乳腺癌(Breast cancer, BC)是女性最常见的恶性肿瘤,又称为“粉红杀手”,在癌症相关妇女死亡原因中排第二。成纤维细胞活化蛋白(fibroblast activation protein, FAP),高度表达于肿瘤相关成纤维细胞中,近年来,基于喹啉设计的小分子FAP抑制剂(FAP inhibitor, FAPI)显示出优秀的FAP亲和力,在乳腺癌中摄取量较高。随着技术的发展,68Ga标记的FAPI在乳腺癌的诊断中得到了进一步的发展。本文就近年来68Ga-FAPI在乳腺癌中的临床研究和应用进展做简要综述,以提高其临床应用效益。 Breast cancer (BC) is the most common malignancy in women, also known as the “Pink Killer”. BC is the second leading cause of cancer-related death in women. Fibroblast activation protein (FAP) is highly expressed in tumor-associated fibroblasts. Recently, small molecule FAP inhibitor (FAPI) based on quinoline design has shown an excellent affinity for FAP, high intake in breast cancer. With the development of technology, 68Ga-labeled FAPI (68Ga-FAPI) has been further developed in the diagnosis of breast cancer. In this review, the clinical research and application of 68Ga-FAPI in breast cancer were reviewed to improve the clinical benefit.
成纤维细胞活化蛋白抑制剂,乳腺癌,正电子发射计算机断层显像, Fibroblast Activating Protein Inhibitor
Breast Cancer
PET/CT
摘要
Breast cancer (BC) is the most common malignancy in women, also known as the “Pink Killer”. BC is the second leading cause of cancer-related death in women. Fibroblast activation protein (FAP) is highly expressed in tumor-associated fibroblasts. Recently, small molecule FAP inhibitor (FAPI) based on quinoline design has shown an excellent affinity for FAP, high intake in breast cancer. With the development of technology,68Ga-labeled FAPI (68Ga-FAPI) has been further developed in the diagnosis of breast cancer. In this review, the clinical research and application of68Ga-FAPI in breast cancer were reviewed to improve the clinical benefit.
Keywords:Fibroblast Activating Protein Inhibitor, Breast Cancer, PET/CT
邓贵斌,李义兴,沈小兰,刘德慧. 68Ga-FAPI在乳腺癌诊断中的研究进展Research Progress of 68Ga-FAPI in the Diagnosis of Breast Cancer[J]. 世界肿瘤研究, 2024, 14(01): 20-26. https://doi.org/10.12677/WJCR.2024.141004
参考文献References
杨一风, 祁章璇, 聂生东. 基于多模态MRI与深度学习的乳腺病变良恶性鉴别[J]. 波谱学杂志, 2022, 39(4): 401-412.
Weaver, O. and Leung, J.W.T. (2018) Biomarkers and Imaging of Breast Cancer. American Journal of Roentgenolog, 210, 271-278. https://doi.org/10.2214/AJR.17.18708
Yang, B., Ren, G., Song, E., et al. (2020) Current Status and Factors Influencing Surgical Options for Breast Cancer in China: A Nationwide Cross-Sectional Sur-vey of 110 Hospitals. Oncologist, 25, e1473-e1480. https://doi.org/10.1634/theoncologist.2020-0001
Hyuna, S. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. https://doi.org/10.3322/caac.21660
乳腺癌诊疗指南(2022年版) [J]. 中国合理用药探索, 2022, 19(10): 1-26.
张富强, 李强, 杨辉. 氟-18脱氧葡萄糖正电子发射断层显像对乳腺良恶性病变的鉴别诊断价值[J]. 慢性病学杂志, 2022, 23(5): 788-90.
Hamson, E.J., Keane, F.M., Tholen, S., et al. (2014) Understanding Fibroblast Activation Protein (FAP): Substrates, Activities, Expression and Targeting for Cancer Therapy. Proteomics—Clinical Applications, 8, 454-463. https://doi.org/10.1002/prca.201300095
Fitzgerald, A.A. and Weiner, L.M. (2020) The Role of Fibroblast Ac-tivation Protein in Health and Malignancy. Cancer and Metastasis Reviews, 39, 783-803. https://doi.org/10.1007/s10555-020-09909-3
陈跃, 邱琳, 石洪成, 等. 68Ga-成纤维细胞激活蛋白抑制剂PET/CT显像指南[J]. 中国医学影像技术, 2022, 38(6): 801-806.
Kömek, H., Can, C., Güzel, Y., et al. (2021) 68Ga-FAPI-04 PET/CT, a New Step in Breast Cancer Imaging: A Comparative Pilot Study with the 18F-FDG PET/CT. Annals of Nuclear Medicine, 35, 744-752. https://doi.org/10.1007/s12149-021-01616-5
Loktev, A., Lindner, T., Mier, W., et al. (2018) A Tu-mor-Imaging Method Targeting Cancer-Associated Fibroblasts. Journal of Nuclear Medicine, 59, 1423-1429. https://doi.org/10.2967/jnumed.118.210435
Eshet, Y., Tau, N., Levanon, K., et al. (2023) The Role of 68 Ga-FAPI PET/CT in Breast Cancer Response Assessment and Follow-Up. Clinical Nuclear Medicine, 48, 685-688. https://doi.org/10.1097/RLU.0000000000004744
刘馨, 伍治平, 王熙才. 乳腺癌相关成纤维细胞与成纤维活化蛋白[J]. 肿瘤防治研究, 2013, 40(7): 717-719.
孙朝晖, 邹立伟, 杨凌. 成纤维细胞活化蛋白的研究进展[J]. 生物化学与生物物理进展, 2020, 47(1): 39-52.
Chen, H., Zhao, L., Ruan, D., et al. (2021) Usefulness of [68Ga]Ga-DOTA-FAPI-04 PET/CT in Patients Presenting with Inconclusive [18F]FDG PET/CT Findings. European Journal of Nuclear Medicine and Molecular Imaging, 48, 73-86. https://doi.org/10.1007/s00259-020-04940-6
叶雨萌, 周学素, 田启威, 等. 成纤维细胞活化蛋白抑制剂在肿瘤诊疗中的研究进展[J]. 上海师范大学学报(自然科学版), 2022, 51(4): 436-442.
Xu, W., Meng, T., Shang, Q., et al. (2022) Uncommon Metastases from Occult Breast Cancer Revealed by 18F-FDG and 68Ga-FAPI PET/CT. Clinical Nuclear Medicine, 47, 751-753. https://doi.org/10.1097/RLU.0000000000004193
《中国肿瘤临床》文章推荐: 乳腺癌前哨淋巴结活检规范化操作指南(2022精要版) [J]. 中国肿瘤临床, 2023, 50(1): 36.
Shen, S., Zhou, Y., Xu, Y., et al. (2015) A Multi-Centre Randomised Trial Comparing Ultrasound vs Mammography for Screening Breast Cancer in High-Risk Chinese Women. British Journal of Cancer, 112, 998-1004. https://doi.org/10.1038/bjc.2015.33
孙艺宁, 陈兰. 非肿块型乳腺病变超声诊断新进展[J]. 中国现代医生, 2023, 61(1): 134-137.
Li, W., Newitt, D.C., Gibbs, J., et al. (2020) Predicting Breast Cancer Response to Neoad-juvant Treatment Using Multi-Feature MRI: Results from the I-SPY 2 TRIAL. NPJ Breast Cancer, 6, Article No. 63. https://doi.org/10.1038/s41523-020-00203-7
Liu, H., Chen, Y., Zhang, Y., et al. (2021) A Deep Learning Model Integrating Mammography and Clinical Factors Facilitates the Malignancy Prediction of BI-RADS 4 Microcalci-fications in Breast Cancer Screening. European Radiology, 31, 5902-5912. https://doi.org/10.1007/s00330-020-07659-y
Groheux, D. and Hindie, E. (2021) Breast Cancer: Initial Workup and Staging with FDG PET/CT. Clinical and Translational Imaging, 9, 221-231. https://doi.org/10.1007/s40336-021-00426-z
Backhaus, P., Burg, M.C., Roll, W., et al. (2022) Simultaneous FAPI PET/MRI Targeting the Fibroblast-Activation Protein for Breast Cancer. Radiology, 302, 39-47. https://doi.org/10.1148/radiol.2021204677
Elboga, U., Sahin, E., Kus, T., et al. (2021) Superiority of 68Ga-FAPI PET/CT Scan in Detecting Additional Lesions Compared to 18FDG PET/CT Scan in Breast Cancer. Annals of Nuclear Medicine, 35, 1321-1331. https://doi.org/10.1007/s12149-021-01672-x
Korol, P., Samokhin, A., Shcherbina, O.B. and Пономаренко, H.М. (2019) FAPI-PET/CT: A New Direction for Diagnostic Imaging In Nuclear Medicine. Radiation Diagnostics Ra-diation Therapy, 4, 48-54. https://doi.org/10.37336/2707-0700-2019-4-5
Dendl, K., Koerber, S.A., Watabe, T., et al. (2023) Current Sta-tus of Fibroblast Activation Protein Imaging in Gynecologic Malignancy and Breast Cancer. PET Clinics, 18, 345-351. https://doi.org/10.1016/j.cpet.2023.03.005
Zheng, S., Lin, J., Zhu, Y., et al. (2023) 68Ga-FAPI versus 18F-FDG PET/CT in Evaluating Newly Diagnosed Breast Cancer Patients: A Head-to-Head Comparative Study. Clinical Nuclear Medicine, 48, e104-e109. https://doi.org/10.1097/RLU.0000000000004523
Ballal, S., Yadav, M.P., Moon, E.S., et al. (2021) Biodis-tribution, Pharmacokinetics, Dosimetry of [68Ga]Ga-DOTA.SA.FAPi, and the Head-to-Head Comparison with [18F]F-FDG PET/CT in Patients with Various Cancers. European Journal of Nuclear Medicine and Molecular Imaging, 48, 1915-1931. https://doi.org/10.1007/s00259-020-05132-y
Elboga, U. (2021) Superiority of 68Ga-FAPI PET/CT Scan in Detecting Additional Lesions Compared to 18FDG PET/CT Scan in Breast Cancer. Annals of Nuclear Medicine, 35, 1321-1331. https://doi.org/10.1007/s12149-021-01672-x
Komek, H. (2021) 68Ga-FAPI-04 PET/CT, a New Step in Breast Cancer Imaging: A Comparative Pilot Study with the 18F-FDG PET/CT. Annals of Nu-clear Medicine, 35, 744-752. https://doi.org/10.1007/s12149-021-01616-5
Qiu, S., Zou, S., Cheng, S., et al. (2022) Positive FAPI PET/CT in a Bilateral Mammary Angiosarcoma Patient with Less Impressive FDG PET/CT Imag-es. Clinical Nuclear Medicine, 47, 648-650. https://doi.org/10.1097/RLU.0000000000004089
Dendl, K. (2021) 68Ga-FAPI-PET/CT in Patients with Var-ious Gynecological Malignancies. European Journal of Nuclear Medicine and Molecular Imaging, 48, 4089-4100. https://doi.org/10.1007/s00259-021-05378-0
Taralli, S., Lorusso, M., Perrone, E., et al. (2023) PET/CT with Fibroblast Activation Protein Inhibitors in Breast Cancer: Diagnostic and Theranostic Application—A Literature Review. Cancers, 15, Article 908. https://doi.org/10.3390/cancers15030908
Xu, T., Wang, W., Yang, C., et al. (2022) 68Ga-DOTA-FAPI-04 Uptake of Accessory Breast in a Patient with Breast Cancer. Clinical Nuclear Medicine, 47, 564-565. https://doi.org/10.1097/RLU.0000000000004069
Park, M., Kim, D., Ko, S., et al. (2022) Breast Cancer Me-tastasis: Mechanisms and Therapeutic Implications. International Journal of Molecular Sciences, 23, Article 6806. https://doi.org/10.3390/ijms23126806
Li, T., Jiang, X., Zhang, Z., et al. (2022) Case Report: 68Ga-FAPI PET/CT, a More Advantageous Detection Mean of Gastric, Peritoneal, and Ovarian Metastases from Breast Cancer. Frontiers in Oncology, 12, Article 1013066. https://doi.org/10.3389/fonc.2022.1013066
Sousaris, N., Mendelsohn, G. and Barr, R.G. (2013) Lung Cancer Metastatic to Breast: Case Report and Review of the Literature. Ultrasound Quarterly, 29, 205-209. https://doi.org/10.1097/RUQ.0b013e3182a00fc4
Hosonaga, M., Saya, H. and Arima, Y. (2020) Molecular and Cellular Mechanisms Underlying Brain Metastasis of Breast Cancer. Cancer and Metastasis Reviews, 39, 711-720. https://doi.org/10.1007/s10555-020-09881-y
Tahara, R.K., Brewer, T.M., Theriault, R.L. and Ueno, N.T. (2019) Bone Metastasis of Breast Cancer. In: Ahmad, A., Ed., Breast Cancer Metastasis and Drug Resistance, Springer, Cham, 105-129. https://doi.org/10.1007/978-3-030-20301-6_7
Lind, K., Borhani-Khomani, K., Okholm, M., et al. (2022) Rou-tine X-Ray of the Chest Is Not Justified in Staging of Patients with Primary Breast Cancer. Danish Medical Journal, 69, A06220380.
Magnoni, F., Di Tonno, C., Accardo, G., et al. (2019) Breast Cancer with Rare Metastatic Manifesta-tion. Future Oncology, 15, 2437-2340. https://doi.org/10.2217/fon-2019-0263
Simanek, M. and Koranda, P. (2016) SPECT/CT Imaging in Breast Cancer—Current Status and Challenges. Biomedical papers of the Medical Faculty of the University Palacky, Olomouc, Czech Republic, 160, 474-483. https://doi.org/10.5507/bp.2016.036
Wang, Q., Tang, W., Cai, L. and Chen, Y. (2022) Non-18F-FDG-Avid Intrahepatic Metastasis of Breast Cancer Revealed by 68Ga-FAPI PET/CT. Clinical Nuclear Medicine, 47, 228-230. https://doi.org/10.1097/RLU.0000000000003905
Hathi, D.K. and Jones, E.F. (2019) 68Ga FAPI PET/CT: Tracer Uptake in 28 Different Kinds of Cancer. Radiology: Imaging Cancer, 1, e194003. https://doi.org/10.1148/rycan.2019194003
Laura, G. (2023) FDG and Non-FDG Radiopharmaceuticals for PET Imaging in Invasive Lobular Breast Carcinoma. Biomedicines, 11, Article 1350. https://doi.org/10.3390/biomedicines11051350
Eshet, Y., Tau, N., Apter, S., et al. (2023) The Role of 68Ga-FAPI PET/CT in Detection of Metastatic Lobular Breast Cancer. Clinical Nuclear Medicine, 48, 228-232. https://doi.org/10.1097/RLU.0000000000004540
Masatoshi, H. (2023) Non-Oncologic Incidental Uptake on FAPI PET/CT Imaging. The British Journal of Radiology, 96, Article ID: 20220463. https://doi.org/10.1259/bjr.20220463
Ding, F., Huang, C., Liang, C., et al. (2021) 68Ga-FAPI-04 vs. 18F-FDG in a Longitudinal Preclinical PET Imaging of Metastatic Breast Cancer. European Journal of Nuclear Medicine and Mo-lecular Imaging, 49, 290-300. https://doi.org/10.1007/s00259-021-05442-9
Shang, Q., Hao, B., Xu, W., et al. (2022) 68Ga-FAPI PET/CT Detected Non-FDG-Avid Bone Metastases in Breast Cancer. European Journal of Nuclear Medicine and Molecular Imaging, 49, 2096-2097. https://doi.org/10.1007/s00259-021-05664-x