现今世界及中国的妇科恶性肿瘤呈逐年渐升趋势,已严重危及妇女们的身体健康。即使现有手术、化疗、放疗、靶向药物、介入等相结合的综合治疗方法可以延缓肿瘤的进展,提高总生存率(OS),也仍有恶性肿瘤经治疗后,肿瘤进展呈转移性、复发性、耐药性等概率升高的风险。目前,免疫治疗的兴起与发展,在许多实质肿瘤领域中日益成为临床研究中的热点,也在妇科肿瘤方面已步入尝试性临床研究应用,其中程序性死亡受体-1 (PD-1)及其配体(PD-L1)的抗体为例的免疫抑制剂,在卵巢癌(Ovarian Cancer, OC)、宫颈癌(Cervical Cancer, CC)、子宫内膜癌(Endometrial Cancer, EC)等妇科恶性肿瘤的相关临床试验中证实,PD-1/PD-L1抑制剂具有一定的抗肿瘤疗效。本文就PD-1/PD-L1抑制剂在妇科恶性肿瘤中的研究进展作一简要综述。 Nowadays, gynecological malignant tumors in the world and China are on the rise year by year, which has seriously endangered women’s health. Even if the existing comprehensive treatment methods, such as surgery, chemotherapy, radiotherapy, targeted drugs and intervention, can delay the progress of tumor and improve the overall survival rate (OS), there is still the risk that the probability of metastasis, recurrence and drug resistance of malignant tumor will increase after treatment. At present, the rise and development of immunotherapy has increasingly become a hot spot in clinical research in many solid tumor fields, and it has also entered a tentative clinical research application in gynecological tumors. Among them, antibodies against programmed death receptor-1 (PD-1) and its ligand (PD-L1) are immune suppressants, which are used in ovarian cancer (OC), cervical cancer (CC), endometrial cancer (EC) and other gynecological malignant tumors, and it has been confirmed that PD-1/PD-L1 inhibitors have a certain anti-tumor effect. In this paper, the research progress of PD-1/PD-L1 inhibitors in gynecological malignant tumors is briefly re-viewed.
程序性死亡受体-1 (PD-1),程序性死亡配体体(PD-L1),免疫治疗,卵巢癌,宫颈癌,子宫内膜癌,外阴癌, Programmed Death Receptor-1 (PD-1)
Programmed Death Ligand (PD-L1)
Immunotherapy
Ovarian Cancer
Cervical Cancer
Endometrial Cancer
Vulvar Cancer
摘要
Nowadays, gynecological malignant tumors in the world and China are on the rise year by year, which has seriously endangered women’s health. Even if the existing comprehensive treatment methods, such as surgery, chemotherapy, radiotherapy, targeted drugs and intervention, can delay the progress of tumor and improve the overall survival rate (OS), there is still the risk that the probability of metastasis, recurrence and drug resistance of malignant tumor will increase after treatment. At present, the rise and development of immunotherapy has increasingly become a hot spot in clinical research in many solid tumor fields, and it has also entered a tentative clinical research application in gynecological tumors. Among them, antibodies against programmed death receptor-1 (PD-1) and its ligand (PD-L1) are immune suppressants, which are used in ovarian cancer (OC), cervical cancer (CC), endometrial cancer (EC) and other gynecological malignant tumors, and it has been confirmed that PD-1/PD-L1 inhibitors have a certain anti-tumor effect. In this paper, the research progress of PD-1/PD-L1 inhibitors in gynecological malignant tumors is briefly reviewed.
Keywords:Programmed Death Receptor-1 (PD-1), Programmed Death Ligand (PD-L1), Immunotherapy, Ovarian Cancer, Cervical Cancer, Endometrial Cancer, Vulvar Cancer
陈学维,刘云聪,朱国庆. PD-1/PD-L1抑制剂在妇科肿瘤中的研究进展Application of PD-1/PD-L1 Inhibitors in Gynecological Tumors[J]. 世界肿瘤研究, 2024, 14(01): 48-54. https://doi.org/10.12677/WJCR.2024.141008
参考文献References
王劲松, 魏家燕, 彭敏. 2023年美国癌症统计报告和全球最新癌症统计数据解读及启示[J]. 实用肿瘤杂志, 2023, 38(6): 523-527. https://doi.org/10.13267/j.cnki.syzlzz.2023.083
Ventriglia, J., Paciolla, I., Pisano, C., Cecere, S.C., Di Napoli, M., Tambaro, R., et al. (2017) Immunotherapy in Ovarian, Endometrial and Cervical Cancer: State of the Art and Future Perspectives. Cancer Treatment Reviews, 59, 109-116. https://doi.org/10.1016/j.ctrv.2017.07.008
Sánchez-Magraner, L., Gumuzio, J., Miles, J., Quimi, N., Martínez Del Prado, P., Abad-Villar, M.T., et al. (2023) Functional Engagement of the PD-1/PD-L1 Complex But Not PD-L1 Expression Is Highly Predictive of Patient Response to Immunotherapy in Non-Small-Cell Lung Cancer. Journal of Clinical Oncology, 41, 2561-2570. https://doi.org/10.1200/JCO.22.01748
Antony, G.R., Littleflower, A.B., Parambil, S.T. and Subhadradevi, L. (2023) PD-1/PD-L1 Blockade Inhibits Epithelial-Mesenchymal Transition and Improves Chemotherapeutic Response in Breast Cancer. Medical Oncology, 40, Article No. 108. https://doi.org/10.1007/s12032-023-01965-3
Yang, L., Zhao, Q., Chen, T., Liu, W., Qiu, X., Chen, J., et al. (2023) An HPK1 Inhibitor Enhanced the Tumour Response to An-ti-PD-1 Immunotherapy in Non-Hodgkin’s Lymphoma. Clinical and Experimental Medicine, 23, 3767-3780. https://doi.org/10.1007/s10238-023-01068-3
Cao, Y., Liang, W., Fang, L., Liu, M.K., Zuo, J., Peng, Y.L., et al. (2022) PD-L1/PD-L1 Signalling Promotes Colorectal Cancer Cell Migration Ability through RAS/MEK/ERK. Clini-cal and Experimental Pharmacology and Physiology, 49, 1281-1293. https://doi.org/10.1111/1440-1681.13717
Trefny, M.P., Kaiser, M., Stanczak, M.A., Herzig, P., Savic, S., Wiese, M., et al. (2020) PD-1+ Natural Killer Cells in Human Non-Small Cell Lung Cancer Can Be Activated by PD-1/PD-L1 Blockade. Cancer Immunology, Immunotherapy, 69, 1505-1517. https://doi.org/10.1007/s00262-020-02558-z
Gurung, P., et al. (2023) Chlorin e6-Associated Photodynamic Therapy Enhances Abscopal Antitumor Effects via Inhibition of PD-1/PD-L1 Immune Checkpoint. Scientific Reports, 13, Article No. 4647. https://doi.org/10.1038/s41598-023-30256-0
Gurung, P., Lim, J., Shrestha, R. and Kim, Y.W. (2023) Author Correction: Chlorin e6-Associated Photodynamic Therapy Enhances Abscopal Antitumor Effects via Inhibition of PD-1/PD-L1 Immune Checkpoint. Scientific Reports, 13, Article No. 8906. https://doi.org/10.1038/s41598-023-35267-5
糜亚琴, 蒋敬庭, 吴昌平. PD-L1/PD-1在卵巢癌中的表达机制及免疫治疗研究进展[J]. 临床肿瘤学杂志, 2017, 22(2): 180-183.
Li, X., Zhang, Y., Wang, X., Lin, F., Cheng, X., Wang, Z., et al. (2022) Long Non-Coding RNA CTSLP8 Mediates Ovarian Cancer Progression and Chem-otherapy Resistance by Modulating Cellular Glycolysis and Regulating c-Myc Expression through PKM2. Cell Biology and Toxicology, 38, 1027-1045. https://doi.org/10.1007/s10565-021-09650-9
Liu, C., Li, Y., Zhu, Y. and Lu, M. (2022) The Value of IOTA Simple Rules Combined with CEUS Scoring System in the Diagnosis of Benign and Ma-lignant Ovarian Masses and Its Correlation with MVD and VEGF: A Preliminary Study. Journal of Ultrasound in Med-icine, 41, 2983-2992. https://doi.org/10.1002/jum.15999
Matsuura, H., Miyamoto, M., Hada, T., Ishibashi, H., Iwahashi, H., Kakimoto, S., et al. (2022) The Worsening Impact of Programmed Cell Death Ligand 1 in Ovarian Clear Cell Carcinomas. Archives of Gynecology and Obstetrics, 306, 2133-2142. https://doi.org/10.1007/s00404-022-06582-5
Pfisterer, J., Shannon, C.M., Baumann, K., Rau, J., Harter, P., Joly, F., et al. (2020) Bevacizumab and Platinum-Based Combinations for Recurrent Ovarian Cancer: A Randomised, Open-Label, Phase 3 Trial. The Lancet Oncology, 21, 699-709. https://doi.org/10.1016/S1470-2045(20)30142-X
Zhu, J., Yan, L. and Wang, Q. (2021) Efficacy of PD-1/PD-L1 Inhibitors in Ovarian Cancer: A Single-Arm Meta-Analysis. Journal of Ovarian Research, 14, Article No. 112. https://doi.org/10.1186/s13048-021-00862-5
Lee, E.K., Xiong, N., Cheng, S.C., Barry, W.T., Penson, R.T., Konstantinopoulos, P.A., et al. (2020) Combined Pembrolizumab and Pegylated Liposomal Doxorubicin in Plati-num Resistant Ovarian Cancer: A Phase 2 Clinical Trial. Gynecologic Oncology, 159, 72-78. https://doi.org/10.1016/j.ygyno.2020.07.028
Liao, J.B., Gwin, W.R., Urban, R.R., Hitchcock-Bernhardt, K.M., Coveler, A.L., Higgins, D.M., et al. (2021) Pembrolizumab with Low-Dose Carboplatin for Recurrent Plati-num-Resistant Ovarian, Fallopian Tube, and Primary Peritoneal Cancer: Survival and Immune Correlates. The Journal for ImmunoTherapy of Cancer, 9, e003122. https://doi.org/10.1136/jitc-2021-003122
Zhao, F., Fang, T., Liu, H. and Wang, S. (2023) Long Non-Coding RNA MALAT1 Promotes Cell Proliferation, Migration and Invasion in Cervical Cancer by Targeting miR-625-5p and AKT2. Panminerva Medica, 65, 266-267. https://doi.org/10.23736/S0031-0808.19.03845-X
Kagabu, M., Nagasawa, T., Sato, C., Fukagawa, Y., Ka-wamura, H., Tomabechi, H., et al. (2020) Immunotherapy for Uterine Cervical Cancer Using Checkpoint Inhibitors: Fu-ture Directions. International Journal of Molecular Sciences, 21, Article No. 2335. https://doi.org/10.3390/ijms21072335
Grau, J.F., Farinas-Madrid, L. and Oaknin, A. (2020) A Randomized Phase III Trial of Platinum Chemotherapy plus Paclitaxel with Bevacizumab and Atezolizumab versus Platinum Chemo-therapy plus Paclitaxel and Bevacizumab in Metastatic (Stage IVB), Persistent, or Recurrent Carcinoma of the Cervix: The BEATcc Study (ENGOT-Cx10/GEICO 68-C/JGOG1084/GOG-3030). International Journal of Gynecological Cancer, 30, 139-143. https://doi.org/10.1136/ijgc-2019-000880
Frenel, J.S., Le Tourneau, C., O’Neil, B., Ott, P.A., Piha-Paul, S.A., Gomez-Roca, C., et al. (2017) Safety and Efficacy of Pembrolizumab in Advanced, Programmed Death Ligand 1-Positive Cervical Cancer: Results from the Phase Ib KEYNOTE-028 Trial. Journal of Clinical Oncology, 35, 4035-4041. https://doi.org/10.1200/JCO.2017.74.5471
Chung, H.C., Ros, W., Delord, J.P., Perets, R., Ital-iano, A., Shapira-Frommer, R., et al. (2019) Efficacy and Safety of Pembrolizumab in Previously Treated Advanced Cer-vical Cancer: Results from the Phase II KEYNOTE-158 Study. Journal of Clinical Oncology, 37, 1470-1478. https://doi.org/10.1200/JCO.18.01265
De Felice, F., Giudice, E., Bolomini, G., Distefano, M.G., Scambia, G., Fagotti, A. and Marchetti, C. (2021) Pembrolizumab for Advanced Cervical Cancer: Safety and Efficacy. Expert Review of Anticancer Therapy, 21, 221-228. https://doi.org/10.1080/14737140.2021.1850279
Santin, A.D., Deng, W., Frumovitz, M., Buza, N., Bellone, S., Huh, W., et al. (2020) Phase II Evaluation of Nivolumab in the Treatment of Persistent or Recurrent Cervical Cancer (NCT02257528/NRG-GY002). Gynecologic Oncology, 157, 161-166. https://doi.org/10.1016/j.ygyno.2019.12.034
Eggink, F.A., Van Gool, I.C., Leary, A., Pollock, P.M., Crosbie, E.J., Mileshkin, L., et al. (2017) Immunological Profiling of Molecularly Classified High-Risk Endometrial Cancers Identifies POLE-Mutant and Microsatellite Unstable Carcinomas as Candidates for Checkpoint Inhibition. Oncoim-munology, 6, e1264565. https://doi.org/10.1080/2162402X.2016.1264565
Dizon, D.S., Dias-Santagata, D., Bregar, A., Sullivan, L., Filipi, J., Di Tavi, E., et al. (2018) Complete Remission Following Pembrolizumab in a Woman with Mismatch Re-pair-Deficient Endometrial Cancer and a Germline BRCA1 Mutation. Oncologist, 23, 650-653. https://doi.org/10.1634/theoncologist.2017-0526
Danley, K., Schmitz, K., Ghai, R., Sclamberg, J.S., Bucking-ham, L.E., Burgess, K., et al. (2021) A Durable Response to Pembrolizumab in a Patient with Uterine Serous Carcinoma and Lynch Syndrome due to the MSH6 Germline Mutation. Oncologist, 26, 811-817. https://doi.org/10.1002/onco.13832
Makker, V., Rasco, D., Vogelzang, N.J., Brose, M.S., Cohn, A.L., Mier, J., et al. (2019) Lenvatinib plus Pembrolizumab in Patients with Advanced Endometrial Cancer: An Interim Analysis of a Multicentre, Open-Label, Single-Arm, Phase 2 Trial. The Lancet Oncology, 20, 711-718. https://doi.org/10.1016/S1470-2045(19)30020-8
Taylor, M.H., Lee, C.H., Makker, V., Rasco, D., Dutcus, C.E., Wu, J., et al. (2020) Phase IB/II Trial of Lenvatinib plus Pembrolizumab in Patients with Advanced Renal Cell Car-cinoma, Endometrial Cancer, and Other Selected Advanced Solid Tumors. Journal of Clinical Oncology, 38, 1154-1163. https://doi.org/10.1200/JCO.19.01598
刘鸥萱, 胡悦欣, 林蓓. PD-1/PD-L1抑制剂治疗晚期或复发性子宫内膜癌的临床研究进展[J]. 现代肿瘤医学, 2021, 29(8): 1449-1456.
Liu, J.F., Gordon, M., Veneris, J., Braiteh, F., Balmanoukian, A., Eder, J.P., et al. (2019) Safety, Clinical Activity and Biomarker Assessments of Atezolizumab from a Phase I Study in Advanced/Recurrent Ovarian and Uterine Cancers. Gynecologic Oncology, 154, 314-322. https://doi.org/10.1016/j.ygyno.2019.05.021
Huepenbecker, S.P., Fu, S., Sun, C.C., Zhao, H., Primm, K.M., Giordano, S.H., et al. (2022) Medicaid Expansion and 2-Year Survival in Women with Gynecologic Cancer: A Differ-ence-in-Difference Analysis. American Journal of Obstetrics & Gynecology, 227, 482.e1-482.e15. https://doi.org/10.1016/j.ajog.2022.04.045
Borella, F., Preti, M., Bertero, L., Collemi, G., Castellano, I., Cas-soni, P., et al. (2020) Is There a Place for Immune Checkpoint Inhibitors in Vulvar Neoplasms? A State of the Art Re-view. International Journal of Molecular Sciences, 22, Article No. 190. https://doi.org/10.3390/ijms22010190
Hecking, T., et al. (2017) Tumoral PD-L1 Expression Defines a Sub-group of Poor-Prognosis Vulvar Carcinomas with Non-Viral Etiology. Oncotarget, 8, 92890-92903. https://doi.org/10.18632/oncotarget.21641
Naumann, R.W., Hollebecque, A., Meyer, T., Devlin, M.J., Oaknin, A., Kerger, J., et al. (2019) Safety and Efficacy of Nivolumab Monotherapy in Recurrent or Metastatic Cervical, Vaginal, or Vulvar Carcinoma: Results from the Phase I/II CheckMate 358 Trial. Journal of Clinical Oncology, 37, 2825-2834. https://doi.org/10.1200/JCO.19.00739
Cormio, G., Loizzi, V., Gissi, F., Serrati, G., Panzarino, M., Carriero, C., et al. (2009) Cisplatin and Vinorelbine Chemotherapy in Recurrent Vulvar Carcinoma. Oncology, 77, 281-284. https://doi.org/10.1159/000259259
Yeku, O., Russo, A.L., Lee, H. and Spriggs, D. (2020) A Phase 2 Study of Combined Chemo-Immunotherapy with Cisplatin-Pembrolizumab and Radiation for Unresectable Vulvar Squamous Cell Carcinoma. Journal of Translational Medicine, 18, Article No. 350. https://doi.org/10.1186/s12967-020-02523-5
Shapira-Frommer, R., Mileshkin, L., Manzyuk, L., Penel, N., Burge, M., Piha-Paul, S.A., et al. (2022) Efficacy and Safety of Pembrolizumab for Patients with Previously Treated Advanced Vulvar Squamous Cell Carcinoma: Results from the Phase 2 KEYNOTE-158 Study. Gynecologic Oncology, 166, 211-218. https://doi.org/10.1016/j.ygyno.2022.01.029
Bogani, G., Palaia, I., Perniola, G., Tomao, F., Giancotti, A., Di Mascio, D., et al. (2023) An Update on Current Pharmacotherapy for Vulvar Cancer. Expert Opinion on Pharmacother-apy, 24, 95-103. https://doi.org/10.1080/14656566.2022.2117608