TCM Traditional Chinese Medicine 2166-6067 Scientific Research Publishing 10.12677/TCM.2023.1212541 TCM-78421 TCM20231200000_37517427.pdf 医药卫生 基于代谢组学研究参苓白术散对腹泻型肠易激综合征的作用机制 Study on the Mechanism of Action of ShenlingBaizhu Powder on Diarrhea-Predominant Irritable Bowel Syndrome Based on Metabolomics 1 * 秋香 2 1 瑞珂 2 1 2 1 培民 3 2 1 成都中医药大学临床医学院,四川 成都;成都中医药大学附属医院,四川 成都 null 成都中医药大学临床医学院,四川 成都 07 12 2023 12 12 3629 3644 © Copyright 2014 by authors and Scientific Research Publishing Inc. 2014 This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/

目的:探讨参苓白术散对脾虚湿盛证型腹泻型肠易激综合征(IBS-D)疗效机制及IBS-D潜在生物标志物。方法:入组28例健康人为对照组,28例脾虚湿盛证型IBS-D为治疗组,治疗组给予参苓白术散,连续2周;采集对照组,治疗前后两组的血浆,三者两两比较;评估治疗前后两组的BSFS、IBS-SSS积分、IBS-QOL量表、HAMD和HAMA变化以及筛选血浆中差异代谢物,分析差异代谢物相关性和显著富集差异代谢物。结果:治疗后IBS-SSS总分、BSFS、腹胀程度、腹痛频率、腹痛程度、IBS-QOL显著降低;对生活的影响度,排便满意度,HAMA,HAMD均低于治疗前;与对照组对比,治疗前有24种差异代谢物,治疗后有47种差异代谢物,通过韦恩图、差异代谢物相关性分析及KEGG富集分析,α-酮戊二酸、乙酰乙酸、柠檬酸、中康酸4种代谢物被认为是IBS-D的潜在生物标志物,此外乙酰乙酸、柠檬酸、中康酸为下调,并且三者间呈正相关。与治疗前比较时,观察到有19种差异代谢物;治疗后差异代谢物主要富集在去甲吗啡、腺苷、富马酸3个代谢物,其次治疗后的α-酮戊二酸、柠檬酸、中康酸均低于治疗前。结论:IBS-D的发病机制可能与能量代谢异常有关,参苓白术散则改善能量代谢以及调节腺苷、去甲吗啡、富马酸代谢到达防治脾虚湿盛证型IBS-D疗效。 Objective: The purpose of this study was to investigate the treatment mechanism of ShenlingBaizhu Powder for diarrhea-predominant irritable bowel syndrome (IBS-D) with spleen deficiency and ex-cessive dampness syndrome, as well as potential IBS-D biomarkers. Method: The control group con-sisted of 28 healthy people, while the treatment group comprised 28 patients with spleen deficien-cy and excessive dampness syndrome (IBS-D). Two consecutive weeks of ShenlingBaizhu Powder were administered to the treatment group. Collect plasma from the control group as well as before and after treatment, and compare them to each other. The BSFS, IBS-SSS score, IBS-QOL scale, HAMD, and HAMA changes were examined before and after treatment, and differential metabolites in plasma were screened to examine the association between differential metabolites and the sig-nificant enrichment of differential metabolites. Result: The IBS-SSS total score, BSFS, degree of ab-dominal distension, frequency of abdominal pain, degree of abdominal pain, and IBS-QOL were sig-nificantly reduced following treatment. The impact on life, defecation satisfaction, HAMA, and HAMD were all reduced after therapy compared to before. Before therapy, there were 24 different metab-olites compared to the control group, whereas there were 47 different metabolites after treatment. Four metabolites—alpha-ketoglutaric acid, acetoacetate, citric acid, and mesaconic acid—were identified as possible biomarkers for IBS-D using a Venn diagram, differential metabolite correla-tion analysis, and KEGG enrichment analysis. Additionally, acetoacetate, citric acid, and mesaconic acid are down-regulated, and the three have a positive association. Compared to before treatment, 19 differential metabolites were identified; the differential metabolites after treatment were pri-marily enriched with three metabolites: Normorphine, adenosine, and fumaric acid. Second, the levels of alpha-ketoglutaric acid, citric acid, and mesaconic acid were lower after therapy than be-fore treatment. Conclusion: Abnormal energy metabolism may be connected to the pathophysiology of IBS-D. ShenlingBaizhu Powder promotes energy metabolism and modulates adenosine, normor-phine, and fumaric acid metabolism to prevent and treat IBS-D with spleen deficiency and excessive dampness syndrome.

参苓白术散,腺苷,临床观察,脾虚湿盛证型,能量代谢, ShenlingBaizhu Powder Adenosine Clinical Observation Spleen Deficiency and Excessive Dampness Syndrome Energy Metabolism
摘要

目的:探讨参苓白术散对脾虚湿盛证型腹泻型肠易激综合征(IBS-D)疗效机制及IBS-D潜在生物标志物。方法:入组28例健康人为对照组,28例脾虚湿盛证型IBS-D为治疗组,治疗组给予参苓白术散,连续2周;采集对照组,治疗前后两组的血浆,三者两两比较;评估治疗前后两组的BSFS、IBS-SSS积分、IBS-QOL量表、HAMD和HAMA变化以及筛选血浆中差异代谢物,分析差异代谢物相关性和显著富集差异代谢物。结果:治疗后IBS-SSS总分、BSFS、腹胀程度、腹痛频率、腹痛程度、IBS-QOL显著降低;对生活的影响度,排便满意度,HAMA,HAMD均低于治疗前;与对照组对比,治疗前有24种差异代谢物,治疗后有47种差异代谢物,通过韦恩图、差异代谢物相关性分析及KEGG富集分析,α-酮戊二酸、乙酰乙酸、柠檬酸、中康酸4种代谢物被认为是IBS-D的潜在生物标志物,此外乙酰乙酸、柠檬酸、中康酸为下调,并且三者间呈正相关。与治疗前比较时,观察到有19种差异代谢物;治疗后差异代谢物主要富集在去甲吗啡、腺苷、富马酸3个代谢物,其次治疗后的α-酮戊二酸、柠檬酸、中康酸均低于治疗前。结论:IBS-D的发病机制可能与能量代谢异常有关,参苓白术散则改善能量代谢以及调节腺苷、去甲吗啡、富马酸代谢到达防治脾虚湿盛证型IBS-D疗效。

关键词

参苓白术散,腺苷,临床观察,脾虚湿盛证型,能量代谢

Study on the Mechanism of Action of ShenlingBaizhu Powder on Diarrhea-Predominant Irritable Bowel Syndrome Based on Metabolomics<sup> </sup>

Juan Wang1*, Qiuxiang Wang1, Ruike Wu1, Fang Zhao1, Peimin Feng1,2#

1Clinical College of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu Sichuan

2Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu Sichuan

Received: Nov. 16th, 2023; accepted: Dec. 19th, 2023; published: Dec. 29th, 2023

ABSTRACT

Objective: The purpose of this study was to investigate the treatment mechanism of ShenlingBaizhu Powder for diarrhea-predominant irritable bowel syndrome (IBS-D) with spleen deficiency and excessive dampness syndrome, as well as potential IBS-D biomarkers. Method: The control group consisted of 28 healthy people, while the treatment group comprised 28 patients with spleen deficiency and excessive dampness syndrome (IBS-D). Two consecutive weeks of ShenlingBaizhu Powder were administered to the treatment group. Collect plasma from the control group as well as before and after treatment, and compare them to each other. The BSFS, IBS-SSS score, IBS-QOL scale, HAMD, and HAMA changes were examined before and after treatment, and differential metabolites in plasma were screened to examine the association between differential metabolites and the significant enrichment of differential metabolites. Result: The IBS-SSS total score, BSFS, degree of abdominal distension, frequency of abdominal pain, degree of abdominal pain, and IBS-QOL were significantly reduced following treatment. The impact on life, defecation satisfaction, HAMA, and HAMD were all reduced after therapy compared to before. Before therapy, there were 24 different metabolites compared to the control group, whereas there were 47 different metabolites after treatment. Four metabolites—alpha-ketoglutaric acid, acetoacetate, citric acid, and mesaconic acid—were identified as possible biomarkers for IBS-D using a Venn diagram, differential metabolite correlation analysis, and KEGG enrichment analysis. Additionally, acetoacetate, citric acid, and mesaconic acid are down-regulated, and the three have a positive association. Compared to before treatment, 19 differential metabolites were identified; the differential metabolites after treatment were primarily enriched with three metabolites: Normorphine, adenosine, and fumaric acid. Second, the levels of alpha-ketoglutaric acid, citric acid, and mesaconic acid were lower after therapy than before treatment. Conclusion: Abnormal energy metabolism may be connected to the pathophysiology of IBS-D. ShenlingBaizhu Powder promotes energy metabolism and modulates adenosine, normorphine, and fumaric acid metabolism to prevent and treat IBS-D with spleen deficiency and excessive dampness syndrome.

Keywords:ShenlingBaizhu Powder, Adenosine, Clinical Observation, Spleen Deficiency and Excessive Dampness Syndrome, Energy Metabolism

Copyright © 2023 by author(s) and beplay安卓登录

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

肠易激综合征(Irritable Bowel Syndrome, IBS)是一种胃肠道疾病,在任何特定时间都会影响5~10%的健康个体 [ 1 ] 。该病的病因和病理生理机制尚不清楚。IBS患者会有反复出现的症状,例如腹泻、腹痛、便秘以及腹泻与便秘交替 [ 2 ] ,随着膳食结构的改变、社会环境和工作压力的增加以及人们就医意识的增强,该病临床就诊量逐年增加 [ 3 ] 。目前有多种药物可用于治疗IBS,包括解痉药、止泻药、导泻药、抗生素及益生菌等,但疗效的持久性尚不清楚,并且存在一些副作用 [ 4 ] 。缺乏有效的治疗,该病情易反复发作,部分IBS患者的生活质量受到严重影响,甚至还伴有焦虑、抑郁、失眠等症状,一项多中心针对IBS患者的调查研究证明了IBS患者存在着不同程度的焦虑、抑郁等精神心理问题且生活质量低下 [ 5 ] ,故该病有一个复发和缓解的过程。根据罗马IV标准,IBS分为四种类型:便秘型肠易激综合征(constipation-predominant irritable bowel syndrome, IBS-C)、腹泻型肠易激综合征(diarrhea-predominant irritable bowel syndrome, IBS-D)、混合型肠易激综合征(mixed-predominant irritable bowel syndrome, IBS-M)和未明确的肠易激综合征(undefined-predominant irritable bowel syndrome, IBS-U)。IBS-D是最常见的类型,占IBS患者的40% [ 6 ] 。中医药治疗本病具有优势,临床疗效十分显著。本研究为单中心、前瞻性、随机进行的病例对照临床研究,以参苓白术散治疗脾虚湿盛证型的肠易激综合征28例。本研究经成都中医药大学附属医院医学伦理委员会批准(批准号:2019KL-024),并得到国家自然科学基金项目(81673854)的资助。

2. 资料 2.1. 一般资料

这项研究在成都中医药大学附属医院进行,2019年12月至2020年6月期间纳入了被诊断患有脾虚湿盛证型的IBS-D 28名患者,同时纳入了28名健康人;其中治疗组男为17例,女为11例,平均年龄(41.143 ± 11.707)岁;对照组中男12例,女16例,平均年龄(41.750 ± 11.900)岁,2组性别、年龄比较差异无统计学意义(P > 0.05)。2组治疗前体重比较,治疗组平均体重(69.157 ± 10.938) kg,对照组平均体重(63.073 ± 11.819) kg,差异无统计学意义(P > 0.05)。2组治疗前身高比较,治疗组平均身高(1.664 ± 0.094) m,对照组平均身高(1.642 ± 0.053) m,差异无统计学意义(P > 0.05),2组治疗前BMI比较,治疗组平均BMI为24.228 ± 2.260,对照组为23.266 ± 3.916,差异无统计学意义(P > 0.05),具有可比性。

2.2. 诊断标准

参考罗马IV诊断标准 [ 7 ] ,IBS-D患者需要满足以下两项条件方可诊断:1、反复发作腹痛:最近3个月内每周至少发作1天,伴有以下2项或2项以上:1) 与排便有关;2) 发作时伴有排便频率改变;3) 发作时伴有粪便性状(外观)改变;诊断前症状出现至少6个月,近3个月持续存在。2、IBS腹泻型的分类标准:结合Bristol粪便性状量表分类标准(Bristol Stool Form Scale, BSFS),至少25%的排便为Bristol 6-7型,且Bristol 1-2型的排便小于25% (无使用导致排便习惯异常药物)。3、辅助诊断:血常规、尿常规、粪便常规 + 隐血、肝肾功能、腹部彩超和肠镜等未见明显异常。

2.3. 中医辨证标准

参照《肠易激综合征中医诊疗专家共识意见(2017年)》 [ 8 ] 辨证分型,主症具备2项,加次症2项以上,结合舌脉,即可诊断中医证型;由成都中医药大学附属医院消化内科主治医师及以上职称的高年资医师进行证候诊断;具体诊断标准:1、主要症状:大便溏泻、腹痛隐隐;2、次要症状:劳累或受凉后发作或加重、神疲倦怠、纳呆;3、舌脉:舌淡,边可有齿痕,苔白腻;脉虚弱。

2.4. 纳入标准

IBS-D受试者纳入标准如下:(1) 患者症状符合IBS-D西医诊断标准和中医证候诊断标准;(2) 年龄在18岁至65岁之间(包含18周岁及65周岁),性别不限;(3) 初始IBS症状严重程度量表(Irritable Bowel Syndrome-Symptom Severity Scale, IBS-SSS)评分 > 75分;(4) 受试者自愿签署知情同意书,具有一定的阅读及理解能力。

对照组的健康者纳入标准如下:(1) 自愿加入并同意签署知情同意书;(2) 既往无胃肠功能改变疾病(如胃食管反流性疾病、功能性消化不良);(3) 无慢性或复发性腹痛、腹泻、排便习惯和大便性状异常症状;(4) 无胃肠道结构或生化异常等器质性病变;(5) 符合健康人群筛选标准及排除标准。

2.5. 排除标准

便秘性、混合型、未明确的IBS及其他消化系统器质性病变者,或者其他器质性病变引起腹痛、腹部不适者;胃肠道器质性疾病,如IBD (炎症性肠病)、乳糜泻、结缔组织病;其次为感染性腹泻、寄生虫感染、大便隐血阳性、结直肠肿瘤、吸收不良综合征、乳糖不耐受(结合病史)以及全身性疾病引起的腹泻;合并有糖尿病、甲状腺功能亢进症,或合并心、脑、肝、肾、造血系统等严重原发疾病者,或者影响其生存的严重疾病者(如肿瘤等),或肝肾功能异常者(ALT、AST > 正常值范围上限的1.5倍,Cr > 正常值上限),以及有临床意义的心电图异常者;有神经系统疾病及精神病史者;既往有胃肠道及消化系统手术史者(如胆囊切除手术);排除3个月内使用可能影响胃肠动力药物(抗胆碱能药物、5-HT3受体拮抗剂、止泻剂、抑酸剂、促动力药、抗抑郁药、抗焦虑药、肠道菌群调节药、激素及免疫抑制剂等)者过敏体质,有研究所的相关药物过敏史及严重食物过敏史者;怀疑或者确有酒精、药物滥用史者;妊娠及哺乳期妇女,及近期有妊娠计划者;认知功能障碍,不能给予充分知情同意者;近1个月内参加其他临床试验的患者;在研究期间或纳入前1个月内有过抗生素治疗史或服用益生菌者。

3. 方法 3.1. 治疗方法

治疗组:脾虚湿盛证型IBS-D予以参苓白术散:人参15 g;炒白术15 g;茯苓15 g;炙甘草10 g;山药15 g;白扁豆15 g;莲子肉15 g;薏苡仁20 g;砂仁10 g;桔梗10 g (由四川新绿色药业科技发展股份有限公司提供),具体用法:开水冲服,一次1格,一日3次(早、午、晚饭后1小时内服用),连续服用14天。

对照组:符合健康人群筛选标准及排除标准,收集受试者清晨空腹血浆。

3.2. 疗效指标

本研究使用的主要疗效指标是BSFS和IBS-SSS,其中IBS-SSS量表各单项有腹痛程度、腹痛频率、腹胀程度、排便满意度、对生活的影响度。次要疗效指标包括肠易激惹综合征–生命质量量表(Irritable Bowel Syndrome-Quality of Life, IBS-QOL)、汉密尔顿抑郁量表(Hamilton Depression Scale, HAMD)和汉密尔顿焦虑量表(Hamilton Rating Scale for Anxiety, HAMA)。步骤:BSFS、IBS-SSS量表、IBS-QOL、HAMD和HAMA评估在用药前进行,并在用药后两周后重复进行。在本研究中,治疗组:治疗前标记为SA,治疗后标记为SB;对照组标记为HC。血浆样本取自三组:对照组、SA组和SB组。

3.3. 统计学方法

使用R版本3.6.3和Python版本3.7进行临床数据分析。在进行分组比较时,采用卡方检验来分析无序分类数据;另一方面,非参数检验用于检查有序分类数据。对于定量数据,用平均值 ± 标准差来描述数据。如果数据服从正态分布且方差相等,则采用t检验;当存在不均匀分布和不均匀方差时,适合使用修正t检验。如果数据不符合标准正态分布,建议采用非参数秩和检验。配对t检验用于进行组内比较。P值小于0.05表示观察到的差异具有统计显着性。

4. 结果 4.1. 临床疗效分析

在脾虚湿盛证型IBS-D组(见表1),治疗后IBS-SSS总分、BSFS、腹胀程度、腹痛频率、腹痛程度、IBS-QOL均显著优于治疗前(P < 0.05),但对生活的影响度,排便满意度,HAMA,HAMD,经t检验,P值 > 0.05,无统计学上显著性差异;但治疗后对生活的影响度,排便满意度,HAMA,HAMD的平均值 ± 标准差均低于治疗前的平均值 ± 标准差。

Comparison of IBS-D with the syndrome of spleen deficiency and excessive dampness before and after treatmen
变量 总数 总览 治疗前–数量 组别 SA (n = 28) 治疗后–数量 组别 SB (n = 28) 统计量 P
BSFS, mean ( ± SD) 56 5.063 ± 0.982 28 6.018 ± 0.093 28 4.107 ± 0.309 30.197 <0.001
对生活的 影响度, mean ( ± SD) 56 54.161 ± 19.338 28 55.429 ± 20.056 28 52.893 ± 18.505 1.092 0.284
排便满意度, mean ( ± SD) 56 46.589 ± 16.838 28 47.786 ± 17.997 28 45.393 ± 15.502 1.258 0.219
腹胀程度, mean ( ± SD) 56 45.321 ± 16.514 28 46.857 ± 16.344 28 43.786 ± 16.541 8.208 <0.001
腹痛频率, mean ( ± SD) 56 50.255 ± 24.334 28 55.612 ± 24.474 28 44.898 ± 22.976 7.180 <0.001
腹痛程度, mean ( ± SD) 56 41.054 ± 18.089 28 42.786 ± 18.588 28 39.321 ± 17.405 7.328 <0.001
IBS-SSS, mean ( ± SD) 56 237.380 ± 45.778 28 248.469 ± 46.351 28 226.291 ± 42.390 5.548 <0.001
HAMA, mean ( ± SD) 56 6.357 ± 3.753 28 6.679 ± 4.098 28 6.036 ± 3.343 1.027 0.314
HAMD, mean ( ± SD) 56 9.375 ± 4.394 28 9.464 ± 4.656 28 9.286 ± 4.113 0.501 0.621
IBS-QOL, mean ( ± SD) 56 568.234 ± 76.089 28 547.146 ± 64.751 28 589.323 ± 80.604 -3.331 0.003

表1. 脾虚湿盛证型IBS-D组内前后比较

4.2. 代谢组学分析 4.2.1. 多维统计分析

图1示,在正离子和负离子模式下,三组比较对SA与HC、SB与HC和SA与SB可以观察到主成分分析图(Principal component analysis, PCA)表现出更大程度的重叠,这表明PCA无法更好地区分组间差异。偏最小二乘法判别分析(Partial Least Squares Discrimination Analysis, PLS-DA)用于简化和降低数据的维度,图2见SA和SB分别与HC对比时,发现正、负离子模式下R2Y值均大于Q2Y值;同样,在SA与SB比较,正、负离子模式下R2Y值均大于Q2Y值。为了判断模型的好坏,我们采用了PLS-DA排序检验图。在三个比较对中,即SA与HC、SB与HC、SA与SB,图3可以观察到R2均大于Q2;此外,Q2的回归线与Y轴截距均小于零。这结果表明该模型没有出现“过拟合”,表明该模型的构建是准确的。

图1. 各组的PCA分析(A、C、E为正离子模式下的PCA分析;B、D、F为负离子模式下的PCA分析)

图2. 比较组的PLS-DA得分散点图(R2Y表示模型的解释率,Q2Y用于评价PLS-DA模型的预测能力,且R2Y大于Q2Y时表示模型建立良好;A、C、E为正离子模式下的PLS-DA得分散点图,B、D、F为负离子模式下的PLS-DA得分散点图)

图3. PLS-DA的排序检验图(A、C、E为正离子模式下的PLS-DA排序检验图;B、D、F为负离子模式下的PLS-DA排序检验图)

4.2.2. 差异代谢物筛选

图4. 比较组的火柴杆图(红色表示显著上调,蓝色表示显著下调;A、C、E为正离子模式下火柴杆图;B、D、F为负离子模式下火柴杆图)

该研究使用基于PLS-DA模型的单变量和多变量统计分析来寻找差异代谢物筛选的重要参数VIP (Variable Importance in the Projection)、FC (Fold Change)和P。筛选条件设置为:VIP > 1、FC > 1.5、P < 0.05。分析结果如图4。治疗组的前后两组比较时,观察到有19种差异代谢物,其中正离子模式下12个,负离子模式下7个。同样,治疗前与对照组比较中,有24种差异代谢物,正离子模式下12个,负离子模式下12个。治疗后与对照组相比,有47种差异代谢物,正离子模式下26个,负离子模式下21个。

4.2.3. 差异代谢物分析

根据维恩图(如图5),两组交叉点中的14种代谢物(见表2)被认为是IBS-D的潜在生物标志物,并且治疗后与对照组中的33种特定代谢物被认为是参苓白术散疗效机制潜在靶点。

图5. 差异代谢物分析(A为两个比较对的正离子韦恩图;B为两个比较对的负离子韦恩图;C为SA vs HC的正离子模式下的差异代谢物和弦图;D为SA vs HC的负离子模式下的差异代谢物和弦图;E为SB vs HC的正离子模式下的差异代谢物和弦图;F为SB vs HC的负离子模式下的差异代谢物和弦图;差异代谢物和弦图选取显著性水平,P-value值从小到大排序的Top20的差异代谢物,其中NA表示无分类信息。)

Possible IBS-D biomarker
代谢物名称 代谢物分子式 代谢物分类 Up/Down
Pos (正离子模式)
Vanillin C8 H8 O3 Benzenoids down
Alpha-Ketoglutaric acid C5 H6 O5 Organic acids and derivatives down

表2. IBS-D的潜在生物标志物

Continued

注:NA表示无物质分类信息。

根据差异代谢物两两之间的皮尔逊相关系数,可知治疗前中N-(9-氧代癸基)乙酰胺、N-去甲基曲马多、大麻素合成类似物、D-棉子糖之间互相为正相关;香草醛与油酰乙醇酰胺、α-酮戊二酸、硬脂酰胺之间呈正相关;硬脂酰乙醇酰胺与硬脂酰胺、α-酮戊二酸、香草醛、油酰乙醇酰胺之间呈负相关;连苯三酚与氨乙基膦酸为正相关;柠檬酸、2-糠酸、中康酸、δ-核糖-1,4-内酯之间互相为正相关;乙酰乙酸与2-糠酸、柠檬酸、δ-核糖-1,4-内酯之间呈正相关。治疗后发现11,12-二羟基二十碳三烯酸、tetranor-12R-羟基二十碳四烯酸、tetranor-12S-羟基二十碳四烯酸三者之间互为正相关,(±)8-羟基二十碳五烯酸和15(S)-氢过氧二十碳四烯酸呈正相关,O-去甲基文拉法辛和N-去甲基文拉法辛为正相关,香草醛与油酰乙醇酰胺、α-酮戊二酸之间呈正相关,硬脂酰乙醇酰胺与香草醛、油酰乙醇酰胺之间为负相关,中康酸、柠檬酸、2-糠酸、δ-核糖-1,4-内酯四者之间呈正相关,乙酰乙酸与2-糠酸、柠檬酸、中康酸、δ-核糖-1,4-内酯之间为正相关,前列腺素A2、tetranor-12R-羟基二十碳四烯酸、8(9)-二羟基二十碳三烯酸的化合物三者之间呈正相关。

4.2.4. KEGG通路富集分析

如图6、表3所示,与对照组比较时,SA组中戊糖和葡萄糖醛酸相互转化、乙醛酸和二羧酸代谢、柠檬酸循环(TCA循环)、丁酸代谢、抗坏血酸和醛二酸代谢、丙氨酸、天冬氨酸和谷氨酸代谢、丙酸代谢显著富集,其中与α-酮戊二酸、乙酰乙酸;丙二酸甲酯相关。SB组中戊糖和葡萄糖醛酸相互转化、乙醛酸和二羧酸代谢、药物代谢–细胞色素P450、TCA循环、丁酸代谢、抗坏血酸和醛二酸代谢、丙氨酸、天冬氨酸和谷氨酸代谢、碳代谢显著富集,与α-酮戊二酸、去甲吗啡、柠檬酸;中康酸相关;由此可知IBS-D的发病机制可能与α-酮戊二酸、乙酰乙酸、柠檬酸;中康酸下调有关,同时治疗前相比,治疗后的血管平滑肌收缩、鞘脂信号通路、肾素分泌、帕金森病、吗啡成瘾、药物代谢–细胞色素P450、cGMP-PKG信号通路、酒精中毒、丙酮酸代谢、氧化磷酸化、烟酸和烟酰胺代谢显著富集,与去甲吗啡、腺苷、富马酸相关。结合治疗后与对照组比较,可知参苓白术散的疗效主要与去甲吗啡、腺苷上调有关。

图6. 显著富集代谢通路(pos为正离子模式,neg为负离子模式)

Significantly enriched pathways of differential metabolite
MapID Map Title P value x y n N2 Enrich Direct Meta IDs
SA vs SB pos
map 00982 Drug metabolism-cytochrome P450 0.032786885 1 1 2 61 Over Normorphine
map 04022 cGMP-PKG signaling pathway 0.032786885 1 1 2 61 Over Adenosine
map 04071 Sphingolipid signaling pathway 0.032786885 1 1 2 61 Over Adenosine
map 04270 Vascular smooth muscle contraction 0.032786885 1 1 2 61 Over Adenosine
map 04924 Renin secretion 0.032786885 1 1 2 61 Over Adenosine
map 05012 Parkinson’s disease 0.032786885 1 1 2 61 Over Adenosine
map 05032 Morphine addiction 0.032786885 1 1 2 61 Over Adenosine
map 05034 Alcoholism 0.032786885 1 1 2 61 Over Adenosine
map 04024 cAMP signaling pathway 0.065027322 1 2 2 61 Over Adenosine
map 04923 Regulation of lipolysis in adipocytes 0.065027322 1 2 2 61 Over Adenosine
map 04080 Neuroactive ligand-receptor interaction 0.096721311 1 3 2 61 Over Adenosine
map 00230 Purine metabolism 0.158469945 1 5 2 61 Over Adenosine
SA vs SB neg
map 00190 Oxidative phosphorylation 0.032786885 1 1 2 61 Over Fumaric acid
map 00620 Pyruvate metabolism 0.032786885 1 1 2 61 Over Fumaric acid
map 00760 Nicotinate and nicotinamide metabolism 0.032786885 1 1 2 61 Over Fumaric acid
map 00220 Arginine biosynthesis 0.065027322 1 2 2 61 Over Fumaric acid
map 00360 Phenylalanine metabolism 0.065027322 1 2 2 61 Over Fumaric acid
map 00590 Arachidonic acid metabolism 0.065027322 1 2 2 61 Over Prostaglandin A2
map 04726 Serotonergic synapse 0.065027322 1 2 2 61 Over Prostaglandin A2
map 00020 Citrate cycle (TCA cycle) 0.096721311 1 3 2 61 Over Fumaric acid
map 00650 Butanoate metabolism 0.096721311 1 3 2 61 Over Fumaric acid
map 00250 Alanine, aspartate and glutamate metabolism 0.127868852 1 4 2 61 Over Fumaric acid
map 00350 Tyrosine metabolism 0.127868852 1 4 2 61 Over Fumaric acid
map 01100 Metabolic pathways 0.50273224 2 35 2 61 Over Prostaglandin A2; Fumaric acid
SA v HC pos
map 00020 Citrate cycle (TCA cycle) 0.032786885 1 1 2 61 Over alpha-Ketoglutaric acid
map 00040 Pentose and glucuronate interconversions 0.032786885 1 1 2 61 Over alpha-Ketoglutaric acid
map 00053 Ascorbate and aldarate metabolism 0.032786885 1 1 2 61 Over alpha-Ketoglutaric acid
map 00250 Alanine, aspartate and glutamate metabolism 0.032786885 1 1 2 61 Over alpha-Ketoglutaric acid
map 00630 Glyoxylate and dicarboxylate metabolism 0.032786885 1 1 2 61 Over alpha-Ketoglutaric acid
map 00650 Butanoate metabolism 0.032786885 1 1 2 61 Over alpha-Ketoglutaric acid
map 00220 Arginine biosynthesis 0.065027322 1 2 2 61 Over alpha-Ketoglutaric acid
map 00430 Taurine and hypotaurine metabolism 0.065027322 1 2 2 61 Over alpha-Ketoglutaric acid
map 00340 Histidine metabolism 0.096721311 1 3 2 61 Over alpha-Ketoglutaric acid
map 00360 Phenylalanine metabolism 0.127868852 1 4 2 61 Over Vanillin
SA vs HC neg
map 00640 Propanoate metabolism 0.005464481 2 2 5 61 Over acetoacetate; Methylmalonate
map 00280 Valine, leucine and isoleucine degradation 0.015837733 2 3 5 61 Over acetoacetate; Methylmalonate
map 01200 Carbon metabolism 0.015837733 2 3 5 61 Over Citric acid; Mesaconic acid
map 00630 Glyoxylate and dicarboxylate metabolism 0.049230755 2 5 5 61 Over Citric acid; Mesaconic acid
map 00440 Phosphonate and phosphinate metabolism 0.081967213 1 1 5 61 Over Ciliatine
map 00020 Citrate cycle (TCA cycle) 0.229786052 1 3 5 61 Over Citric acid
map 00310 Lysine degradation 0.229786052 1 3 5 61 Over acetoacetate
map 00650 Butanoate metabolism 0.229786052 1 3 5 61 Over acetoacetate
map 01210 2-Oxocarboxylic acid metabolism 0.229786052 1 3 5 61 Over Citric acid
map 01230 Biosynthesis of amino acids 0.229786052 1 3 5 61 Over Citric acid
map 00240 Pyrimidine metabolism 0.296183806 1 4 5 61 Over Methylmalonate
map 00250 Alanine, aspartate and glutamate metabolism 0.296183806 1 4 5 61 Over Citric acid
map 00350 Tyrosine metabolism 0.296183806 1 4 5 61 Over Acetoacetate
map 01100 Metabolic pathways 0.382411462 4 35 5 61 Over Citric acid; acetoacetate; Mesaconic acid; Ciliatine
map 02010 ABC transporters 0.415250455 1 6 5 61 Over Ciliatine
SB vs HC pos
map 00020 Citrate cycle (TCA cycle) 0.06557377 1 1 4 61 Over Alpha-Ketoglutaric acid
map 00040 Pentose and glucuronate interconversions 0.06557377 1 1 4 61 Over Alpha-Ketoglutaric acid
map 00053 Ascorbate and aldarate metabolism 0.06557377 1 1 4 61 Over Alpha-Ketoglutaric acid
map 00250 Alanine, aspartate and glutamate metabolism 0.06557377 1 1 4 61 Over Alpha-Ketoglutaric acid
map 00630 Glyoxylate and dicarboxylate metabolism 0.06557377 1 1 4 61 Over Alpha-Ketoglutaric acid
map 00650 Butanoate metabolism 0.06557377 1 1 4 61 Over Alpha-Ketoglutaric acid
map 00982 Drug metabolism-cytochrome P450 0.06557377 1 1 4 61 Over Normorphine
map 00220 Arginine biosynthesis 0.127868852 1 2 4 61 Over alpha-Ketoglutaric acid
map 00310 Lysine degradation 0.127868852 1 2 4 61 Over N6,N6,N6-Trimethyl-L-lysine
map 00430 Taurine and hypotaurine metabolism 0.127868852 1 2 4 61 Over alpha-Ketoglutaric acid
map 00340 Histidine metabolism 0.186996388 1 3 4 61 Over alpha-Ketoglutaric acid
map 00360 Phenylalanine metabolism 0.243065603 1 4 4 61 Over Vanillin
SB vs HC neg
map 01200 Carbon metabolism 0.015837733 2 3 5 61 Over Citric acid; Mesaconic acid
map 00630 Glyoxylate and dicarboxylate metabolism 0.049230755 2 5 5 61 Over Citric acid; Mesaconic acid
map 00590 Arachidonic acid metabolism 0.158469945 1 2 5 61 Over Prostaglandin A2
map 00640 Propanoate metabolism 0.158469945 1 2 5 61 Over Acetoacetate
map 04726 Serotonergic synapse 0.158469945 1 2 5 61 Over Prostaglandin A2
map 00020 Citrate cycle (TCA cycle) 0.229786052 1 3 5 61 Over Citric acid
map 00280 Valine, leucine and isoleucine degradation 0.229786052 1 3 5 61 Over acetoacetate
map 00310 Lysine degradation 0.229786052 1 3 5 61 Over acetoacetate
map 00650 Butanoate metabolism 0.229786052 1 3 5 61 Over acetoacetate
map 01210 2-Oxocarboxylic acid metabolism 0.229786052 1 3 5 61 Over Citric acid
map 01230 Biosynthesis of amino acids 0.229786052 1 3 5 61 Over Citric acid
map 00250 Alanine, aspartate and glutamate metabolism 0.296183806 1 4 5 61 Over Citric acid
map 00350 Tyrosine metabolism 0.296183806 1 4 5 61 Over Acetoacetate
map 01100 Metabolic pathways 0.382411462 4 35 5 61 Over Citric acid; acetoacetate; Mesaconic acid; Prostaglandin A2
map 04976 Bile secretion 0.415250455 1 6 5 61 Over Lithocholic acid

表3. 差异代谢物显著富集通路

注:MapID是富集的富集通路的ID;MapTitle是富集的代谢通路名称;Over代表富集;MetaIDs富集到的代谢物。

4.2.5. 差异代谢物箱线图

如图7可见,相比治疗前,治疗后的α-酮戊二酸、柠檬酸、中康酸的中位线均低于治疗前。

图7. 不同组间差异代谢物箱线图

5. 讨论

根据其临床表现,认为IBS-D符合中医腹泻、腹痛的分类,在临床上常见脾虚湿盛证 [ 9 ] 。中医非常重视辨证论治,针对每个患者的具体情况选择最佳的个体化治疗策略。《医宗必读》云:“脾土强者方能渗湿,无湿则不腹泻”,这凸显了脾胃在IBS-D病因病机中的重要性。因此,参苓白术散被医者认为是治疗脾虚湿盛型IBS-D的首选;方中人参能益气健脾,白术、茯苓、砂仁能燥湿健脾,白扁豆能化湿补脾,再者薏苡仁利湿健脾,最后山药、莲子肉能收涩健脾,全方有着健脾、化湿功效,与此同时也有着利小便实大便的作用。现代药理研究发现白术多糖配伍白术内酯类有效改善脾虚湿困型大鼠腹泻症状 [ 10 ] ;茯苓总三萜具有健脾和胃功效,对脾虚小鼠有明显的疗效作用 [ 11 ] ;甘草总黄酮、甘草苷是发挥抗抑郁的基础物质,炙甘草通过抗抑郁作用可影响胃肠道异常感觉、运动 [ 12 ] ;山药多糖抑制脾虚小鼠胃排空及小肠推进 [ 13 ] ,从而改善腹泻次数;两周后观察到BSFS的粪便特征有所改善;治疗后各项指标均有显着改善,包括IBS-SSS总分、腹胀程度、腹痛频率、腹痛程度和IBS-QOL。有限的临床观察期间内尚未发现对生活的影响度、排便满意度、HAMA评分、HAMD评分有统计学意义上差异。然而,与治疗前相比,对生活的影响度、排便满意度、HAMA和HAMD的平均值 ± 标准差均低于治疗前,更加论证参苓白术散治疗脾虚湿盛证型IBS-D疗效性。

目前对IBS-D发病机制的认识尚有限,一致认为肠道黏膜屏障功能障碍、胃肠动力异常、内脏高敏感性、能量代谢异常、脑–肠–微生物轴等均与其发生相关。《素问·至真要大论》:“诸湿肿满,皆属于脾”,脾虚失于运化,水谷精微布散失常,聚集成为湿邪。而在中医视角认为脾胃乃气血生化之源,是能量的源泉。从现代医学上,能量代谢主要通过糖酵解、三羧酸循环(TCA循环)和呼吸链三个途径产生ATP,其中三羧酸循环是主要产生能量途径。柠檬酸是一种有机酸,作为TCA循环的起始物质,通过一系列的酶催化反应,最终转化为二氧化碳和水,产生能量。这个过程需要许多代谢物的共同协助完成,如中康酸是TCA循环中的一个中间产物,参与能量代谢过程中,它还通过氧化反应转化为柠檬酸,使得TCA循环周而复始;又如α-酮戊二酸也是TCA循环中的一个关键中间产物,通过氧化代谢方式产生能量。此外在能量代谢过程中,葡萄糖供应不足时,开始将脂肪分解为酮体作为替代能源,乙酰乙酸是酮体的过程中的一个中间产物,在肝脏转化为β-羟基丁酸或乙醇酮,作为能量供应维持生物体正常功能。α-酮戊二酸还具有抗氧化和抗炎作用,调节细胞内的氧化还原状态和抑制炎症反应,可以促进伤口愈合反应 [ 14 ] ,α-酮戊二酸也能调节敏感水通道蛋白,促进肠上皮对水和离子吸收,降低离子转运蛋白表达,从而降低了腹泻的发生 [ 15 ] 。故α-酮戊二酸、乙酰乙酸、柠檬酸、中康酸下调涉及的能量代谢异常可能是IBS-D潜在的发病机制。

参苓白术散干预后,发现去甲吗啡差异代谢物显著上调。去甲吗啡是一种阿片类镇痛药,由去甲基化过程在体内形成;作用于中枢神经系统中的阿片受体,具有一定的镇痛作用;其次它与药物代谢–细胞色素P450代谢通路相关,最新发现IBS患者的药物代谢研究主要与1期代谢有关,尤其细胞色素P450(CYP450)代谢 [ 16 ] 。众所周知,有些人代谢药物的速度相对较快,而另一些人代谢相同药物的速度相对较慢 [ 17 ] 。代谢的差异可能CYP450的表达有关,尤其是在肝脏和肠道中 [ 18 ] 。因此,药物代谢–细胞色素P450代谢通路显著,可能是提高代谢效率从而改善“脾主运化”功能;烟酸和烟酰胺代谢也被证明可以减轻肠道炎症,促进肠粘膜屏障损伤的修复,如一项研究发现枣果干预后,烟酸和烟酰胺代谢下调可以减轻肠道平滑肌收缩,同时减少能量消耗 [ 19 ] 。腺苷是一种核苷,由腺嘌呤和核糖分子组成。腺苷作为DNA、RNA和三磷酸腺苷(adenosine triphosphate, ATP)的组成部分,能调节能量代谢、参与DNA和RNA合成、调节细胞生长和分化等;还可以与细胞膜上腺苷受体结合 [ 20 ] ,调节神经传递、免疫反应和炎症反应等生理过程。如与A1受体相互作用,可以抑制神经元的兴奋性,减少神经传导,从而产生镇痛作用。其中单磷酸腺苷(adenosine monophosphate, AMP)作为能量调控中枢,当能量不足时,AMP通过增加机体对葡萄糖摄入,促进脂肪酸氧化分解及减少蛋白质合成来维持能量稳态,同时也能调节线粒体合成与自噬 [ 21 ] 。研究发现腺苷能增加强效抗炎细胞因子IL-10的释放,从而抑制疼痛 [ 22 ] ;此外也激活中性粒细胞、内皮细胞、淋巴细胞、NK细胞、NKT细胞、适应性免疫细胞上的A2AAR受体,起着抑制中性粒细胞与内皮细胞的粘附和IFN-γ、IL-4及IL-2的产生,降低TNF-α、巨噬细胞炎症蛋白(MIP)-1α/CCL3、白三烯LTB4、IL-6和IL-8的分泌 [ 23 ] 的作用。越来越多的证据表明腺苷A2B受体激活,可以使中枢神经系统能够激活迷走神经传出抗炎通路,降低肠道通透性过高;特别是在调节肠道分泌、运动或内脏感觉等方面体现 [ 24 ] 。腺苷也调节平滑肌的收缩和抑制肠道活动,改善肠道痉挛以减缓腹痛。

综上所述,参苓白术散对脾虚湿盛型IBS-D疗效显著;有助于改善患者的腹泻、腹痛等临床症状;此外,基于代谢组学发现能量代谢异常可能是IBS-D的发病机制,与α-酮戊二酸、乙酰乙酸、柠檬酸、中康酸下调相关;去甲吗啡和腺苷的上调为参苓白术散治疗脾虚湿盛型IBS-D的疗效提供新的临床证据。

基金项目

国家自然科学基金资助项目(81673854)-腹泻型肠易激综合征中医方–证–肠道微生态的宏基因组学研究。

文章引用

王 娟,王秋香,吴瑞珂,赵 方,冯培民. 基于代谢组学研究参苓白术散对腹泻型肠易激综合征的作用机制Study on the Mechanism of Action of ShenlingBaizhu Powder on Diarrhea-Predominant Irritable Bowel Syndrome Based on Metabolomics[J]. 中医学, 2023, 12(12): 3629-3644. https://doi.org/10.12677/TCM.2023.1212541

参考文献 References Sebastian Domingo, J.J. (2022) Irritable Bowel Syndrome. Medicina Clínica (English Edition), 158, 76-81.
https://doi.org/10.1016/j.medcle.2021.04.015
Lacy, B.E. and Patel, N.K. (2017) Rome Criteria and a Diagnos-tic Approach to Irritable Bowel Syndrome. Journal of Clinical Medicine, 6, 99-106.
https://doi.org/10.3390/jcm6110099
韩亚飞, 王允亮, 李军祥. 腹泻型肠易激综合征发病机制及中药干预研究进展[J]. 辽宁中医药大学学报, 2018, 20(1): 114-117. 汪龙德, 张萍, 任培培, 等. 腹泻型肠易激综合征相关发病机制及治疗的研究进展[J]. 实用中医内科杂志, 2022, 36(1): 16-19. 王彬, 赵威, 许梦雀, 等. 肠易激综合征患者睡眠质量和精神心理状况的调查[J]. 胃肠病学, 2018, 23(3): 161-165. Oka, P., Parr, H., Bar-berio, B., et al. (2020) Global Prevalence of Irritable Bowel Syndrome According to Rome III or IV Criteria: A System-atic Review and Meta-Analysis. The Lancet Gastroenterology & Hepatology, 5, 908-917.
https://doi.org/10.1016/S2468-1253(20)30217-X
Mearin, F., Lacy, B.E., Chang, L., et al. (2016) Bowel Dis-orders. Gastroenterology. 张声生, 魏玮, 杨俭勤. 肠易激综合征中医诊疗专家共识意见(2017) [J]. 中医杂志, 2017, 58(18): 1614-1620. 张艳霞, 赵蓉, 吕双然, 等. 腹泻型肠易激综合征中医证候分布与VIP, SP, 5-HT动态变化的相关性分析[J]. 河北中医药学报, 2022, 37(1): 17-20. 左军, 张金龙, 胡晓阳. 白术化学成分及现代药理作用研究进展[J]. 辽宁中医药大学学报, 2021, 23(10): 6-9. 邓桃妹, 彭代银, 俞年军, 等. 茯苓化学成分和药理作用研究进展及质量标志物的预测分析[J]. 中草药, 2020, 51(10): 2703-2717. 张燕丽, 孟凡佳, 田园, 等. 炙甘草的化学成分与药理作用研究进展[J]. 化学工程师, 2019, 33(8): 60-63+66. 邵礼梅, 许世伟. 山药化学成分及现代药理研究进展[J]. 中医药学报, 2017, 45(2): 125-127. Mmcs, J., et al. (2023) Al-pha-Ketoglutaric Acid Based Polymeric Particles for Cutaneous Wound Healing. Journal of Biomedical Materials Re-search Part A, 111, 1372-1378. He, L., Huang, N., Li, H., et al. (2017) AMPK/α-Ketoglutarate Axis Regulates In-testinal Water and Ion Homeostasis in Young Pigs. Journal of Agricultural and Food Chemistry, 65, 2287-2298.
https://doi.org/10.1021/acs.jafc.7b00324
Camilleri, M. (2019) Implications of Pharmacogenomics to the Man-agement of IBS. Clinical Gastroenterology and Hepatology, 17, 584-594.
https://doi.org/10.1016/j.cgh.2018.04.052
Puszkiel, A., Arellano, C., Vachoux, C., et al. (2021) Model-Based Quantification of Impact of Genetic Polymorphisms and Co-Medications on Pharmacokinetics of Tamoxifen and Six Metabolites in Breast Cancer. Clinical Pharmacology & Therapeutics, 109, 1244-1255.
https://doi.org/10.1002/cpt.2077
Liu, J., Lu, Y.F., Corton, J.C., et al. (2021) Expression of Cytochrome P450 Isozyme Transcripts and Activities in Human Livers. Xenobiotica, 51, 279-286.
https://doi.org/10.1080/00498254.2020.1867929
Yi, Y.L., Li, Y., Guo, S., et al. (2022) Elucidation of the Reinforcing Spleen Effect of Jujube Fruits Based on Metabolomics and Intestinal Flora Analysis. Frontiers in Cellular and Infection Microbiology, 12, Article ID: 847828.
https://doi.org/10.3389/fcimb.2022.847828
Effendi, W.I. and Nagano, T. (2023) A2B Adenosine Receptor in Idiopathic Pulmonary Fibrosis: Pursuing Proper Pit Stop to Interfere with Disease Progression. International Journal of Molecular Sciences, 24, Article No. 4428.
https://doi.org/10.3390/ijms24054428
刘汝霏, 吴萌, 尚杰. 单磷酸腺苷活化蛋白激酶通过调控能量代谢对肿瘤发挥双重作用的研究进展[J]. 中华肿瘤防治杂志, 2023, 30(17): 1069-1078. De Lera Ruiz, M., Lim, Y.H. and Zheng, J. (2014) Adenosine A2A Receptor as a Drug Discovery Target. Journal of Medicinal Chemistry, 57, 3623-3650.
https://doi.org/10.1021/jm4011669
Effendi, W.I., Nagano, T., Kobayashi, K., et al. (2020) Focus-ing on Adenosine Receptors as a Potential Targeted Therapy in Human Diseases. Cells, 9, Article No. 785.
https://doi.org/10.3390/cells9030785
Ishioh, M., et al. (2021) Activation of Central Adenosine A2B Receptors Mediate Brain Ghrelin-Induced Improvement of Intestinal Barrier Function through the Vagus Nerve in Rats. Experi-mental Neurology, 341, Article ID: 113708.
https://doi.org/10.1016/j.expneurol.2021.113708
Baidu
map