重金属污染来源精细解析是区域农田土壤开展污染消减与阻控措施的首要措施。农田土壤重金属来源复杂多样,且污染物的迁移与累积过程受到地形、气象、植被等多种因素的影响,导致污染源对区域不同位置农田产生差别化污染贡献。为精细解析该差别化污染贡献,需使用多个类别型和连续型代理变量表征各污染源空间输出强度及影响因素,并建模代理变量与农田土壤重金属含量之间的关系。而在区域尺度这一关系往往存在空间异质性,现有方法能否有效解决该问题。对此,本文在分析农田土壤重金属污染来源及其空间异质性污染贡献的基础上,梳理了区域农田土壤重金属污染源解析方法的研究现状及其发展趋势,并展望了新的源解析方法,为我国各级政府和相关组织制定既经济又环保的农田土壤重金属污染风险防控措施提供技术支撑。 Fine apportionment of the heavy metal pollution sources is the prerequisite for pollution reduction and prevention for farmland soil. The sources of heavy metals in farmland soil are complex and diverse, and the migration and accumulation process of pollutants are affected by multiple factors such as topography, meteorology, vegetation, etc., resulting in different pollution contributions from pollution sources to farmland soil in different places in the region. In order to analyze the different pollution contribution accurately, it is necessary to use multiple categorical and continuous proxy variables to characterize the emission intensity of each pollution source and corresponding influencing factors, and to model the relationship between proxy variables and heavy metal content in farmland soil. The relationships between the heavy metal contents and proxy variables are spatially heterogeneous, thus whether existing methods can solve this problem deserves investigation. To answer this question, we first analyze the sources of heavy metal pollution in farmland soil and their spatially heterogeneous pollution contribution, and then summarize the research status and prospects of apportionment methods of heavy metal pollution sources of farmland soil at a regional scale. This study aims to provide technical support for the government and related organizations to take measures to prevent and control heavy metal pollution risks in farmland soil that are both economical and environmentally friendly.
农田土壤,重金属污染,源解析方法,空间异质性关系, Farmland Soil
Heavy Metal Pollution
Source Apportionment Method
Spatial Heterogeneous Relationship
摘要
Fine apportionment of the heavy metal pollution sources is the prerequisite for pollution reduction and prevention for farmland soil. The sources of heavy metals in farmland soil are complex and diverse, and the migration and accumulation process of pollutants are affected by multiple factors such as topography, meteorology, vegetation, etc., resulting in different pollution contributions from pollution sources to farmland soil in different places in the region. In order to analyze the different pollution contribution accurately, it is necessary to use multiple categorical and continuous proxy variables to characterize the emission intensity of each pollution source and corresponding influencing factors, and to model the relationship between proxy variables and heavy metal content in farmland soil. The relationships between the heavy metal contents and proxy variables are spatially heterogeneous, thus whether existing methods can solve this problem deserves investigation. To answer this question, we first analyze the sources of heavy metal pollution in farmland soil and their spatially heterogeneous pollution contribution, and then summarize the research status and prospects of apportionment methods of heavy metal pollution sources of farmland soil at a regional scale. This study aims to provide technical support for the government and related organizations to take measures to prevent and control heavy metal pollution risks in farmland soil that are both economical and environmentally friendly.
Keywords:Farmland Soil, Heavy Metal Pollution, Source Apportionment Method, Spatial Heterogeneous Relationship
丁海元,高秉博. 区域农田土壤重金属污染源解析方法研究现状及展望Research Status and Prospects of Apportionment Methods for Heavy Metal Pollution Sources of Farmland Soil at Regional Scale[J]. 土壤科学, 2024, 12(01): 27-35. https://doi.org/10.12677/HJSS.2024.121004
参考文献References
环境保护部, 国土资源部. 全国土壤污染调查公报[J]. 中国环保产业, 2014(5): 2.
曾希柏, 徐建明, 黄巧云, 等. 中国农田重金属问题的若干思考[J]. 土壤学报, 2013, 50(1): 186-194.
瞿明凯, 李卫东, 张传荣, 等. 地理加权回归及其在土壤和环境科学上的应用前景[J]. 土壤, 2014, 46(1): 15-22.
李鹏. 县域尺度耕地土壤重金属的时空变异特征及污染源识别研究[D]: [硕士学位论文]. 杭州: 浙江大学, 2016.
Fernández, S., Cotos-Yáñez, T., Roca-Pardiñas, J. and Ordóñez, C. (2018) Geographically Weighted Principal Components Analysis to Assess Diffuse Pollution Sources of Soil Heavy Metal: Application to Rough Mountain Areas in Northwest Spain. Geoderma, 311, 120-129. https://doi.org/10.1016/j.geoderma.2016.10.012
Sawut, R. (2017) Using Regres-sion Model to Identify and Evaluate Heavy Metal Pollution Sources in an Open Pit Coal Mine Area, Eastern Junggar, China. Environmental Earth Sciences, 73, Article No. 822. https://doi.org/10.1007/s12665-017-7035-5
魏复盛, 陈静生, 吴燕玉, 等. 中国土壤环境背景值研究[J]. 环境科学, 1991, 12(4): 12-19.
齐杏杏, 高秉博, 潘瑜春, 等. 基于地理探测器的土壤重金属污染影响因素分析[J]. 农业环境科学学报, 2019, 38(11): 2476-2486.
蔡立梅, 马瑾, 周永章, 等. 东莞市农田土壤和蔬菜重金属的含量特征分析[J]. 地理学报, 2008, 63(9): 994-1003.
Liu, J., Liu, Y.J., Liu, Y., Liu, Z. and Zhang, A.N. (2018) Quantitative Contributions of the Major Sources of Heavy Metals in Soils to Ecosystem and Human Health Risks: A Case Study of Yulin, China. Ecotoxicology and Environmental Safety, 164, 261-269. https://doi.org/10.1016/j.ecoenv.2018.08.030
黄颖. 不同尺度农田土壤重金属污染源解析研究[D]: [博士学位论文]. 杭州: 浙江大学, 2018.
何纪力, 徐光炎, 朱惠民. 土壤环境背景值的影响因素综合分析[J]. 中国环境监测, 1992, 8(3): 69-73.
赵彦锋, 郭恒亮, 孙志英, 等. 基于土壤学知识的主成分分析判断土壤重金属来源[J]. 地理科学, 2008, 28(1): 45-50.
谢小进, 康建成, 李卫江, 等. 上海宝山区农用土壤重金属分布与来源分析[J]. 环境科学, 2010, 31(3): 768-774.
倪润祥. 中国农田土壤重金属输入输出平衡和风险评价研究[D]: [博士学位论文]. 北京: 中国农业科学院, 2017.
樊文华, 张毓庄, 郭新波, 等. 五台山土壤环境背景值及其垂直分异规律[J]. 山西农业大学学报, 1995(2): 142-146, 212-213.
Ha, H., Olson, J.R., Bian, L. and Rogerson, P.A. (2014) Analysis of Heavy Metal Sources in Soil Using Kriging Interpolation on Principal Components. Environmental Science & Technology, 48, 4999-5007. https://doi.org/10.1021/es405083f
吕悦风, 孙华. 浙北某县域耕地土壤重金属空间分异特征、污染评价及来源分析[J]. 农业环境科学学报, 2019, 38(1): 95-102.
Marchant, B.P., Tye, A.M. and Rawlins, B.G. (2011) The Assessment of Point-Source and Diffuse Soil Metal Pollution Using Robust Geostatistical Methods: A Case Study in Swansea (Wales, UK). European Journal of Soil Science, 62, 346-358. https://doi.org/10.1111/j.1365-2389.2011.01373.x
胡克林, 李保国, 吕贻忠, 等. 非平稳型区域土壤汞含量的各种估值方法比较[J]. 环境科学, 2004, 25(3): 132-137.
Hou, D., O’Connor, D., Nathanail, P., et al. (2017) Integrated GIS and Multivariate Statistical Analysis for Regional Scale Assessment of Heavy Metal Soil Contamination: A Critical Review. Environmental Pollution, 231, 1188-1200. https://doi.org/10.1016/j.envpol.2017.07.021
Lin, Y.P., Teng, T.P. and Chang, T.K. (2002) Multivariate Analysis of Soil Heavy Metal Pollution and Landscape Pattern in Changhua County in Taiwan. Landscape and Urban Planning, 62, 19-35. https://doi.org/10.1016/S0169-2046(02)00094-4
Lv, J. (2019) Multivariate Receptor Models and Robust Geostatistics to Estimate Source Apportionment of Heavy Metals in Soils. Environmental Pollution, 244, 72-83. https://doi.org/10.1016/j.envpol.2018.09.147
Wang, Q., Xie, Z. and Li, F. (2015) Using Ensemble Models to Identify and Apportion Heavy Metal Pollution Sources in Agricultural Soils on a Local Scale. Environmental Pollution, 206, 227-235. https://doi.org/10.1016/j.envpol.2015.06.040
Qu, M., Wang, Y., Huang, B. and Zhao, Y.C. (2018) Source Apportionment of Soil Heavy Metals Using Robust Absolute Principal Component Scores-Robust Geographically Weighted Regression (RAPCS-RGWR) Receptor Model. Science of the Total Environment, 626, 203-210. https://doi.org/10.1016/j.scitotenv.2018.01.070
陈雅丽, 翁莉萍, 马杰, 等. 近十年中国土壤重金属污染源解析研究进展[J]. 农业环境科学学报, 2019, 38(10): 2219-2238.
林燕萍, 赵阳, 胡恭任, 等. 多元统计在土壤重金属污染源解析中的应用[J]. 地球与环境, 2011, 39(4): 536-542.
李娇, 吴劲, 蒋进元, 等. 近十年土壤污染物源解析研究综述[J]. 土壤通报, 2018, 49(1): 232-242.
Song, H., Hu, K., An, Y., Chen, C. and Li, G.D. (2018) Spatial Distribution and Source Apportionment of the Heavy Metals in the Agricultural Soil in a Regional Scale. Journal of Soils and Sediments, 18, 852-862. https://doi.org/10.1007/s11368-017-1795-0
Qu, M.K., Li, W.D., Zhang, C.R., et al. (2013) Source Appor-tionment of Heavy Metals in Soils Using Multivariate Statistics and Geostatistics. Pedosphere, 23, 437-444. https://doi.org/10.1016/S1002-0160(13)60036-3
Xu, X., Zhao, Y., Zhao, X., et al. (2014) Sources of Heavy Metal Pollution in Agricultural Soils of a Rapidly Industrializing Area in the Yangtze Delta of China. Ecotoxicology and Environmental Safety, 108, 161-167. https://doi.org/10.1016/j.ecoenv.2014.07.001
Mahmoudabadi, E., Sarmadian, F. and Nazary Moghaddam, R. (2015) Spatial Distribution of Soil Heavy Metals in Different Land Uses of an Industrial Area of Tehran (Iran). Inter-national Journal of Environmental Science and Technology, 12, 3283-3298. https://doi.org/10.1007/s13762-015-0808-z
Qu, M., Li, W., Zhang, C., et al. (2016) Assessing the Pollution Risk of Soil Chromium Based on Loading Capacity of Paddy Soil at a Regional Scale. Scientific Reports, 5, Article No. 18451. https://doi.org/10.1038/srep18451
陈丹青, 谢志宜, 张雅静, 等. 基于PCA/APCS和地统计学的广州市土壤重金属来源解析[J]. 生态环境学报, 2016, 25(6): 1014-1022.
陈秀端, 卢新卫. 基于受体模型与地统计的城市居民区土壤重金属污染源解析[J]. 环境科学, 2017, 38(6): 2513-2521.
瞿明凯, 李卫东, 张传荣, 等. 基于受体模型和地统计学相结合的土壤镉污染源解析[J]. 中国环境科学, 2013, 33(5): 854-860.
Rodríguez, J.A., Nanos, N., Grau, J.M., et al. (2008) Multiscale Analysis of Heavy Metal Contents in Spanish Agricultural Topsoils. Chemosphere, 70, 1085-1096. https://doi.org/10.1016/j.chemosphere.2007.07.056
Harris, P., Clarke, A., Juggins, S., et al. (2015) En-hancements to a Geographically Weighted Principal Component Analysis in the Context of an Application to an Envi-ronmental Data Set: Enhancements to GWPCA. Geographical Analysis, 47, 146-172. https://doi.org/10.1111/gean.12048
Hu, Y. and Cheng, H. (2016) A Method for Apportionment of Natural and Anthropogenic Contributions to Heavy Metal Loadings in the Surface Soils across Large-Scale Regions. Environmental Pollution, 214, 400-409. https://doi.org/10.1016/j.envpol.2016.04.028
孙慧, 毕如田, 郭颖, 等. 广东省土壤重金属溯源及污染源解析[J]. 环境科学学报, 2018, 38(2): 704-714.
刘斌, 郭星, 朱宇恩. 基于随机森林模型的土壤重金属源解析——以晋中盆地为例[J]. 干旱区资源与环境, 2019, 33(1): 106-111.
Shih, Y.S. and Tsai, H.W. (2004) Variable Selection Bias in Regression Trees with Constant Fits. Computational Statistics & Data Analysis, 45, 595-607. https://doi.org/10.1016/S0167-9473(03)00036-7
Strobl, C., Boulesteix, A.L., Zeileis, A. and Hothorn T., (2007) Bias in Random Forest Variable Importance Measures: Illustrations, Sources and a Solution. BMC Bioinformatics, 8, Article No. 25. https://doi.org/10.1186/1471-2105-8-25
Goodchild, M.F. (2004) The Validity and Usefulness of Laws in Geographic Information Science and Geography. Annals of the Association of American Geog-raphers, 94, 300-303. https://doi.org/10.1111/j.1467-8306.2004.09402008.x
Li, S., Zhao, Z., Xie, M.M. and Wang, Y.L. (2010) Investigating Spatial Non-Stationary and Scale-Dependent Relationships between Urban Surface Temperature and Environmental Factors Using Geographically Weighted Regression. Environmental Modelling & Software, 25, 1789-1800. https://doi.org/10.1016/j.envsoft.2010.06.011
Hastie, T., Tibshirani, R. and Fried-man, J. (2010) The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Biometrics, 66, 1315. https://doi.org/10.1111/j.1541-0420.2010.01516.x
Friedman, J .H. (2002) Stochastic Gradient Boosting. Computational Statistics & Data Analysis, 38, 367-378. https://doi.org/10.1016/S0167-9473(01)00065-2
Fotheringham, A., Brunsdon, C. and Charlton, M. (2002) Geographically Weighted Regression: The Analysis of Spatially Varying Relationships. John Wiley & Sons, New York.
Jones, K. (1991) Specifying and Estimating Multi-Level Models for Geographical Research. Transactions of the Institute of British Geographers, 16, 148-159. https://doi.org/10.2307/622610
Duncan, C. and Jones, K. (2000) Using Multilevel Models to Model Heterogeneity: Potential and Pitfalls. Geographical Analysis, 32, 279-305. https://doi.org/10.1111/j.1538-4632.2000.tb00429.x
Lupi, L., Bertrand, L., Monferrán, M.V., et al. (2019) Multilevel and Structural Equation Modeling Approach to Identify Spatiotemporal Patterns and Source Characterization of Metals and Metalloids in Surface Water and Sediment of the Ctalamochita River in Pampa Region, Argentina. Journal of Hydrology, 572, 403-413. https://doi.org/10.1016/j.jhydrol.2019.03.019
Gelman, A. (2006) Multilevel (hierarchical) Modeling: What It Can and Can’t Do. Technometrics, 48, 432-435. https://doi.org/10.1198/004017005000000661
Wheeler, D.C. and Calder, C.A. (2007) An Assessment of Coefficient Accuracy in Linear Regression Models with Spatially Varying Coefficients. Journal of Geographical Systems, 9, 145-166. https://doi.org/10.1007/s10109-006-0040-y
Sharkey, P. and Winter, H.C. (2019) A Bayesian Spatial Hierar-chical Model for Extreme Precipitation in Great Britain: A Bayesian Hierarchical Model for Extreme Precipitation. Environmetrics, 30, e2529. https://doi.org/10.1002/env.2529
Li, X., Zhou, Y., Asrar, G.R. and Zhu, Z.Y. (2018) Creating a Seamless 1km Resolution Daily Land Surface Temperature Dataset for Urban and Surrounding Areas in the Conterminous United States. Remote Sensing of Environment, 206, 84-97. https://doi.org/10.1016/j.rse.2017.12.010
Wheeler, D.C. (2014) Geographically Weighted Regression. In: Fischer, M. and Nijkamp, P., Eds., Handbook of Regional Science, Springer, Berlin, 1435-1459. https://doi.org/10.1007/978-3-642-23430-9_77
Wheeler, D.C. (2009) Simultaneous Coefficient Penalization and Model Selection in Geographically Weighted Regression: The Geographically Weighted Lasso. Environment and Planning A: Economy and Space, 41, 722-742. https://doi.org/10.1068/a40256
Wheeler, D.C. (2007) Diagnostic Tools and a Remedial Method for Collinearity in Geographically Weighted Regression. Environment and Planning A: Economy and Space, 39, 2464-2481. https://doi.org/10.1068/a38325