灵敏特异的检测方案和有效的抗病毒疗法对于预防治疗病毒感染至关重要。金纳米颗粒(Gold Nanoparticles, AuNPs)是指尺寸在1~100 nm的金属纳米材料,因其良好的生物相容性、较低的生物毒性和可调节的尺寸而广受关注,目前常应用于生物分子传感、药物递送、疫苗制备、癌症治疗和抗菌药物等领域。正是由于AuNPs的这些特性,使其在预防和治疗已知或潜在未知的病毒感染等方面也具有独特的优势。本文简要介绍了AuNPs在对抗病毒性疾病中发挥的作用,主要涵盖了病毒检测、疫苗制备、药物递送和抗病毒治疗四个方面的研究进展,并探讨了AuNPs在应用开发中面临的挑战以及未来的发展前景。
Sensitive and specific detection protocols and effective antiviral therapy are essential for the prevention and treatment of viral infections. Gold nanoparticles (AuNPs), metallic nanomaterials with dimensions ranging from 1 to 100 nanometers, are highly regarded for their excellent biocompatibility, low biotoxicity, and adjustable size properties. Currently, AuNPs are extensively utilized in various fields such as biomolecular sensing, drug delivery, vaccine development, cancer treatment, and antimicrobial drugs. Notably, the unique characteristics of AuNPs offer significant potential in preventing and treating viral infections, including both known and potential unknown viruses. This article primarily focuses on the role of AuNPs in combating viral diseases, covering recent research advancements in areas such as viral detection, vaccine preparation, drug delivery, and antiviral treatment. It also explores the challenges faced in the practical application and development of AuNPs, as well as their future prospects.
Sensitive and specific detection protocols and effective antiviral therapy are essential for the prevention and treatment of viral infections. Gold nanoparticles (AuNPs), metallic nanomaterials with dimensions ranging from 1 to 100 nanometers, are highly regarded for their excellent biocompatibility, low biotoxicity, and adjustable size properties. Currently, AuNPs are extensively utilized in various fields such as biomolecular sensing, drug delivery, vaccine development, cancer treatment, and antimicrobial drugs. Notably, the unique characteristics of AuNPs offer significant potential in preventing and treating viral infections, including both known and potential unknown viruses. This article primarily focuses on the role of AuNPs in combating viral diseases, covering recent research advancements in areas such as viral detection, vaccine preparation, drug delivery, and antiviral treatment. It also explores the challenges faced in the practical application and development of AuNPs, as well as their future prospects.
温一帆,杨 槐,安家宝,樊聪敏,杜田明,贾润清,曹 鹏. 金纳米颗粒在病毒性疾病中的应用进展 Progress in the Application of Gold Nanoparticles in Viral Diseases[J]. 纳米技术, 2024, 14(01): 1-11. https://doi.org/10.12677/NAT.2024.141001
ReferencesElahi, N., Kamali, M. and Baghersad, M.H. (2018) Recent Biomedical Applications of Gold Nanoparticles: A Review. Talanta, 184, 537-556. <br>https://doi.org/10.1016/j.talanta.2018.02.088Mayer, K.M. and Hafner, J.H. (2011) Localized Surface Plasmon Resonance Sensors. Chemical Reviews, 111, 3828-3857. <br>https://doi.org/10.1021/cr100313vZhou, X., Liu, R., Qin, S., et al. (2016) Current Status and Future Direc-tions of Nanoparticulate Strategy for Cancer Immunotherapy. Current Drug Metabolism, 17, 755-762. <br>https://doi.org/10.2174/1389200217666160714095722Chen, Y., Xianyu, Y. and Jiang, X. (2017) Surface Modification of Gold Nanoparticles with Small Molecules for Biochemical Analysis. Accounts of Chemical Research, 50, 310-319. <br>https://doi.org/10.1021/acs.accounts.6b00506Alex, S. and Tiwari, A. (2015) Functionalized Gold Nanoparticles: Synthesis, Properties and Applications—A Review. Journal of Nanoscience and Nanotechnology, 15, 1869-1894. <br>https://doi.org/10.1166/jnn.2015.9718Qian, H., Zhu, M., Wu, Z. and Jin, R.C. (2012) Quantum Sized Gold Nanoclusters with Atomic Precision. Accounts of Chemical Research, 45, 1470-1479. <br>https://doi.org/10.1021/ar200331zYuan, Q., Wang, Y., Zhao, L., et al. (2016) Peptide Protected Gold Clus-ters: Chemical Synthesis and Biomedical Applications. Nanoscale, 8, 12095-12104. <br>https://doi.org/10.1039/C6NR02750DChen, X., Ren, X. and Gao, X. (2022) Peptide or Protein-Protected Metal Nanoclusters for Therapeutic Application. Chinese Journal of Chemistry, 40, 267-274. <br>https://doi.org/10.1002/cjoc.202100523Tabatabaei, M.S., Islam, R. and Ahmed, M. (2021) Applications of Gold Nanoparticles in ELISA, PCR, and Immuno-PCR Assays: A Review. Analytica Chimica Acta, 1143, 250-266. <br>https://doi.org/10.1016/j.aca.2020.08.030Kesharwani, P., Ma, R., Sang, L., et al. (2023) Gold Nanoparticles and Gold Nanorods in the Landscape of Cancer Therapy. Molecular Cancer, 22, Article No. 98. <br>https://doi.org/10.1186/s12943-023-01798-8Kumar, A., Zhang, X. and Liang, X.J. (2013) Gold Nanoparti-cles: Emerging Paradigm for Targeted Drug Delivery System. Biotechnology Advances, 31, 593-606. <br>https://doi.org/10.1016/j.biotechadv.2012.10.002Pasparakis, G. (2022) Recent Developments in the Use of Gold and Silver Nanoparticles in Biomedicine. Nanomedicine and Nanobiotechnology, 14, e1817. <br>https://doi.org/10.1002/wnan.1817Dasgupta, N. and Ranjan, S. (2018) An Introduction to Food Grade Nanoemulsions. Springer, Singapore.
<br>https://doi.org/10.1007/978-981-10-6986-4Rasmi, Y., Kırboğa, K.K., Khan, J., et al. (2023) Gold Nanoparti-cle-Based Strategies against SARS-CoV-2: A Review. Reviews on Advanced Materials Science, 62, Article ID: 20230105. <br>https://doi.org/10.1515/rams-2023-0105Jans, H. and Huo, Q. (2012) Gold Nanoparticle-Enabled Biological and Chemical Detection and Analysis. Chemical Society Reviews, 41, 2849-2866. <br>https://doi.org/10.1039/C1CS15280GDraz, M.S. and Shafiee, H. (2018) Applications of Gold Nanoparticles in Virus Detection. Theranostics, 8, 1985-2017.
<br>https://doi.org/10.7150/thno.23856Wang, J., Drelich, A.J., Hopkins, C.M., et al. (2022) Gold Nanoparticles in Virus Detection: Recent Advances and Potential Considerations for SARS-CoV-2 Testing Development. Nanomedi-cine and Nanobiotechnology, 14, e1754.
<br>https://doi.org/10.1002/wnan.1754Li, H. and Rothberg, L. (2004) Colorimetric Detection of DNA Sequences Based on Electrostatic Interactions with Unmodified Gold Nanoparticles. Proceedings of the National Academy of Sci-ences of the United States of America, 101, 14036-14039. <br>https://doi.org/10.1073/pnas.0406115101Shawky, S.M., Awad, A.M., Allam, W., et al. (2017) Gold Aggregating Gold: A Novel Nanoparticle Biosensor Approach for the Direct Quantification of Hepatitis C Virus RNA in Clinical Samples. Biosensors and Bioelectronics, 92, 349-356. <br>https://doi.org/10.1016/j.bios.2016.11.001Lim, J., Nam, J., Yang, S., et al. (2015) Identification of Newly Emerging Influenza Viruses by Surface-Enhanced Raman Spectroscopy. Analytical Chemistry, 87, 11652-11659. <br>https://doi.org/10.1021/acs.analchem.5b02661Zhang, H., Liu, L., Li, C.W., et al. (2011) Multien-zyme-Nanoparticles Amplification for Sensitive Virus Genotyping in Microfluidic Microbeads Array Using Au Nano-particle Probes and Quantum Dots as Labels. Biosensors and Bioelectronics, 29, 89-96. <br>https://doi.org/10.1016/j.bios.2011.07.074Wang, H., Feng, N., Yang, S., et al. (2010) A Rapid Immuno-chromatographic Test Strip for Detecting Rabies Virus Antibody. Journal of Virological Methods, 170, 80-85. <br>https://doi.org/10.1016/j.jviromet.2010.09.002Huang, C., Wen, T., Shi, F.J., et al. (2020) Rapid Detection of IgM Antibodies against the SARS-CoV-2 Virus via Colloidal Gold Nanoparticle-Based Lateral-Flow Assay. ACS Ome-ga, 5, 12550-12556.
<br>https://doi.org/10.1021/acsomega.0c01554Kim, J., Oh, S.Y., Shukla, S., et al. (2018) Heteroassembled Gold Nanoparticles with Sandwich-Immunoassay LSPR Chip Format for Rapid and Sensitive Detection of Hepatitis B Virus Surface Antigen (HBsAg). Biosensors and Bioelectronics, 107, 118-122. <br>https://doi.org/10.1016/j.bios.2018.02.019Kurdekar, A.D., Avinash Chunduri, L.A., Manohar, C.S., et al. (2018) Streptavidin-Conjugated Gold Nanoclusters as Ultrasensitive Fluorescent Sensors for Early Diagnosis of HIV Infection. Science Advances, 4, eaar6280.
<br>https://doi.org/10.1126/sciadv.aar6280Ventura, B.D., Cennamo, M., Minopoli, A., et al. (2020) Colorimetric Test for Fast Detection of SARS-CoV-2 in Nasal and Throat Swabs. ACS Sensors, 5, 3043-3048. <br>https://doi.org/10.1021/acssensors.0c01742Armesto, M., Charconnet, M., Marimón, J.M., et al. (2023) Vali-dation of Rapid and Economic Colorimetric Nanoparticle Assay for SARS-CoV-2 RNA Detection in Saliva and Naso-pharyngeal Swabs. Biosensors, 13, Article 275.
<br>https://doi.org/10.3390/bios13020275Trépo, C., Chan, H.L.Y. and Lok, A. (2014) Hepatitis B Virus Infec-tion. Lancet, 384, 2053-2063.
<br>https://doi.org/10.1016/S0140-6736(14)60220-8DeHaan, E., McGowan, J.P., Fine, S.M., et al. (2022) PEP to Prevent HIV Infection. Johns Hopkins University, Baltimore.Kurdekar, A., Chunduri, L.A.A., Bulagonda, E.P., et al. (2016) Comparative Performance Evaluation of Carbon Dot-Based Paper Immunoassay on Whatman Filter Paper and Nitrocellulose Paper in the Detection of HIV Infection. Microfluidics and Nanofluidics, 20, Article No. 99. <br>https://doi.org/10.1007/s10404-016-1763-9Jain, P.K., Huang, W. and El-Sayed, M.A. (2007) On the Uni-versal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equa-tion. Nano Letters, 7, 2080-2088.
<br>https://doi.org/10.1021/nl071008aHan, M.S., Byun, J.H., Cho, Y. and Rim, J.H. (2021) RT-PCR for SARS-CoV-2: Quantitative versus Qualitative. Lancet Infectious Diseases, 21, 165. <br>https://doi.org/10.1016/S1473-3099(20)30424-2Pashine, A., Valiante, N.M. and Ulmer, J.B. (2005) Target-ing the Innate Immune Response with Improved Vaccine Adjuvants. Nature Medicine, 11, S63-S68. <br>https://doi.org/10.1038/nm1210Wilson-Welder, J.H., Torres, M.P., Kipper, M.J., et al. (2009) Vaccine Adju-vants: Current Challenges and Future Approaches. Journal of Pharmaceutical Sciences, 98, 1278-1316. <br>https://doi.org/10.1002/jps.21523Shi, S., Zhu, H., Xia, X., et al. (2019) Vaccine Adjuvants: Understanding the Structure and Mechanism of Adjuvanticity. Vaccine, 37, 3167-3178. <br>https://doi.org/10.1016/j.vaccine.2019.04.055Dykman, L.A. and Khlebtsov, N.G. (2017) Immunological Properties of Gold Nanoparticles. Chemical Science, 8, 1719-1735. <br>https://doi.org/10.1039/C6SC03631GLiu, Y., Crawford, B.M. and Vo-Dinh, T. (2018) Gold Nanoparticles-Mediated Photothermal Therapy and Immunotherapy. Immunotherapy, 10, 1175-1188. <br>https://doi.org/10.2217/imt-2018-0029Salazar-González, J.A., Gonzá-lez-Ortega, O. and Rosales-Mendoza, S. (2015) Gold Nanoparticles and Vaccine Development. Expert Review of Vac-cines, 14, 1197-1211. <br>https://doi.org/10.1586/14760584.2015.1064772De Almeida, R.R., Paim, B., De Oliveira, S.A., et al. (2017) Dengue Hemorrhagic Fever: A State-of-the-Art Review Focused in Pulmonary Involvement. Lung, 195, 389-395. <br>https://doi.org/10.1007/s00408-017-0021-6Bhatt, S., Gething, P.W., Brady, O.J., et al. (2013) The Global Distribution and Burden of Dengue. Nature, 496, 504-507. <br>https://doi.org/10.1038/nature12060Wahala, W.M.P.B., Kraus, A.A., Haymore, L.B., et al. (2009) Dengue Virus Neutralization by Human Immune Sera: Role of Envelope Protein Domain III-Reactive Antibody. Virology, 392, 103-113.
<br>https://doi.org/10.1016/j.virol.2009.06.037Fahimi, H., Mohammadipour, M., Haddad Kashani, H., et al. (2018) Dengue Viruses and Promising Envelope Protein Domain III-Based Vaccines. Applied Microbiology and Bio-technology, 102, 2977-2996.
<br>https://doi.org/10.1007/s00253-018-8822-yVillar, L., Dayan, G.H., Arredondo-García, J.L., et al. (2015) Ef-ficacy of a Tetravalent Dengue Vaccine in Children in Latin America. New England Journal of Medicine, 372, 113-123. <br>https://doi.org/10.1056/NEJMoa1411037Quach, Q.H., Ang, S.K., Chu, J.H.J. and Kah, J.C.Y. (2018) Size-Dependent Neutralizing Activity of Gold Nanoparticle-Based Subunit Vaccine against Dengue Virus. Acta Bio-materialia, 78, 224-235.
<br>https://doi.org/10.1016/j.actbio.2018.08.011Halstead, S.B. (2017) Dengvaxia Sensitizes Seronegatives to Vaccine Enhanced Disease Regardless of Age. Vaccine, 35, 6355-6358. <br>https://doi.org/10.1016/j.vaccine.2017.09.089Awadasseid, A., Wu, Y., Tanaka, Y. and Zhang, W. (2021) Current Advances in the Development of SARS-CoV-2 Vaccines. International Journal of Biological Sciences, 17, 8-19. <br>https://doi.org/10.7150/ijbs.52569Chen, D.Y., Chin, C.V., Kenney, D., et al. (2023) Spike and Nsp6 Are Key Determinants of SARS-CoV-2 Omicron BA.1 Attenuation. Nature, 615, 143-150. <br>https://doi.org/10.1038/s41586-023-05697-2Aguilar-Bretones, M., Fouchier, R.A., Koopmans, M.P., et al. (2023) Impact of Antigenic Evolution and Original Antigenic Sin on SARS-CoV-2 Immunity. Journal of Clinical Inves-tigation, 133, e162192.
<br>https://doi.org/10.1172/JCI162192Fan, B., Gu, J., Deng, B., et al. (2023) Positively Charged-Amylose-Entangled Au-Nanoparticles Acting as Protein Carriers and Potential Adjuvants to SARS-CoV-2 Subunit Vaccines. ACS Applied Materials & Interfaces, 15, 29982-29997. <br>https://doi.org/10.1021/acsami.3c05295Bayani, F., Hashkavaei, N.S., Arjmand, S., et al. (2023) An Overview of the Vaccine Platforms to Combat COVID-19 with a Focus on the Subunit Vaccines. Progress in Biophysics and Mo-lecular Biology, 178, 32-49.
<br>https://doi.org/10.1016/j.pbiomolbio.2023.02.004Niikura, K., Matsunaga, T., Suzuki, T., et al. (2013) Gold Nanoparticles as a Vaccine Platform: Influence of Size and Shape on Immunological Responses in Vitro and in Vivo. ACS Nano, 7, 3926-3938. <br>https://doi.org/10.1021/nn3057005Polack, F.P., Thomas, S.J., Kitchin, N., et al. (2020) Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. New England Journal of Medicine, 383, 2603-2615. <br>https://doi.org/10.1056/NEJMoa2034577Tanriover, M.D., Doğanay, H.L., Akova, M., et al. (2021) Efficacy and Safety of an Inactivated Whole-Virion SARS-CoV-2 Vaccine (CoronaVac): Interim Results of a Double-Blind, Randomised, Placebo-Controlled, Phase 3 Trial in Turkey. Lancet, 398, 213-222. <br>https://doi.org/10.1016/S0140-6736(21)01429-XKnoll, M.D. and Wonodi, C. (2021) Oxford-AstraZeneca COVID-19 Vaccine Efficacy. Lancet, 397, 72-74.
<br>https://doi.org/10.1016/S0140-6736(20)32623-4Song, J.Y., Choi, W.S., Heo, J.Y., et al. (2022) Safety and Immunogenicity of a SARS-CoV-2 Recombinant Protein Nanoparticle Vaccine (GBP510) Adjuvanted with AS03: A Randomised, Placebo-Controlled, Observer-Blinded Phase 1/2 Trial. eClinicalMedicine, 51, Article ID: 101569. <br>https://doi.org/10.1016/j.eclinm.2022.101569Dreaden, E.C., Austin, L.A., Mackey, M.A. and El-Sayed, M.A. (2012) Size Matters: Gold Nanoparticles in Targeted Cancer Drug Delivery. Therapeutic Delivery, 3, 457-478. <br>https://doi.org/10.4155/tde.12.21Goddard, Z.R., Marín, M.J., Russell, D.A. and Searcey, M. (2020) Active Targeting of Gold Nanoparticles as Cancer Therapeutics. Chemical Society Reviews, 49, 8774-8789. <br>https://doi.org/10.1039/D0CS01121EYazdanpanah, Y., Fagard, C., Descamps, D., et al. (2009) High Rate of Virologic Suppression with Raltegravir plus Etravirine and Darunavir/Ritonavir among Treatment-Experienced Patients Infected with Multidrug-Resistant HIV: Results of the ANRS 139 TRIO Trial. Clinical Infectious Diseases, 49, 1441-1449. <br>https://doi.org/10.1086/630210Chun, T.W., Moir, S. and Fauci, A.S. (2015) HIV Reservoirs as Obstacles and Opportunities for an HIV Cure. Nature Immunology, 16, 584-589. <br>https://doi.org/10.1038/ni.3152Garrido, C., Simpson, C.A., Dahl, N.P., et al. (2015) Gold Nanoparticles to Improve HIV Drug Delivery. Future Medicinal Chemistry, 7, 1097-1107. <br>https://doi.org/10.4155/fmc.15.57Kalimuthu, K., Lubin, B.C., Bazylevich, A., et al. (2018) Gold Nanoparti-cles Stabilize Peptide-Drug-Conjugates for Sustained Targeted Drug Delivery to Cancer Cells. Journal of Nanobiotech-nology, 16, Article No. 34.
<br>https://doi.org/10.1186/s12951-018-0362-1Fratoddi, I., Venditti, I., Battocchio, C., et al. (2019) Highly Hy-drophilic Gold Nanoparticles as Carrier for Anticancer Copper(I) Complexes: Loading and Release Studies for Biomedi-cal Applications. Nanomaterials, 9, Article 772.
<br>https://doi.org/10.3390/nano9050772Fotooh Abadi, L., Kumar, P., Paknikar, K., et al. (2023) Tenofo-vir-Tethered Gold Nanoparticles as a Novel Multifunctional Long-Acting Anti-HIV Therapy to Overcome Deficient Drug Delivery-: An in Vivo Proof of Concept. Journal of Nanobiotechnology, 21, Article No. 19. <br>https://doi.org/10.1186/s12951-022-01750-wBowman, M.C., Ballard, T.E., Ackerson, C.J., et al. (2008) In-hibition of HIV Fusion with Multivalent Gold Nanoparticles. Journal of the American Chemical Society, 130, 6896-6897. <br>https://doi.org/10.1021/ja710321gLi, F., Huang, Q., Zhou, Z., et al. (2023) Gold Nanoparticles Combat Enveloped RNA Virus by Affecting Organelle Dynamics. Signal Transduction and Targeted Therapy, 8, Article No. 285.
<br>https://doi.org/10.1038/s41392-023-01562-wSung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
<br>https://doi.org/10.3322/caac.21660Jit, M., Prem, K., Benard, E. and Brisson, M. (2021) From Cervical Cancer Elimination to Eradication of Vaccine-Type Human Papillomavirus: Feasibility, Public Health Strategies and Cost-Effectiveness. Preventive Medicine, 144, Article ID: 106354. <br>https://doi.org/10.1016/j.ypmed.2020.106354Valencia-Reséndiz, D.G., Villegas, A., Bahena, D., et al. (2022) Non-Functionalized Gold Nanoparticles Inhibit Human Papillomavirus (HPV) Infection. International Journal of Molec-ular Sciences, 23, Article 7552.
<br>https://doi.org/10.3390/ijms23147552Giroglou, T., Florin, L., Schäfer, F., et al. (2001) Human Papilloma-virus Infection Requires Cell Surface Heparan Sulfate. Journal of Virology, 75, 1565-1570. <br>https://doi.org/10.1128/JVI.75.3.1565-1570.2001Yan, F.F. and Gao, F. (2021) An Overview of Potential In-hibitors Targeting Non-Structural Proteins 3 (PLpro and Mac1) and 5 (3CLpro/Mpro) of SARS-CoV-2. Computational and Structural Biotechnology Journal, 19, 4868-4883.
<br>https://doi.org/10.1016/j.csbj.2021.08.036Su, H., Zhou, F., Huang, Z., et al. (2021) Molecular Insights into Small-Molecule Drug Discovery for SARS-CoV-2. Angewandte Chemie, 60, 9789-9802. <br>https://doi.org/10.1002/anie.202008835He, Z., Ye, F., Zhang, C., et al. (2022) A Comparison of Remdesivir versus Gold Cluster in COVID-19 Animal Model: A Better Therapeutic Outcome of Gold Cluster. Nano Today, 44, Ar-ticle ID: 101468.
<br>https://doi.org/10.1016/j.nantod.2022.101468Mehta, P., McAuley, D.F., Brown, M., et al. (2020) COVID-19: Consider Cytokine Storm Syndromes and Immunosuppression. Lancet, 395, 1033-1034. <br>https://doi.org/10.1016/S0140-6736(20)30628-0Lv, T., Cao, W. and Li, T. (2021) HIV-Related Immune Ac-tivation and Inflammation: Current Understanding and Strategies. Journal of Immunology Research, 2021, Article ID: 7316456. <br>https://doi.org/10.1155/2021/7316456Yang, G., Wan, P., Zhang, Y., et al. (2022) Innate Immunity, Inflammation, and Intervention in HBV Infection. Viruses, 14, Article 2275. <br>https://doi.org/10.3390/v14102275Yuan, Q., Gao, F., Yao, Y., et al. (2019) Gold Clusters Prevent Inflamma-tion-Induced Bone Erosion through Inhibiting the Activation of NF-κB Pathway. Theranostics, 9, 1825-1836. <br>https://doi.org/10.7150/thno.31893Liu, Y., Meng, C., Li, Y., et al. (2023) Peptide-Protected Gold Nanoclus-ters Efficiently Ameliorate Acute Contact Dermatitis and Psoriasis via Repressing the TNF-α/NF-κB/IL-17A Axis in Keratinocytes. Nanomaterials, 13, Article 662. <br>https://doi.org/10.3390/nano13040662Yañez-Aulestia, A., Gupta, N.K., Hernández, M., et al. (2022) Gold Nanoparticles: Current and Upcoming Biomedical Applications in Sens-ing, Drug, and Gene Delivery. Chemical Communications, 58, 10886-10895.
<br>https://doi.org/10.1039/D2CC04826D