随着越来越多的纳米氧化铈(nCeO2)进入水环境,增加了水生生物与nCeO2接触的健康风险。为了研究微小RNA-190 (miR-190)的功能以及nCeO2暴露对大型溞体内miR-190及其靶基因MARK2表达的影响,我们利用miRbase数据库和MEGA7.0软件分析miR-190序列在各物种中的系统发生关系。Targetscan、miRanda和RNAhybrid筛选鉴定miR-190的靶基因。通过GO和KEGG聚类分析揭示miR-190靶基因的生物学作用。qPCR分析nCeO2暴露对大型溞体内miR-190和MARK2转录水平表达的影响。我们发现,14个物种的miR-190序列有16个碱基完全相同,miR-190序列在进化过程中高度保守。miR-190的852个靶基因主要位于细胞膜、细胞质中,富集在细胞内信号转导、DNA模板和转录调控、蛋白质磷酸化等生物学过程,且靶基因参与胞吞作用、ABC转运器和FoxO等细胞内重要的信号通路。在nCeO2暴露24、48 h后,miR-190在大型溞中的转录表达下调,而MARK2的mRNA表达量则明显上升。结果提示miR-190与MARK2在大型溞中的表达存在负调控关系,miR-190可能通过调控MARK2的转录表达来影响相关的细胞生命活动,本研究为解析nCeO2对水生无脊椎动物的毒性效应提供科学参考。 As more and more cerium oxide nanoparticles (nCeO2) enter the aquatic environment, the health risk of aquatic organisms exposed to nCeO2 increases. To investi-gate the function of microRNA-190 (miR-190) and the effect of nCeO2 exposure on the expression of miR-190 and its target gene MARK2 in Daphnia magna, we analyzed the phylogenetic relationships of miR-190 sequences across species using the miRbase database and MEGA 7.0 software. Tar-getscan, miRanda and RNA hybrid tools were performed to identify miR-190 targeted genes. Bio-logical roles of miR-190 target genes were revealed by GO and KEGG clustering analyses. qPCR analyzed the effects of nCeO2 exposure on the expression of miR-190 and MARK2 transcript levels in Daphnia magna. We found that the miR-190 sequences of 14 species were identical in 16 bases and that the miR-190 sequences were highly conserved during evolution. The 852 target genes of miR-190 are mainly located in the cell membrane and cytoplasm, and are enriched in biological processes such as intracellular signaling, DNA template and transcriptional regulation, protein phosphorylation, etc. Moreover, the target genes are involved in important intracellular signaling pathways such as cytosolization, ABC transporter and FoxO. After 24 and 48 h of nCeO2 exposure, the transcript expression of miR-190 was down-regulated in Daphnia magna, whereas the mRNA expression of MARK2 increased significantly. The results suggested that there was a negative regulatory relationship between miR-190 and MARK2 expression in Daphnia magna, and that miR-190 may affect related cellular life activities by regulating the transcriptional expression of MARK2. This study provides a scientific reference for analyzing the toxic effects of nCeO2 on aquatic invertebrates.
纳米氧化铈,大型溞,微小RNA,靶基因, Nano Cerium Dioxide
Daphnia magna
MicroRNA
Target Gene
摘要
As more and more cerium oxide nanoparticles (nCeO2) enter the aquatic environment, the health risk of aquatic organisms exposed to nCeO2increases. To investigate the function of microRNA-190 (miR-190) and the effect of nCeO2exposure on the expression of miR-190 and its target gene MARK2 in Daphnia magna, we analyzed the phylogenetic relationships of miR-190 sequences across species using the miRbase database and MEGA 7.0 software. Targetscan, miRanda and RNA hybrid tools were performed to identify miR-190 targeted genes. Biological roles of miR-190 target genes were revealed by GO and KEGG clustering analyses. qPCR analyzed the effects of nCeO2exposure on the expression of miR-190 and MARK2 transcript levels in Daphnia magna. We found that the miR-190 sequences of 14 species were identical in 16 bases and that the miR-190 sequences were highly conserved during evolution. The 852 target genes of miR-190 are mainly located in the cell membrane and cytoplasm, and are enriched in biological processes such as intracellular signaling, DNA template and transcriptional regulation, protein phosphorylation, etc. Moreover, the target genes are involved in important intracellular signaling pathways such as cytosolization, ABC transporter and FoxO. After 24 and 48 h of nCeO2exposure, the transcript expression of miR-190 was down-regulated in Daphnia magna, whereas the mRNA expression of MARK2 increased significantly. The results suggested that there was a negative regulatory relationship between miR-190 and MARK2 expression in Daphnia magna, and that miR-190 may affect related cellular life activities by regulating the transcriptional expression of MARK2. This study provides a scientific reference for analyzing the toxic effects of nCeO2on aquatic invertebrates.
周 妍,张园雯,康欣怡,刘 琪,刘 淼,吴 琪,王 媛. 纳米氧化铈暴露下大型溞miR-190和MARK2基因的表达和功能分析 Expression and Function Analysis of miR-190 and MARK2 Gene in Daphnia magna Exposed to Nano Cerium Dioxide[J]. 海洋科学前沿, 2023, 10(04): 285-296. https://doi.org/10.12677/AMS.2023.104029
参考文献References
You, G., Hou, J., Xu, Y., et al. (2021) Surface Properties and Environmental Transformations Controlling the Bioaccu-mulation and Toxicity of Cerium Oxide Nanoparticles: A Critical Review. Reviews of Environmental Contamination and Toxicology, 253, 155-206. https://doi.org/10.1007/398_2020_42
Hoecke, K., Quik, J.T., Mankiewicz-Boczek, J., et al. (2009) Fate and Effects of CeO2 Nanoparticles in Aquatic Ecotoxicity Tests. Environmental Science & Technol-ogy, 43, 4537-4546. https://doi.org/10.1021/es9002444
Dahle, J.T. and Arai, Y. (2015) Environmental Geo-chemistry of Cerium: Applications and Toxicology of Cerium Oxide Nanoparticles. International Journal of Environ-mental Research and Public Health, 12, 1253-1278. https://doi.org/10.3390/ijerph120201253
Keller, A.A. and Lazareva, A. (2013) Predicted Releases of Engi-neered Nanomaterials: From Global to Regional to Local. Environmental Science & Technology Letters, 1, 65-70. https://doi.org/10.1021/ez400106t
Piccinno, F., Gottschalk, F., Seeger, S. and Nowack, B. (2012) Industrial Production Quantities and Uses of Ten Engineered Nanomaterials in Europe and the World. Journal of Nanoparticle Re-search, 14, Article No. 1109. https://doi.org/10.1007/s11051-012-1109-9
Zhang, W., Pu, Z., Du, S., et al. (2016) Fate of Engineered Ceri-um Oxide Nanoparticles in an Aquatic Environment and Their Toxicity toward 14 Ciliated Protist Species. Environmental Pollution, 212, 584-591. https://doi.org/10.1016/j.envpol.2016.03.011
Rodea-Palomares, I., Boltes, K., Fernandez-Pinas, F., et al. (2011) Physicochemical Characterization and Ecotoxicological Assessment of CeO2 Nanoparticles Using Two Aquatic Microorganisms. Toxicological Sciences, 119, 135-145. https://doi.org/10.1093/toxsci/kfq311
陈昱, 樊燕, 舒凡, 等. 纳米氧化铈对斑马鱼胚胎早期发育毒性[J]. 中国职业医学, 2020, 47(1): 48-52.
Manzo, S., Miglietta, M. L., Rametta, G., et al. (2013). Embryotoxicity and Spermiotoxicity of Nanosized ZnO for Mediterranean Sea Urchin Paracentrotus lividus. Journal of Hazardous Materi-als, 254-255, 1-9. https://doi.org/10.1016/j.jhazmat.2013.03.027
Ozel, R.E., Alkasir, R.S., Ray, K., et al. (2013) Comparative Evaluation of Intestinal Nitric Oxide in Embryonic Zebrafish Exposed to Metal Oxide Nanoparticles. Small, 9, 4250-4261. https://doi.org/10.1002/smll.201301087
Manier, N., Garaud, M., Delalain, P., Aguerre-Chariol, O. and Pandard, P. (2011) Behaviour of Ceria Nanoparticles in Standardized Test Media—Influence on the Results of Ecotoxi-cological Tests. Journal of Physics: Conference Series, 304, Article ID: 012058. https://doi.org/10.1088/1742-6596/304/1/012058
钟秋, 何桢, 戴安琪, 等. 纳米二氧化铈对斜生栅藻的毒性研究[J]. 农业环境科学学报, 2012, 31(2): 299-305.
Dogra, Y., Arkill, K.P., Elgy, C., et al. (2016) Cerium Oxide Nanoparticles Induce Oxidative Stress in the Sediment-Dwelling Amphipod Corophium volutator. Nanotoxicology, 10, 480-487. https://doi.org/10.3109/17435390.2015.1088587
Chen, L., Li, Y.S., Cui, J., et al. (2014) MiR-206 Controls the Phenotypic Modulation of Pulmonary Arterial Smooth Muscle Cells Induced by Serum from Rats with Hepatopul-monary Syndrome by Regulating the Target Gene, Annexin A2. Cellular Physiology and Biochemistry, 34, 1768-1779. https://doi.org/10.1159/000366377
Yuan, J., Xiao, G., Peng, G., et al. (2015) MiRNA-125a-5p Inhibits Glio-blastoma Cell Proliferation and Promotes Cell Differentiation by Targeting TAZ. Biochemical and Biophysical Research Communications, 457, 171-176. https://doi.org/10.1016/j.bbrc.2014.12.078
牛黛醇, 李效宇. MicroRNA在鱼类胚胎发育中的调控作用[J]. 四川动物, 2015, 34(6): 948-954.
Xu, X.M. and Zhang, H.J. (2016) miRNAs as New Molecular Insights into In-flammatory Bowel Disease: Crucial Regulators in Autoimmunity and Inflammation. World Journal of Gastroenterology, 22, 2206-2218. https://doi.org/10.3748/wjg.v22.i7.2206
Wang, Y., Liao, X.L., Chen, K., et al. (2022) Analysis of the miRNA Expression Profile of Laboratory Red Crucian Carp under Low-Dose Caesium-137 Irradiation. Ecotoxicology, 31, 1276-1286. https://doi.org/10.1007/s10646-022-02578-8
Carthew, R.W. and Sontheimer, E.J. (2009) Origins and Mecha-nisms of miRNAs and siRNAs. Cell, 136, 642-655. https://doi.org/10.1016/j.cell.2009.01.035
Jia, W.Z., Yu, T., An, Q., et al. (2016) MicroRNA-190 Regulates FOXP2 Genes in Human Gastric Cancer. OncoTargets and Therapy, 9, 3643-3651. https://doi.org/10.2147/OTT.S103682
Guo, H., Lu, Z.C., Zhu, X.W., et al. (2018) Differential Expression of microRNAs in Hemocytes from White Shrimp Litopenaeus vannamei under Copper Stress. Fish & Shellfish Immunolo-gy, 74, 152-161. https://doi.org/10.1016/j.fsi.2017.12.053
Li, H., Di, G., Zhang, Y., et al. (2021) miR-217 through SIRT1 Regulates the Immunotoxicity of Cadmium in Cyprinus carpio. Comparative Biochemistry and Physiology Part C: Tox-icology & Pharmacology, 248, Article ID: 109086. https://doi.org/10.1016/j.cbpc.2021.109086
Yu, D., Peng, Z., Wu, H., et al. (2021) Stress Responses in Ex-pressions of microRNAs in Mussel Mytilus galloprovincialis Exposed to Cadmium. Ecotoxicology and Environmental Safety, 212, Article ID: 111927. https://doi.org/10.1016/j.ecoenv.2021.111927
刘建超, 马雨辰, 张凌玉, 等. 红霉素对大型溞生殖、生长和基因表达的生态毒理效应[J]. 生态学报, 2022, 42(19): 8105-8113.
程瑞雪, 邓斌, 王亚玲, 等. 大型溞(Daphnia magna)线粒体基因组的测定与序列分析[J]. 湖泊科学, 2016, 28(2): 414-420.
王茜, 郭鹄飞, 王兰. 镉对大型溞摄食能力和相关生理指标的影响[J]. 水生生物学报, 2018, 42(3): 616-621.
Forró, L., Ko-rovchinsky, N.M., Kotov, A.A. and Petrusek, A. (2007) Global Diversity of Cladocerans (Cladocera; Crustacea) in Freshwater. Hydrobiologia, 595, 177-184. https://doi.org/10.1007/s10750-007-9013-5
Matenia, D. and Man-delkow, E.M. (2009) The Tau of MARK: A Polarized View of the Cytoskeleton. Trends in Biochemical Sciences, 34, 332-342. https://doi.org/10.1016/j.tibs.2009.03.008
Nasser, F., Constantinou, J. and Lynch, I. (2020) Nano-materials in the Environment Acquire an “Eco-Corona” Impacting Their Toxicity to Daphnia Magna—A Call for Updat-ing Toxicity Testing Policies. Proteomics, 20, e1800412. https://doi.org/10.1002/pmic.201800412
许伊, 杨士红, 尤国祥, 等. 纳米二氧化铈的潜在生态风险及毒性作用机制研究进展[J]. 生态毒理学报, 2021, 16(1): 43-55.
Tomczyk-Wydrych, I. (2019) Metal Nanoparticles in Surface Waters—A Risk to Aquatic Organisms. Safety & Fire Technology, 54, 70-88. https://doi.org/10.12845/sft.54.2.2019.5
Sugantharaj David, E.M.D., Madurantakam Royam, M., Rajamani Sekar, S.K., et al. (2017) Toxicity, Uptake, and Accumulation of Nano and Bulk Cerium Oxide Particles in Artemia sa-lina. Environmental Science and Pollution Research, 24, 24187-24200. https://doi.org/10.1007/s11356-017-9975-4
Auguste, M., Balbi, T., Montagna, M., et al. (2019) In vivo Im-munomodulatory and Antioxidant Properties of Nanoceria (nCeO2) in the Marine Mussel Mytilus galloprovincialis. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 219, 95-102. https://doi.org/10.1016/j.cbpc.2019.02.006
Gaiser, B.K., Biswas, A., Rosenkranz, P., et al. (2011) Effects of Silver and Cerium Dioxide Micro- and Nano-Sized Particles on Daphnia magna. Journal of Environmental Monitoring, 13, 1227-1235. https://doi.org/10.1039/c1em10060b
Wu, D., Zhang, J., Du, W., Yin, Y. and Guo, H.Y. (2022) Toxicity Mechanism of Cerium Oxide Nanoparticles on Cyanobacteria Microcystis aeruginosa and Their Ecological Risks. Envi-ronmental Science and Pollution Research, 29, 34010-34018. https://doi.org/10.1007/s11356-021-18090-1
Shukla, R.K., Badiye, A., Vajpayee, K. and Kapoor, N. (2021) Genotoxic Potential of Nanoparticles: Structural and Functional Modifications in DNA. Frontiers in Genetics, 12, Article 728250. https://doi.org/10.3389/fgene.2021.728250
Villa, S., Maggioni, D., Hamza, H., et al. (2020) Natural Molecule Coatings Modify the Fate of Cerium Dioxide Nanoparticles in Water and Their Ecotoxicity to Daphnia magna. Environ-mental Pollution, 257, Article ID: 113597. https://doi.org/10.1016/j.envpol.2019.113597
Sendra, M., Volland, M., Balbi, T., et al. (2018) Cytotoxicity of CeO2 Nanoparticles Using in vitro Assay with Mytilus galloprovincialis Hemocytes: Relevance of Zeta Potential, Shape and Biocorona Formation. Aquatic Toxicology, 200, 13-20. https://doi.org/10.1016/j.aquatox.2018.04.011
Yang, L., Xu, H., Yang, M., et al. (2013) Research Progress on Toxicity of Manufactured Nanomaterials to Aquatic Organisms. Journal of Fishery Sciences of China, 20, 902-909. https://doi.org/10.3724/SP.J.1118.2013.00902
王婧坤, 马宇辉, 赵鑫, 等. 纳米二氧化铈对蛋白核小球藻和大型溞的毒性及其在大型溞体内的形态转化[J]. 生态毒理学报, 2016, 11(1): 362-368.
Kosak Nee Rohder, L.A., Brandt, T., Sigg, L. and Behra, R. (2018) Uptake and Effects of Cerium (III) and Cerium Oxide Nanoparticles to Chlamydomonas reinhardtii. Aquatic Toxicology, 197, 41-46. https://doi.org/10.1016/j.aquatox.2018.02.004
Stefani, G. and Slack, F.J. (2008) Small Non-Coding RNAs in Animal Development. Nature Reviews Molecular Cell Biology, 9, 219-230. https://doi.org/10.1038/nrm2347
Zheng, H., Chu, J., Zeng, Y., Loh, H.H. and Law, P.Y. (2010) Yin Yang 1 Phosphorylation Contributes to the Differential Effects of μ-Opioid Receptor Agonists on microRNA-190 Expression. Journal of Biological Chemistry, 285, 21994-22002. https://doi.org/10.1074/jbc.M110.112607
Liu, L., Wang, H., Yu, Y., et al. (2020) Microbial Regulation of a lincRNA-miRNA-mRNA Network in the Mouse Hippocampus. Epigenomics, 12, 1377-1387. https://doi.org/10.2217/epi-2019-0307
Dooley, J. and Liston, A. (2012) Molec-ular Control over Thymic Involution: From Cytokines and microRNAto Aging and Adipose Tissue. European Journal of Immunology, 42, 1073-1079. https://doi.org/10.1002/eji.201142305
Xu, P., Guo, H., Wang, H., et al. (2019) Identification and Profiling of microRNAs Responsive to Cadmium Toxicity in Hepatopancreas of the Freshwater Crab Sinopotamon henanense. Hereditas, 156, Article No. 34. https://doi.org/10.1186/s41065-019-0110-z
Chu, H.W., Cheng, C.W., Chou, W.C., et al. (2014) A Novel Es-trogen Receptor-microRNA 190a-PAR-1-Pathway Regulates Breast Cancer Progression, a Finding Initially Suggested by Genome-Wide Analysis of Loci Associated with Lymph-Node Metastasis. Human Molecular Genetics, 23, 355-367. https://doi.org/10.1093/hmg/ddt426
Xiong, Y., Wu, S., Yu, H., et al. (2018) miR-190 Promotes HCC Prolif-eration and Metastasis by Targeting PHLPP1. Experimental Cell Research, 371, 185-195. https://doi.org/10.1016/j.yexcr.2018.08.008
宋默, 刘攀, 席姗姗, 等. miR-190的表达下调有利于抑制结直肠癌[J]. 基因组学与应用生物学, 2017, 36(11): 4432-4437.
彭丹丹, 李言. MicroRNA-190调控衰老相关的脂肪能量代谢稳态[J]. 南京医科大学学报(自然科学版), 2021, 41(12): 1728-1734.
Dong, W., Geng, S., Cui, J., et al. (2022) MicroRNA-103 and microRNA-190 Negatively Regulate NF-κB-Mediated Immune Responses by Target-ing IL-1R1 in Miichthys miiuy. Fish & Shellfish Immunology, 123, 94-101. https://doi.org/10.1016/j.fsi.2022.02.043
Shi, X., Zhang, R., Liu, Z., et al. (2023) Combined Analysis of mRNA and miRNA Reveals the Mechanism of Pacific White Shrimp (Litopenaeus vannamei) under Acute Alkalinity Stress. PLOS ONE, 18, e0290157. https://doi.org/10.1371/journal.pone.0290157
Jin, Z., Piao, L., Sun, G., et al. (2020) Long Non-Coding RNA PART1 Exerts Tumor Suppressive Functions in Glioma via Sponging miR-190a-3p and Inactivation of PTEN/AKT Pathway. OncoTargets and Therapy, 13, 1073-1086. https://doi.org/10.2147/OTT.S232848
Matenia, D. and Mandelkow, E.M. (2014) Emerging Modes of PINK1 Signaling: Another Task for MARK2. Frontiers in Molecular Neuroscience, 7, Article 87846. https://doi.org/10.3389/fnmol.2014.00037