中低温固体氧化物燃料电池(IT-SOFC)是未来发展的趋势,单相电解质的离子电导率在600℃以下达不到≥ 0.1 S/cm的商业化应用标准,因此必须开发适合于中低温SOFC的复合电解质材料。本文通过大量研究对比综述了钐掺杂氧化铈–半导体复合异质结电解质、钆掺杂氧化铈–半导体复合异质结电解质、其他离子导体–半导体复合异质结三类半导体–离子导体复合电解质,以及两相半导体复合异质结电解质的研究进展。研究表明与半导体复合后形成的异质结电解质最高电导率 ≥ 0.2 S/cm,是单相电解质电导率的2~3倍,其中钐掺杂氧化铈(SDC)–半导体复合异质结电解质具有更高的离子电导率和更高的功率密度,SDC与多种半导体材料复合后制成的电池最大功率密度 ≥ 1000 mW/cm2,体现出更加优异的性能。这是由于半导体与离子导体的两相复合存在大量异质界面,在异质界面产生内建电场,从而提高材料的离子电导率,同时抑制其电子电导,显示出优异的电学性能。研究结果期望为实验上制备出性能优异的半导体复合异质结电解质提供理论指导。 Medium-low temperature solid oxide fuel cells (IT-SOFC) is the development trend in the future, and the ion conductivity of single-phase electrolytes cannot meet the commercial application standard of ≥ 0.1 S/cm below 600˚C. Therefore, it is necessary to develop composite electrolyte materials suitable for medium-low temperature SOFCs. This article provides a comprehensive review of the research pro-gress of three types of semiconductor-ion conductor composite electrolytes: samarium doped ceria-semiconductor composite heterojunction electrolytes, gadolinium doped ceria-semiconductor composite heterojunction electrolytes, and other ion conductor-semiconductor composite hetero-junctions, as well as the two-phase semiconductor composite heterojunction electrolytes. Research has shown that the highest conductivity of heterojunction electrolytes formed by compounded by semiconductors is ≥ 0.2 S/cm, which is 2~3 times that of single-phase electrolytes. Among them, samarium doped cerium oxide (SDC) - semiconductor composite heterojunction electrolytes have higher ion conductivity and power density. The maximum power density of batteries made by com-bining SDC with various semiconductor materials is ≥ 1000 mW/cm2, reflecting more excellent performance. This is due to the presence of a large number of heterogeneous interfaces in the two-phase composite of semiconductors and ionic conductors, which generates an internal electric field at the heterogeneous interface, thereby improving the ion conductivity of the material while suppressing its electronic conductivity, so the excellent electrical performance can be obtained. The research results are expected to provide theoretical guidance for the preparation of semiconductor composite heterojunction electrolytes with excellent performance in experiments.
中低温固体氧化物燃料电池,异质结电解质,离子电导率,开路电压,功率密度, Medium-Low Temperature Solid Oxide Fuel Cell
Heterojunction Electrolyte
Ionic Conductivity
Open Circuit Voltage
Power Density
摘要
Medium-low temperature solid oxide fuel cells (IT-SOFC) is the development trend in the future, and the ion conductivity of single-phase electrolytes cannot meet the commercial application standard of ≥ 0.1 S/cm below 600˚C. Therefore, it is necessary to develop composite electrolyte materials suitable for medium-low temperature SOFCs. This article provides a comprehensive review of the research progress of three types of semiconductor-ion conductor composite electrolytes: samarium doped ceria-semiconductor composite heterojunction electrolytes, gadolinium doped ceria-semiconductor composite heterojunction electrolytes, and other ion conductor-semiconductor composite heterojunctions, as well as the two-phase semiconductor composite heterojunction electrolytes. Research has shown that the highest conductivity of heterojunction electrolytes formed by compounded by semiconductors is ≥ 0.2 S/cm, which is 2~3 times that of single-phase electrolytes. Among them, samarium doped cerium oxide (SDC) - semiconductor composite heterojunction electrolytes have higher ion conductivity and power density. The maximum power density of batteries made by combining SDC with various semiconductor materials is ≥ 1000 mW/cm2, reflecting more excellent performance. This is due to the presence of a large number of heterogeneous interfaces in the two-phase composite of semiconductors and ionic conductors, which generates an internal electric field at the heterogeneous interface, thereby improving the ion conductivity of the material while suppressing its electronic conductivity, so the excellent electrical performance can be obtained. The research results are expected to provide theoretical guidance for the preparation of semiconductor composite heterojunction electrolytes with excellent performance in experiments.
Keywords:Medium-Low Temperature Solid Oxide Fuel Cell, Heterojunction Electrolyte, Ionic Conductivity, Open Circuit Voltage, Power Density
高栋栋,马翰博,史李嘉,许 瑞,王婉如,赵君昊,张 洁. 中低温固体氧化物燃料电池半导体复合异质结电解质研究进展 Research Progress on Semiconductor Composite Heterojunction Electrolyte Materials for Medium-Low Temperature Solid Oxide Fuel Cells[J]. 材料科学, 2023, 13(12): 1114-1123. https://doi.org/10.12677/MS.2023.1312124
参考文献References
Radici, P., Valadez Huerta, G., Geesmann, N. and Kabelac, S. (2021) A Novel Method to Determine the Transport Coef-ficients of an YSZ Electrolyte Based on Impedance Spectroscopy. Solid State Ionics, 363, Article ID: 115591. https://doi.org/10.1016/j.ssi.2021.115591
Gao, B., Liu, Z., Ji, S. and Ao, Q.B. (2022) Fabrication of a YSZ Electrolyte Layer via Co-Pressing/Co-Sintering for Tubular NiO-YSZ Anode-Supported SOFCs. Materials Letters, 323, Article ID: 132547. https://doi.org/10.1016/j.matlet.2022.132547
Balci, M., Al-Jaafer, H. and Ari, M. (2022) Structural, Thermal and Electrical Analysis of Tb-Gd-Sm Co-Doped Bi2O3-Based Solid Solutions for Intermediate-Temperature Solid Oxide Fuel Cells (IT-SOFCs). Chemical Physics Letters, 809, Article ID: 140149. https://doi.org/10.1016/j.cplett.2022.140149
Balci, M., Cengel, A. and Ari, M. (2022) The Microstructure and Thermo-Electrical Characterization of the Tb-Gd-Ho Co-Doped Stabilized Bi2O3 Based Solid Electrolyte Systems. Chi-nese Journal of Physics, 79, 89-97. https://doi.org/10.1016/j.cjph.2022.08.005
Zhang, J., Liang, E.J. and Zhang, X.H. (2010) Rapid Synthesis of La0.9Sr0.1Ga0.8Mg0.2O3-δ Electrolyte by a CO2 Laser and Its Electric Properties for Intermediate Temperature Solid State Oxide Full Cells. Journal of Power Sources, 195, 6758-6763. https://doi.org/10.1016/j.jpowsour.2010.03.092
Zhang, J., Yuan, C., Wang, J.Q., et al. (2013) Oxygen Ion Conductivity of La0.8Sr0.2Ga0.83Mg0.17−xCoxO3−δ Synthesized by Laser Rapid Solidification. Chinese Physics B, 22, Arti-cle ID: 087201. https://doi.org/10.1088/1674-1056/22/8/087201
Dong, X., Tian, L., Li, J., Zhao, Y., Tian, Y. and Li, Y. (2014) Single Layer Fuel Cell Based on a Composite of Ce0.8Sm0.2O2-δ-Na2CO3 and a Mixed Ionic and Electronic Conductor Sr2Fe1.5Mo0.5O6-δ. Journal of Power Sources, 249, 270-276. https://doi.org/10.1016/j.jpowsour.2013.10.045
Deng, H., Zhang, W., Wang, X., et al. (2017) An Ionic Con-ductor Ce0.8Sm0.2O2-δ (SDC) and Semiconductor Sm0.5Sr0.5CoO3 (SSC) Composite for High Performance Electro-lyte-Free Fuel Cell. International Journal of Hydrogen Energy, 42, 22228- 22234. https://doi.org/10.1016/j.ijhydene.2017.03.089
Yousaf, M., Mushtaq, N., Zhu, B., et al. (2020) Electrochemi-cal Properties of Ni0.4Zn0.6Fe2O4 and the Heterostructure Composites (Ni-Zn ferrite-SDC) for Low Temperature Solid Oxide Fuel Cell (LT-SOFC). Electrochimical Acta, 331, Article ID: 135349. https://doi.org/10.1016/j.electacta.2019.135349
Mushtaq, N., Xia, C., Dong, W., et al. (2019) Tuning the En-ergy Band Structure at Interfaces of the SrFe0.75Ti0.25O3-δ- Sm0.25Ce0.75O2-δ Heterostructure for Fast Ionic Transport. ACS Applied Materials & Interfaces, 11, 38737-38745. https://doi.org/10.1021/acsami.9b13044
Wang, B., Wang, Y., Fan, L., et al. (2016) Preparation and Character-ization of Sm and Ca Co-Doped Ceria- La0.6Sr0.4Co0.2Fe0.8O3-δ Semiconductor-Ionic Composites for Electro-lyte-Layer-Free Fuel Cells. Journal of Materials Chemistry A, 4, 15426-15436. https://doi.org/10.1039/C6TA05763B
张炜. 氧化铈基电解质在单部件燃料电池中的应用[D]: [硕士学位论文]. 武汉: 湖北大学, 2017.
Zhu, B., Lund, P., Raza, R., et al. (2013) A New Energy Conversion Technology Based on Nano-Redox and Nano- Device Processes. Nano Energy, 2, 1179-1185. https://doi.org/10.1016/j.nanoen.2013.05.001
Scharber, M.C., Hlbacher, M.D., Koppe, M., et al. (2006) De-sign Rules for Donors in Bulk-Heterojunction Solar Cells- Towards 10 % Energy-Conversion Efficiency. Advanced Ma-terials, 18, 789-794. https://doi.org/10.1002/adma.200501717
Zhu, B., Raza, R., Qin, H. and Fan, L.D. (2011) Single-Component and Three-Component Fuel Cells. Journal of Power Sources, 196, 6362-6365. https://doi.org/10.1016/j.jpowsour.2011.03.078
Zhu, B., Raza, R., Abbas, G. and Singh, M. (2011) An Elec-trolyte-Free Fuel Cell Constructed from One Homogenous Layer with Mixed Conductivity. Advanced Functional Mate-rials, 21, 2465-2469. https://doi.org/10.1002/adfm.201002471
Zhu, B., Raza, R., Liu, Q., Qin, H., Zhu, Z., Fan, L., Singh, M. and Lund, P. (2012) A New Energy Conversion Technology Joining Electrochemical and Physical Principles. RSC Advances, 2, 5066-5072. https://doi.org/10.1039/c2ra01234k
Lu, Y.Z., Li, J.J., Ma, L.G., et al. (2021) The Development of Semicon-ductor-Ionic Conductor Composite Electrolytes for Fuel Cells with Symmetrical Electrodes. International Journal of Hy-drogen Energy, 46, 9835-9846. https://doi.org/10.1016/j.ijhydene.2020.05.240
Gong, X., Tong, M., Brunetti, F.G., et al. (2011) Bulk Hetero-junction Solar Cells with Large Open-Circuit Voltage: Electron Transfer with Small Donor-Acceptor Energy Offset. Ad-vanced Materials, 23, 2272-2277. https://doi.org/10.1002/adma.201003768
童雨竹. 二氧化钛电解质在固体氧化物燃料电池中的应用[D]: [硕士学位论文]. 武汉: 湖北大学, 2019.
邵康. 混合半导体-离子型燃料电池新材料开发与电化学性能研究[D]: [硕士学位论文]. 深圳: 深圳大学, 2020.
刘开. 氧化锡基半导体-离子导体在SOFC中的研究与应用[D]: [硕士学位论文]. 武汉: 湖北大学, 2021.
宓有全. 基于新型功能半导体离子材料的低温固体氧化物燃料电池[D]: [硕士学位论文]. 武汉: 湖北大学, 2019.
Sajid Rauf. 设计面向低温固体氧化物燃料电池的高离子电导型半导体和异质结构电解质[D]: [硕士学位论文]. 武汉: 湖北大学, 2021.
孟元靖. 钐掺杂氧化铈与钙钛矿复合电解质在低温固体氧化物燃料电池中的应用研究[D]: [博士学位论文]. 长春: 吉林大学, 2020.
Dong, W., Tong, Y., Zhu, B., et al. (2019) Semiconductor TiO2 Thin Film as an Electrolyte for Fuel Cells. Journal of Materials Chemistry A, 7, 16728-16734. https://doi.org/10.1039/C9TA01941C
Zhu, B., Wang, B., Wang, Y., et al. (2017) Charge Separation and Transport in La0.6Sr0.4Co0.2Fe0.8O3-δ and Ion-Doping Ceria Heterostructure Material for New Generation Fuel Cell. Nano Energy, 37, 195-202. https://doi.org/10.1016/j.nanoen.2017.05.003
Chen, G., Liu, H., He, Y., et al. (2019) Electrochemical Mecha-nisms of an Advanced Low-Temperature Fuel Cell with a SrTiO3 Electrolyte. Journal of Materials Chemistry A, 7, 9638-9645. https://doi.org/10.1039/C9TA00499H
Zhu, B., Qin, H., Raza, R., et al. (2011) A Sin-gle-Component Fuel Cell Reactor. International Journal of Hydrogen Energy, 36, 536-8541. https://doi.org/10.1016/j.ijhydene.2011.04.082
Asghar, M.I., Jouttijärvi, S., Jokiranta, R., et al. (2018) Wide Bandgap Oxides for Low-Temperature Single-Layered Nanocomposite Fuel Cell. Nano Energy, 53, 391-397. https://doi.org/10.1016/j.nanoen.2018.08.070
董婷. 半导体离子型燃料电池的性能研究[D]: [硕士学位论文]. 南京: 东南大学, 2020.
Xia, Y., Liu, X., Bai, Y., et al. (2012) Electrical Conductivity Optimization in Elec-trolyte-Free Fuel Cells by Single- Component Ce0.8Sm0.2O2-d-Li0.15Ni0.45Zn0.4 Layer. RSC Advances, 2, 3828-3834. https://doi.org/10.1039/c2ra01213h
周晓蜜. 具有离子-半导体复合膜的无电解质层燃料电池的制备及性能[D]: [硕士学位论文]. 包头: 内蒙古科技大学, 2019.
王广军. 新型低温固体氧化物燃料电池复合材料制备与器件设计[D]: [硕士学位论文]. 长春: 吉林大学, 2016.
乔峥. 氧化锌基固态电解质在燃料电池中的应用及电导特性研究[D]: [博士学位论文]. 武汉: 湖北大学, 2021.
邢月明. CeO2基半导体异质结材料的离子传输特性研究[D]: [博士学位论文]. 武汉: 中国地质大学, 2022.
高洁. 固体氧化物燃料电池半导体-离子导体复合电解质研究[D]: [硕士学位论文]. 武汉: 湖北大学, 2021.
Xia, C., Qiao, Z., Feng, C., et al. (2018) Study on Zinc Oxide-Based Electrolytes in Low-Temperature Solid Oxide Fuel Cells. Materials, 11, Article 40. https://doi.org/10.3390/ma11010040
Liu, L., Liu, Y.Y., Li, L.Y., et al. (2018) The Composite Electrolyte with an Insulation Sm2O3 and Semiconductor NiO for Advanced Fuel Cells. International Journal of Hydrogen Energy, 43, 12739-12747. https://doi.org/10.1016/j.ijhydene.2018.03.184
Meng, Y., Wang, X., Zhang, W., et al. (2019) Novel High Ionic Conductivity Electrolyte Membrane Based on Semiconductor La0.65Sr0.3Ce0.05Cr0.5Fe0.5O3-δ for Low-Temperature Solid Oxide Fuel Cells. Journal of Power Sources, 421, 33-40. https://doi.org/10.1016/j.jpowsour.2019.02.100
Wu, Y., Xia, C., Zhang, W., et al. (2016) Natural Hematite for Next-Generation Solid Oxide Fuel Cells. Advanced Functional Materials, 26, 938-942. https://doi.org/10.1002/adfm.201503756
Xia, C., Mi, Y., Wang, B., et al. (2019) Shaping Triple-Conducting Semiconductor BaCo0.4Fe0.4Zr0.1Y0.1O3-δ into an Electrolyte for Low-Temperature Solid Oxide Fuel Cells. Nature Com-munications, 10, Article No. 1707. https://doi.org/10.1038/s41467-019-09532-z
孙子元, 邹晗, 赵建永, 等. 半导体异质结燃料电池发电性能研究[J]. 电源技术, 2022, 46(1): 29-32.
Wu, Y., Dong, B., Zhang, J., Song, H. and Yan, C. (2018) The Syn-thesis of ZnO/SrTiO3 Composite for High-Efficiency Photocatalytic Hydrogen and Electricity Conversion. International Journal of Hydrogen Energy, 43, 12627-12636. https://doi.org/10.1016/j.ijhydene.2018.03.206
Shah, M.A.K.Y., Mushtaq, N., Rauf, S., et al. (2019) The Semiconductor SrFe0.2Ti0.8O3-δ-ZnO Heterostructure Electrolyte Fuel Cells. International Journal of Hydrogen Energy, 44, 30319-30327. https://doi.org/10.1016/j.ijhydene.2019.09.145
Shah, M.A.K.Y., Tayyab, Z., Rauf, S., et al. (2021) Interface Engineering of Bi-Layer Semiconductor SrCoSnO3-δ- CeO2-δ Heterojunction Electrolyte for Boosting the Electrochemical Performance of Low-Temperature Ceramic Fuel Cell. International Journal of Hydrogen Energy, 46, 33969-33977. https://doi.org/10.1016/j.ijhydene.2021.07.204
Hu, M.S., Chen, M., Wang, Y.C., et al. (2023) A p-n Hetero-structure Composite of NaCrO2and CeO2 for Intermediate Temperature Solid Oxide Fuel Cells. Journal of Alloys and Compounds, 962, Article ID: 171169. https://doi.org/10.1016/j.jallcom.2023.171169
Rauf, S., Hanif, M.B., Wali, F., et al. (2023) Highly Active In-terfacial Sites in SFT-SnO2 Hetero Junction Electrolyte for Enhanced Fuel Cell Performance via Engineered Energy Bands: Envisioned Theoretically and Experimentally. Energy & Environmental Materials, 6, e12606. https://doi.org/10.1002/eem2.12606
Shah, M.A.K.Y., Lu, Y. and Mushtaq, N. (2022) Interfacial Active-Sites p-n Heterojunction SFT-WO3 for Enhanced Fuel Cell Performance at 400-500℃. Materials Today Sustainability, 20, Article ID: 100229. https://doi.org/10.1016/j.mtsust.2022.100229