunity: A Systematic Review. Haematologica, 96, 752-761. https://doi.org/10.3324/haematol.2010.036152
Todorovic, Z., Todorovic, D., Markovic, V., et al. (2022) CAR T Cell Therapy for Chronic Lymphocytic Leukemia: Successes and Shortcomings. Current Oncology, 29, 3647-3657. https://doi.org/10.3390/curroncol29050293
Kumar, S.K., Rajkumar, S.V., Dispenzieri, A., et al. (2008) Improved Survival in Multiple Myeloma and the Impact of Novel Therapies. Blood, 111, 2516-2520. https://doi.org/10.1182/blood-2007-10-116129
Ghosh, A., Mailankody, S., Giralt, S.A., et al. (2018) CAR T Cell Therapy for Multiple Myeloma: Where Are We Now and Where Are We Headed? Leukemia and Lymphoma, 59, 2056-2067. https://doi.org/10.1080/10428194.2017.1393668
Miliotou, A.N. and Papadopoulou, L.C. (2018) CAR T-Cell Therapy: A New Era in Cancer Immunotherapy. Current Pharmaceutical Biotechnology, 19, 5-18. https://doi.org/10.2174/1389201019666180418095526
Emens, L.A. (2006) Roadmap to a Better Therapeutic Tumor Vaccine. International Reviews of Immunology, 25, 415-443. https://doi.org/10.1080/08830180600992423
Bais, P., Namburi, S., Gatti, D.M., Zhang, X. and Chuang, J.H. (2017) CloudNeo: A Cloud Pipeline for Identifying Patient-Specific Tumor Neoantigens. Bioinformatics, 33, 3110-3112. https://doi.org/10.1093/bioinformatics/btx375
Galluzzi, L., Vacchelli, E., Pedro, J.M.B.S., et al. (2014) Classi-fication of Current Anticancer Immunotherapies. Oncotarget, 5, 12472-12508.
Cheever, M.A. and Higano, C.S. (2011) Provenge (Sipuleucel-T) in Prostate Cancer: The First FDA-Approved Therapeutic Cancer Vaccine. Clinical Cancer Research, 17, 3520-3526. https://doi.org/10.1158/1078-0432.CCR-10-3126
Butts, C., Socinski, M.A., Mitchell, P.L., et al. (2014) Tecemotide (LBLP25) versus Placebo after Chemoradiotherapy for Stage III Non-Small-Cell Lung Cancer (START): A Randomised, Double-Blind, Phase 3 Trial. The Lancet Oncology, 15, 59-68. https://doi.org/10.1016/S1470-2045(13)70510-2
di Pietro, A., Tosti, G., Ferrucci, P.F. and Testori, A. (2008) Oncophage: Step to the Future for Vaccine Therapy in Melanoma. Expert Opinion on Biological Therapy, 8, 1973-1984. https://doi.org/10.1517/14712590802517970
Xia, W., Wang, J., Xu, Y., Jiang, F. and Xu, L. (2014) L-BLP25 as a Peptide Vaccine Therapy in Non-Small Cell Lung Cancer: A Review. Journal of Thoracic Disease, 6, 1513-1520.
Aurisicchio, L. and Ciliberto, G. (2012) Genetic Cancer Vaccines: Current Status and Perspectives. Expert Opinion on Biological Therapy, 12, 1043-1058. https://doi.org/10.1517/14712598.2012.689279
Conniot, J., Scomparin, A., Peres, C., Yeini, E., Pozzi, S., Matos, A.I., Kleiner, R., Moura, L.I.F., Zupancič, E., Viana, A.S., Doron, H., Gois, P.M.P., Erez, N., Jung, S., Satchi-Fainaro, R. and Florindo, H.F. (2019) Immunization with Mannosylated Nanovaccines and Inhibition of the Im-mune-Suppressing Microenvironment Sensitizes Melanoma to Immune Checkpoint Modulators. Nature Nanotechnology, 14, 891-901. https://doi.org/10.1038/s41565-019-0512-0
Zhu, G., Zhang, F., Ni, Q., Niu, G. and Chen, X. (2017) Efficient Nanovaccine Delivery in Cancer Immunotherapy. ACS Nano, 11, 2387-2392. https://doi.org/10.1021/acsnano.7b00978
Goldberg, M.S. (2015) Immunoengineering: How Nanotechnology Can Enhance Cancer Immunotherapy. Cell, 161, 201-204. https://doi.org/10.1016/j.cell.2015.03.037
Scheetz, L., Park, K.S., Li, Q., Lowenstein, P.R., Castro, M.G., Schwendeman, A. and Moon, J.J. (2019) Engineering Pa-tient-Specific Cancer Immunotherapies. Nature Biomedical Engineering, 3, 768-782. https://doi.org/10.1038/s41551-019-0436-x
Wang, H., Sobral, M.C., Zhang, D.K.Y., Cartwright, A.N., Li, A.W., Dellacherie, M.O., Tringides, C.M., Koshy, S.T., Wucherpfennig, K.W. and Mooney, D.J. (2020) Metabolic La-beling and Targeted Modulation of Dendritic Cells. Nature Materials, 19, 1244-1252. https://doi.org/10.1038/s41563-020-0680-1
Ukidve, A., Zhao, Z., Fehnel, A., Krishnan, V., Pan, D.C., Gao, Y., Mandal, A., Muzykantov, V. and Mitragotri, S. (2020) Erythrocyte-Driven Immunization via Biomimicry of Their Natural Antigen-Presenting Function. Proceedings of the National Academy of Sciences of the United States of America, 117, 17727-17736. https://doi.org/10.1073/pnas.2002880117
Wraith, D.C., Smilek, D.E., Mitchell, D.J., Steinman, L. and McDevitt, H.O. (1989) Antigen Recognition in Autoimmune Encephalomyelitis and the Potential for Peptide-Mediated Immunotherapy. Cell, 59, 247-255. https://doi.org/10.1016/0092-8674(89)90287-0
Xia, Y., Wu, J., Wei, W., Du, Y., Wan, T., Ma, X., An, W., Guo, A., Miao, C., Yue, H., Li, S., Cao, X., Su, Z. and Ma, G. (2018) Exploiting the Pliability and Lateral Mobility of Pickering Emulsion for Enhanced Vaccination. Nature Materials, 17, 187-194. https://doi.org/10.1038/nmat5057
Singh, M., Singh, A. and Talwar, G.P. (1991) Controlled Delivery of Diphtheria Toxoid Using Biodegradable Poly(D, L-lactide) Microcapsules. Pharmaceutical Research, 8, 958-961. https://doi.org/10.1023/A:1015832302605
Cleland, J.L. (1999) Single-Administration Vaccines: Con-trolled-Release Technology to Mimic Repeated Immunizations. Trends in Biotechnology, 17, 25-29. https://doi.org/10.1016/S0167-7799(98)01272-4
Siegrist, C.A. and Aspinall, R. (2009) B-Cell Responses to Vaccination at the Extremes of Age. Nature Reviews Immunology, 9, 185-194. https://doi.org/10.1038/nri2508
Lin, C.Y., Lin, S.J., Yang, Y.C., Wang, D.Y., Cheng, H.F. and Yeh, M.K. (2015) Biodegradable Polymeric Microsphere-Based Vaccines and Their Applications in Infectious Diseases. Human Vaccines & Immunotherapeutics, 11, 650-656. https://doi.org/10.1080/21645515.2015.1009345
McLean, H.Q., Thompson, M.G., Sundaram, M.E., Meece, J.K., McClure, D.L., Friedrich, T.C. and Belongia, E.A. (2014) Impact of Repeated Vaccination on Vaccine Effectiveness against Influenza A(H3N2) and B during 8 Seasons. Clinical Infec-tious Diseases, 59, 1375-1385. https://doi.org/10.1093/cid/ciu680
Meng, Z., Zhang, Y., She, J., et al. (2021) Ultrasound-Mediated Remotely Controlled Nanovaccine Delivery for Tumor Vaccination and Individualized Cancer Im-munotherapy. Nano Letters, 21, 1228-1237. https://doi.org/10.1021/acs.nanolett.0c03646
Platsoucas, C.D., Fincke, J.E., Pappas, J., et al. (2003) Immune Responses to Human Tumors: Development of Tumor Vaccines. Anticancer Research, 23, 1969-1996.
Rosenberg, S.A., Yang, J.C. and Restifo, N.P. (2004) Cancer Immunotherapy: Moving beyond Current Vaccines. Nature Medicine, 10, 909-915. https://doi.org/10.1038/nm1100
Behl, D., Porrata, L.F., Markovic, S.N., Letendre, L., Pruthi, R.K., Hook, C.C., Tefferi, A., Elliot, M.A., Kaufmann, S.H., Mesa, R.A., et al. (2006) Absolute Lymphocyte Count Re-covery after Induction Chemotherapy Predicts Superior Survival in Acute Myelogenous Leukemia. Leukemia, 20, 29-34. https://doi.org/10.1038/sj.leu.2404032
Liseth, K., Ersvaer, E., Hervig, T. and Bruserud, O. (2010) Combina-tion of Intensive Chemotherapy and Anticancer Vaccines in the Treatment of Human Malignancies: The Hematological Experience. Journal of Biomedicine and Biotechnology, 2010, Article ID: 692097. https://doi.org/10.1155/2010/692097
Shurin, G.V., Tourkova, I.L., Kaneno, R. and Shurin, M.R. (2009) Chemotherapeutic Agents in Noncytotoxic Concentrations Increase Antigen Presentation by Dendritic Cells via an IL-12-Dependent Mechanism. The Journal of Immunology, 183, 137-144. https://doi.org/10.4049/jimmunol.0900734
Tanaka, H., Matsushima, H., Nishibu, A., Clausen, B.E. and Ta-kashima, A. (2009) Dual Therapeutic Efficacy of Vinblastine as a Unique Chemotherapeutic Agent Capable of Inducing Dendritic Cell Maturation. Cancer Research, 69, 6987-6994. https://doi.org/10.1158/0008-5472.CAN-09-1106
Herber, D.L., Nagaraj, S., Djeu, J.Y. and Gabrilovich, D.I. (2007) Mechanism and Therapeutic Reversal of Immune Suppression in Cancer. Cancer Research, 67, 5067-5069. https://doi.org/10.1158/0008-5472.CAN-07-0897
Ramakrishnan, R., Assudani, D., Nagaraj, S., Hunter, T., Cho, H.I., Antonia, S., Altiok, S., Celis, E. and Gabrilovich, D.I. (2010) Chemotherapy Enhances Tumor Cell Suscepti-bility to CTL-Mediated Killing during Cancer Immunotherapy in Mice. The Journal of Clinical Investigation, 120, 1111-1124. https://doi.org/10.1172/JCI40269
Ramakrishnan, R. and Gabrilovich, D.I. (2011) Mechanism of Synergistic Effect of Chemotherapy and Immunotherapy of Cancer. Cancer Immunology, Immunotherapy, 60, 419-423. https://doi.org/10.1007/s00262-010-0930-1
Bernstein, M.B., Krishnan, S., Hodge, J.W. and Chang, J.Y. (2016) Immunotherapy and Stereotactic Ablative Radiotherapy (ISABR): A Curative Approach? Nature Reviews Clinical Oncology, 13, 516-524. https://doi.org/10.1038/nrclinonc.2016.30
Demaria, S., Golden, E.B. and Formenti, S.C. (2015) Role of Local Radiation Therapy in Cancer Immunotherapy. JAMA Oncology, 1, 1325-1332. https://doi.org/10.1001/jamaoncol.2015.2756
Gameiro, S.R., Jammeh, M.L., Wattenberg, M.M., Tsang, K.Y., Ferrone, S. and Hodge, J.W. (2014) Radiation Induced Immunogenic Modulation of Tumor Enhances Antigen Pro-cessing and Calreticulin Exposure, Resulting in Enhanced T-Cell Killing. Oncotarget, 5, 403-416. https://doi.org/10.18632/oncotarget.1719
Galluzzi, L., Buque, A., Kepp, O., Zitvogel, L. and Kroemer, G. (2017) Immunogenic Cell Death in Cancer and Infectious Disease. Nature Reviews Immunology, 17, 97-111. https://doi.org/10.1038/nri.2016.107
Blank, C.U., Haanen, J.B., Ribas, A. and Schumacher, T.N. (2016) Can-cer Immunology. The “Cancer Immunogram”. Science, 352, 658-660. https://doi.org/10.1126/science.aaf2834
Lugade, A.A., Sorensen, E.W., Gerber, S.A., Moran, J.P., Frelinger, J.G. and Lord, E.M. (2008) Radiation-Induced IFN-Gamma Production within the Tumor Microenvironment Influences Antitumor Immunity. The Journal of Immunology, 180, 3132-3139. https://doi.org/10.4049/jimmunol.180.5.3132
Chakraborty, M., Abrams, S.I., Camphausen, K., Liu, K., Scott, T., Coleman, C.N., et al. (2003) Irradiation of Tumor Cells Up-Regulates Fas and Enhances CTL Lytic Activity and CTL Adoptive Immunotherapy. The Journal of Immunology, 170, 6338-6347. https://doi.org/10.4049/jimmunol.170.12.6338
Garnett, C.T., Palena, C., Chakraborty, M., Tsang, K.Y., Schlom, J. and Hodge, J.W. (2004) Sublethal Irradiation of Human Tumor Cells Modulates Phenotype Resulting in En-hanced Killing by Cytotoxic T Lymphocytes. Cancer Research, 64, 7985-7994. https://doi.org/10.1158/0008-5472.CAN-04-1525
Reits, E.A., Hodge, J.W., Herberts, C.A., Groothuis, T.A., Chakraborty, M., Wansley, E.K., et al. (2006) Radiation Modulates the Peptide Repertoire, Enhances MHC Class I Ex-pression, and Induces Successful Antitumor Immunotherapy. Journal of Experimental Medicine, 203, 1259-1271. https://doi.org/10.1084/jem.20052494
Dewan, M.Z., Galloway, A.E., Kawashima, N., Dewyngaert, J.K., Babb, J.S., Formenti, S.C., et al. (2009) Fractionated but Not Single-Dose Radiotherapy Induces an Immune-Mediated Abscopal Effect When Combined with Anti-CTLA-4 Antibody. Clinical Cancer Research, 15, 5379-5388. https://doi.org/10.1158/1078-0432.CCR-09-0265
Demaria, S., Kawashima, N., Yang, A.M., Devitt, M.L., Babb, J.S., Allison, J.P., et al. (2005) Immune-Mediated Inhibition of Metastases after Treatment with Local Radiation and CTLA-4 Blockade in a Mouse Model of Breast Cancer. Clinical Cancer Research, 11, 728-734. https://doi.org/10.1158/1078-0432.728.11.2
Belcaid, Z., Phallen, J.A., Zeng, J., See, A.P., Mathios, D., Gottschalk, C., et al. (2014) Focal Radiation Therapy Combined with 4-1BB Activation and CTLA-4 Blockade Yields Long-Term Survival and a Protective Antigen-Specific Memory Response in a Murine Glioma Model. PLOS ONE, 9, e101764. https://doi.org/10.1371/journal.pone.0101764
Wu, L., Wu, M.O., De la Maza, L., Yun, Z., Yu, J., Zhao, Y., et al. (2015) Targeting the Inhibitory Receptor CTLA-4 on T Cells Increased Abscopal Effects in Murine Mes-othelioma Model. Oncotarget, 6, 12468-12480. https://doi.org/10.18632/oncotarget.3487
Twyman-Saint Victor, C., Rech, A.J., Maity, A., Rengan, R., Pauken, K.E., Stelekati, E., et al. (2015) Radiation and Dual Checkpoint Blockade Activate Non-Redundant Immune Mechanisms in Cancer. Nature, 520, 373-377. https://doi.org/10.1038/nature14292
Yoshimoto, Y., Suzuki, Y., Mimura, K., Ando, K., Oike, T., Sato, H., et al. (2014) Radiotherapy-Induced Anti-Tumor Immunity Contributes to the Therapeutic Efficacy of Irradiation and Can Be Augmented by CTLA-4 Blockade in a Mouse Model. PLOS ONE, 9, e92572. https://doi.org/10.1371/journal.pone.0092572
Herter-Sprie, G.S., Koyama, S., Korideck, H., Hai, J., Deng, J., Li, Y.Y., et al. (2016) Synergy of Radiotherapy and PD-1 Blockade in Kras-Mutant Lung Cancer. JCI Insight, 1, e87415. https://doi.org/10.1172/jci.insight.87415
Dovedi, S.J., Adlard, A.L., Lipowska-Bhalla, G., McKenna, C., Jones, S., Cheadle, E.J., et al. (2014) Acquired Resistance to Fractionated Radiotherapy Can Be Overcome by Concurrent PDL1 Blockade. Cancer Research, 74, 5458-5468. https://doi.org/10.1158/0008-5472.CAN-14-1258
Deng, L., Liang, H., Burnette, B., Beckett, M., Darga, T., Weichselbaum, R.R., et al. (2014) Irradiation and Anti-PD-L1 Treat-ment Synergistically Promote Antitumor Immunity in Mice. The Journal of Clinical Investigation, 124, 687-695. https://doi.org/10.1172/JCI67313
Zeng, J., See, A.P., Phallen, J., Jackson, C.M., Belcaid, Z., Ruzevick, J., et al. (2013) Anti-PD-1 Blockade and Stereotactic Radiation Produce Long-Term Survival in Mice with Intracranial Glio-mas. International Journal of Radiation Oncology, Biology, Physics, 86, 343-349. https://doi.org/10.1016/j.ijrobp.2012.12.025
Sharabi, A.B., Nirschl, C.J., Kochel, C.M., Nirschl, T.R., Franci-ca, B.J., Velarde, E., et al. (2015) Stereotactic Radiation Therapy Augments Antigen-Specific PD-1-Mediated Antitumor Immune Responses via Cross-Presentation of Tumor Antigen. Cancer Immunology Research, 3, 345-355. https://doi.org/10.1158/2326-6066.CIR-14-0196
Vanneman, M. and Dranoff, G. (2012) Combining Immu-notherapy and Targeted Therapies in Cancer Treatment. Nature Reviews Cancer, 12, 237-251. https://doi.org/10.1038/nrc3237
Sharma, P. and Allison, J.P. (2015) Immune Checkpoint Targeting in Cancer Therapy: Toward Combination Strategies with Curative Potential. Cell, 161, 205-214. https://doi.org/10.1016/j.cell.2015.03.030
Ye, F., Dewanjee, S., Li, Y., et al. (2023) Advancements in Clinical Aspects of Targeted Therapy and Immunotherapy in Breast Cancer. Molecular Cancer, 22, Article No. 105. https://doi.org/10.1186/s12943-023-01805-y
Tan, A.C., Bagley, S.J., Wen, P.Y., et al. (2021) Systematic Re-view of Combinations of Targeted or Immunotherapy in Advanced Solid Tumors. Journal for Immunotherapy of Cancer, 9, e002459. https://doi.org/10.1136/jitc-2021-002459
Corrales, L., Scilla, K., Caglevic, C., Miller, K., Oliveira, J. and Rolfo, C. (2018) Immunotherapy in Lung Cancer: A New Age in Cancer Treatment. Advances in Experimental Medicine and Biology, 995, 65-95. https://doi.org/10.1007/978-3-030-02505-2_3
Martin-Liberal, J., de Olza, M.O., Hierro, C., Gros, A., Rodon, J. and Tabernero, J. (2017) The Expanding Role of Immunotherapy. Cancer Treatment Reviews, 54, 74-86. https://doi.org/10.1016/j.ctrv.2017.01.008
Ventola, C.L. (2017) Cancer Immunotherapy, Part 3: Challenges and Future Trends. PT, 42, 514-521.