CCRL Climate Change Research Letters 2168-5711 Scientific Research Publishing 10.12677/CCRL.2024.131001 CCRL-76838 CCRL20240100000_36694608.pdf 地球与环境 基于5年OMI卫星数据分析长三角与珠三角臭氧廓线时间变化规律 Analysis of Typhoon Impact on Ozone Profile Changes in the Yangtze River Delta and Pearl River Delta Based on 5-Year OMI Satellite Data 玉婷 2 1 3 1 潞椰 2 1 明涛 2 1 洪强 2 1 中国科学院空天信息创新研究院,北京 桂林理工大学环境科学与工程学院,广西 桂林 null 11 12 2023 13 01 1 10 © Copyright 2014 by authors and Scientific Research Publishing Inc. 2014 This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/

在各种观测方法中,卫星遥感具有覆盖范围广、时间序列长、重复频次高的优点,是目前最主要的观测大气臭氧的手段之一。本文选用2016.3~2021.2共5年OMI卫星数据,分析长三角与珠三角臭氧廓线年际、季节以及月份臭氧廓线时间变化规律,结果发现:1) 五年内,两地区臭氧廓线年、季节和月均臭氧廓线均呈双峰转置“M”型,这是由大气中臭氧主要存在于臭氧层,而臭氧层位于平流层;2) 年际特征上,长三角与珠三角臭氧廓线最低值、最高值、次峰值与谷值出现的层数一致,但长三角最低值、最高值与谷值均低于珠三角,而次峰值高于珠三角。与2016年相比,2020年长三角与珠三角16~15层平均臭氧浓度均呈现下降趋势外,其余层的平均臭氧浓度均呈现上升趋势。其中,臭氧浓度降低最明显的均为16层,臭氧浓度上升最明显的均为距地面最近的17层,这与社会发展伴随的生物排放增多密不可分;3) 季节特征上,两地区臭氧浓度最低值所在0层均呈现春夏 > 秋冬的季节特征,而两地臭氧浓度最高值、次峰值、谷值所在层以及离地面最近的17层臭氧浓度季节变化特征均不同,这是由两地区气候、动力传输、生物排放以及光化学作用等不同所致;4) 月份特征上,两地区最高值所在层均在1月出现臭氧浓度最大值,其余最低值、次峰值与谷值所在层在12个月中臭氧浓度最高与最低值出现的月份均不同。这也说明两地区在不同的大气环流影响下有不同的臭氧垂直分布特征。此外,还对两地区五年平均臭氧廓线进行函数拟合,函数拟合效果很好,输出的公式R2均接近1,分别为0.94和0.97,可为更深入研究两地区臭氧廓线提供支撑。 Among various observation methods, satellite remote sensing has the advantages of wide coverage, long time series, and high repetition frequency, making it one of the most important means of ob-serving atmospheric ozone at present. This article uses OMI satellite data from March 2016 to Feb-ruary 2021 to analyze the temporal changes of annual, seasonal, and monthly ozone profiles in the Yangtze River Delta and Pearl River Delta. The results show that: 1) within five years, the annual, seasonal, and monthly average ozone profiles in both regions show a bimodal inverted “M” shape, which is due to the fact that ozone in the atmosphere mainly exists in the ozone layer, which is lo-cated in the stratosphere; 2) in terms of interannual characteristics, the lowest, highest, sub peak, and valley levels of ozone profiles in the Yangtze River Delta and Pearl River Delta are consistent, but the lowest, highest, and valley values in the Yangtze River Delta are lower than those in the Pearl River Delta, while the sub peak values are higher than those in the Pearl River Delta. Com-pared with 2016, in 2020, the average ozone concentration in the 16~15 layers of the Yangtze River Delta and Pearl River Delta showed a downward trend, while the average ozone concentration in the other layers showed an upward trend. Among them, the most significant decrease in ozone concen-tration is in the 16th layer, while the most significant increase in ozone concentration is in the 17th layer closest to the ground, which is closely related to the increase in biological emissions accompa-nied by social development; 3) in terms of seasonal characteristics, the lowest ozone concentration in the 0 layer of the two regions shows a seasonal characteristic of spring and summer>autumn and winter, while the highest, second peak, valley values of ozone concentration in the layer and the 17th layer which is closest to the ground have different seasonal variation characteristics. This is due to differences in climate, power transmission, biological emissions, and photochemical processes between the two regions; 4) in terms of monthly characteristics, the highest ozone concen-tration occurs in the layer where the highest value is located in both regions in January, while the other lowest values, sub peaks, and valleys occur in different months during the 12-month period. This also indicates that the two regions have different vertical distribution characteristics of ozone under the influence of different atmospheric circulation. Besides, the function fittings were also performed on the five-year average ozone profiles of the two regions, and the function fittings effect were very good. The output formula R2 was close to 1, with values of 0.94 and 0.97, respectively, which can provide support for further research on the ozone profiles of the two regions.

长三角,珠三角,臭氧廓线, Yangtze River Delta Pearl River Delta Ozone Profile
摘要

在各种观测方法中,卫星遥感具有覆盖范围广、时间序列长、重复频次高的优点,是目前最主要的观测大气臭氧的手段之一。本文选用2016.3~2021.2共5年OMI卫星数据,分析长三角与珠三角臭氧廓线年际、季节以及月份臭氧廓线时间变化规律,结果发现:1) 五年内,两地区臭氧廓线年、季节和月均臭氧廓线均呈双峰转置“M”型,这是由大气中臭氧主要存在于臭氧层,而臭氧层位于平流层;2) 年际特征上,长三角与珠三角臭氧廓线最低值、最高值、次峰值与谷值出现的层数一致,但长三角最低值、最高值与谷值均低于珠三角,而次峰值高于珠三角。与2016年相比,2020年长三角与珠三角16~15层平均臭氧浓度均呈现下降趋势外,其余层的平均臭氧浓度均呈现上升趋势。其中,臭氧浓度降低最明显的均为16层,臭氧浓度上升最明显的均为距地面最近的17层,这与社会发展伴随的生物排放增多密不可分;3) 季节特征上,两地区臭氧浓度最低值所在0层均呈现春夏 > 秋冬的季节特征,而两地臭氧浓度最高值、次峰值、谷值所在层以及离地面最近的17层臭氧浓度季节变化特征均不同,这是由两地区气候、动力传输、生物排放以及光化学作用等不同所致;4) 月份特征上,两地区最高值所在层均在1月出现臭氧浓度最大值,其余最低值、次峰值与谷值所在层在12个月中臭氧浓度最高与最低值出现的月份均不同。这也说明两地区在不同的大气环流影响下有不同的臭氧垂直分布特征。此外,还对两地区五年平均臭氧廓线进行函数拟合,函数拟合效果很好,输出的公式R2均接近1,分别为0.94和0.97,可为更深入研究两地区臭氧廓线提供支撑。

关键词

长三角,珠三角,臭氧廓线

Analysis of Typhoon Impact on Ozone Profile Changes in the Yangtze River Delta and Pearl River Delta Based on 5-Year OMI Satellite Data<sup> </sup>

Yuting Wei1, Jun Huang2, Luye Wang1, Mingtao Chen1, Hongqiang Wang1*

1College of Environmental Science and Engineering, Guilin University of Technology, Guilin Guangxi

2Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing

Received: May 29th, 2023; accepted: Jun. 12th, 2023; published: Dec. 11th, 2023

ABSTRACT

Among various observation methods, satellite remote sensing has the advantages of wide coverage, long time series, and high repetition frequency, making it one of the most important means of observing atmospheric ozone at present. This article uses OMI satellite data from March 2016 to February 2021 to analyze the temporal changes of annual, seasonal, and monthly ozone profiles in the Yangtze River Delta and Pearl River Delta. The results show that: 1) within five years, the annual, seasonal, and monthly average ozone profiles in both regions show a bimodal inverted “M” shape, which is due to the fact that ozone in the atmosphere mainly exists in the ozone layer, which is located in the stratosphere; 2) in terms of interannual characteristics, the lowest, highest, sub peak, and valley levels of ozone profiles in the Yangtze River Delta and Pearl River Delta are consistent, but the lowest, highest, and valley values in the Yangtze River Delta are lower than those in the Pearl River Delta, while the sub peak values are higher than those in the Pearl River Delta. Compared with 2016, in 2020, the average ozone concentration in the 16~15 layers of the Yangtze River Delta and Pearl River Delta showed a downward trend, while the average ozone concentration in the other layers showed an upward trend. Among them, the most significant decrease in ozone concentration is in the 16th layer, while the most significant increase in ozone concentration is in the 17th layer closest to the ground, which is closely related to the increase in biological emissions accompanied by social development; 3) in terms of seasonal characteristics, the lowest ozone concentration in the 0 layer of the two regions shows a seasonal characteristic of spring and summer>autumn and winter, while the highest, second peak, valley values of ozone concentration in the layer and the 17th layer which is closest to the ground have different seasonal variation characteristics. This is due to differences in climate, power transmission, biological emissions, and photochemical processes between the two regions; 4) in terms of monthly characteristics, the highest ozone concentration occurs in the layer where the highest value is located in both regions in January, while the other lowest values, sub peaks, and valleys occur in different months during the 12-month period. This also indicates that the two regions have different vertical distribution characteristics of ozone under the influence of different atmospheric circulation. Besides, the function fittings were also performed on the five-year average ozone profiles of the two regions, and the function fittings effect were very good. The output formula R2was close to 1, with values of 0.94 and 0.97, respectively, which can provide support for further research on the ozone profiles of the two regions.

Keywords:Yangtze River Delta, Pearl River Delta, Ozone Profile

Copyright © 2024 by author(s) and beplay安卓登录

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

臭氧(O3)是一种微量气体,也是重要的温室气体之一,主要存在于大气平流层中,可以吸收紫外线和大部分对地球生物有害的太阳短波辐射并保护地球生态系统,而近地面大气里的臭氧却是一种二次污染物 [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] 。高浓度的臭氧不仅会影响人类和地表生物的生存,还会影响对流层与平流层之间的大气化学、辐射、动力、热力等过程 [ 6 ] [ 7 ] 。近年来,全球的臭氧浓度呈现逐年增加的趋势,臭氧污染已成为普遍且难以处理的大气污染之一 [ 8 ] 。很多国家也逐步认识到了高浓度臭氧带来的危害并逐渐重视臭氧污染控制,“十四五”以来,臭氧污染防治已成为我国大气污染防治的重点,但如何防控臭氧污染仍是个棘手的问题 [ 9 ] [ 10 ] 。

大气臭氧是大气环境科学和全球气候变化研究的重要领域,且臭氧总量及其垂直分布的变化对气候变化有重要影响 [ 11 ] ,研究长三角与珠三角地区臭氧廓线特征,可为臭氧污染的防控提供参考。在各种观测方法中,卫星遥感具有覆盖范围广、时间序列长、重复频次高的优点,是目前最主要的观测大气臭氧的手段之一。因此,本文选取2016.3~2021.2连续五年OMI卫星臭氧廓线进行对比,分析长三角与珠三角臭氧廓线的时间变化规律。

2. 数据与方法 2.1. 数据

臭氧廓线数据来自OMI的Level 2臭氧产品OMO3PR,该产品采用V.8版算法,误差在10%以下。数据的存储和发布采用NASA发布EOS (Earth Observation System)数据产品的标准格式HDF-EOS 5 Swath,每个数据结构包含数据域、数据介绍域和地理坐标数据域。该产品对臭氧柱浓度进行观测和记录,包含从地面到大气层顶18层高度的臭氧廓线数据,包括17~0层,其中17~12层对应着对流层,12~0层对应着平流层。每一层臭氧柱浓度以DU (Dobson Unit)为单位。该数据格式详细信息可参考OMI大气产品文档(http://disc.sci.gsfc.nasa.gov/AIRS/ozone/documentation/docs/omi-spie-2003.doc)。

2.2. 方法

臭氧廓线数据处理方法为:先用NASA官方网站推荐的小程序1批量下载HDF格式的原始全球臭氧廓线数据,再通过NASA官方网站推荐的小程序2从OMO3PR原始数据中提取出珠三角地区(112˚E~114˚E, 21˚N~23˚N)臭氧廓线并转化为csv格式,剔除无效数据后再利用EXCEL计算出臭氧廓线均值,最后用origin画出对应的臭氧廓线图。

3. 结果与讨论 3.1. 长三角、珠三角臭氧廓线年际特征

长三角与珠三角2016.3~2021.2五年平均臭氧廓线如图1与图2。

由图1与图2可见,从整体上看,长三角与珠三角17~0层,臭氧浓度分布图像大体呈双峰转置“M”型,这是由于臭氧层处于平流层中,且最高臭氧浓度位于20 km~25 km的高度处 [ 12 ] 。其中,两地区臭氧浓度最低值均出现在0层,五年平均浓度分别约为0.340 DU和0.342 DU;两地区最高值均出现在7层,五年平均浓度分别约为59.799 DU和62.938 DU;两地区次峰值均出现在9层 [ 11 ] ,五年平均浓度分别约为50.288 DU和46.678 DU;两地区谷值均出现在8层,五年平均浓度分别约为41.174 DU和41.331 DU;两地区距地面最近的17层五年平均浓度分别约为9.495 DU和7.942 DU。

五年内,各层臭氧浓度波动规律各不相同,与2016年相比,2020年长三角与珠三角16~15层平均臭氧浓度呈现下降趋势外,其余层的平均臭氧浓度均呈现上升趋势。其中,两地区臭氧浓度降低最明显的均为16层,分别下降了5.27%和7.10%;两地区臭氧浓度上升最明显的均为距地面最近的17层,分别升高了5.29%和7.00%。

图1. 长三角五年平均臭氧廓线

图2. 珠三角五年平均臭氧廓线

对长三角与珠三角五年平均臭氧廓线进行函数拟合,并采用麦夸特法(Levenberg-Marquardt)和通用全局优化法进行优化,输出函数拟合图如图3和图4,输出公式(1)和公式(2)。

图3. 长三角五年平均臭氧廓线拟合函数图

图4. 珠三角五年平均臭氧廓线拟合函数图

y = 2.9136 − 0.1845 x 2 + 0.0072 x 4 − 0.0001 x 6 + 6.176 × 10 − 7 x 8 1 − 0.0668 x 2 + 0.0070 x 4 − 1.8892 × 10 − 5 x 6 + 7.7570 × 10 − 8 x 8 , R 2 = 0.94 (1)

y = 0.3414 + 58485.7555 x 2 − 1552.4355 x 4 + 21.7974 x 6 − 0.1705 x 8 1 + 10944.1338 x 2 − 522.4573 x 4 + 8.4493 x 6 − 0.0459 x 8 , R 2 = 0.97 (2)

由图3和图4以及公式1和公式2可见,R2接近1,函数拟合效果很好,输出的公式可应用于今后臭氧廓线研究。

3.2. 长三角、珠三角臭氧廓线季节特征

长三角与珠三角2016.3~2021.2五年季节平均臭氧廓线如图5与图6。

图5. 长三角五年季节平均臭氧廓线

由图5可见,五年长三角四季臭氧浓度最低值均出现在0层,对应季节平均值分别约为0.337 DU、0.363 DU、0.331 DU和0.328 DU,呈现夏季 > 春季 > 秋季 > 冬季的趋势;四个季节臭氧浓度最高值均在7层,对应季节平均值分别约为61.761 DU、64.049 DU、59.020 DU和54.368 DU,呈现夏季 > 春季 > 秋季 > 冬季的趋势;四个季节臭氧浓度次峰值均在9层,对应季节平均值分别约为51.722 DU、49.291 DU、47.285 DU和52.856 DU,呈现冬季 > 春季 > 夏季 > 秋季的趋势;谷值均出现在8层,对应的季节平均值分别约为41.252 DU、42.314 DU、40.574 DU和40.554 DU,呈现夏季 > 春季 > 秋季 > 冬季的趋势;距地面最近的17层的四季臭氧浓度季节平均值分别约为10.731 DU、11.032 DU、8.690 DU和7.526 DU,呈现夏季 > 春季 > 秋季 > 冬季的季节特征。

图6. 珠三角五年季节平均臭氧廓线

由图6可见,五年珠三角四季臭氧浓度最低值均出现在0层,对应季节平均值分别约为0.343 DU、0.369 DU、0.335 DU和0.320 DU,呈现夏季 > 春季 > 秋季 > 冬季的趋势;四个季节臭氧浓度最高值均在7层,对应季节平均值分别约为64.174 DU、66.911 DU、62.725 DU和57.943 DU,呈现夏季 > 春季 > 秋季 > 冬季的趋势;四个季节臭氧浓度次峰值均在9层,对应季节平均值分别约为46.547 DU、48.925 DU、45.548 DU和45.963 DU,呈现夏季 > 春季 > 冬季 > 秋季的趋势;谷值均出现在8层,对应的季节平均值分别约为40.604 DU、43.926 DU、41.404 DU和39.390 DU,呈现夏季 > 秋季 > 春季 > 冬季的趋势;距地面最近的17层的四季臭氧浓度季节平均值分别约为10.140 DU、7.021 DU、7.293 DU和7.315 DU,呈现春季 > 冬季 > 秋季 > 夏季的季节特征。

综上所述,五年内长三角与珠三角最低值所在的0层臭氧浓度均呈现春夏 > 秋冬的季节特征;最高值所在的7层臭氧浓度最大值均出现在夏季、最小值出现在冬季 [ 13 ] [ 14 ] ;次峰值所在的9层以及谷值所在的8层臭氧浓度均在夏季出现最大值;离地面最近的17层臭氧浓度均在春季出现最大值。

3.3. 长三角、珠三角臭氧廓线月份特征

长三角与珠三角2016.3~2021.2五年月平均臭氧廓线按季节划分如图7与图8。

图7. 长三角月平均臭氧廓线

由图7可见,五年内长三角1~12月臭氧浓度最低值均在0层,其中,最高值出现在8月,平均值约为:0.366 DU,最低值出现在11月,平均值约为:0.322 DU;峰值均在7层,其中,最高值出现在5月,平均值约为:64.462 DU,最低值出现在1月,平均值约为:53.735 DU;臭氧浓度次峰值均在9层,其中,最高值出现在2月,平均值约为:54.323 DU,最低值出现在10月,平均值约为:45.803 DU;峰值与次峰值最大差值在夏季对应的6~8月,最小差值在冬季对应的12~2月;臭氧浓度谷值均在8层,其中,最高值出现在4月,平均值约为:41.849 DU,最低值出现在10月,平均值约为:39.787 DU;而在距地面最近的17层中,最高值出现在6月,平均值约为:12.102 DU,最低值出现在12月,平均值约为:7.134 DU。

由图8可见,五年内珠三角1~12月臭氧浓度最低值均在0层,其中,最高值出现在7月,平均值约为:0.374 DU,最低值出现在1月,平均值约为:0.314 DU;峰值均在7层,其中,最高值出现在6月,平均值约为:67.373 DU,最低值出现在1月,平均值约为:57.648 DU;臭氧浓度次峰值均在9层,其中,最高值出现在7月,平均值约为:49.718 DU,最低值出现在10月,平均值约为:44.626 DU;峰值与次峰值随月份变化不大;臭氧浓度谷值均在8层,其中,最高值出现在10月,平均值约为:44.233 DU,最低值出现在3月,平均值约为:38.570 DU;而在距地面最近的17层中,最高值出现在5月,平均值约为:10.514 DU,最低值出现在7月,平均值约为:6.398 DU。说明两地区在不同的大气环流影响下有不同的臭氧垂直分布特征 [ 15 ] 。

图8. 珠三角月平均臭氧廓线

4. 结论与展望

综上,本文得出以下结论:

1) 五年内,两地区臭氧廓线年、季节和月均臭氧廓线均呈双峰转置“M”型,这是由大气中臭氧主要存在于臭氧层,而臭氧层位于平流层。

2) 年际特征上,长三角与珠三角臭氧廓线最低值、最高值、次峰值与谷值出现的层数一致,但长三角最低值、最高值与谷值均低于珠三角,而次峰值高于珠三角。与2016年相比,2020年长三角与珠三角16~15层平均臭氧浓度均呈现下降趋势外,其余层的平均臭氧浓度均呈现上升趋势。其中,臭氧浓度降低最明显的均为16层,臭氧浓度上升最明显的均为距地面最近的17层,这与社会发展伴随的生物排放增多密不可分。

3) 季节特征上,两地区臭氧浓度最低值所在0层均呈现春夏 > 秋冬的季节特征,而两地臭氧浓度最高值、次峰值、谷值所在层以及离地面最近的17层臭氧浓度季节变化特征均不同,这是由两地区气候、动力传输、生物排放以及光化学作用等不同所致。

4) 月份特征上,两地区最高值所在层均在1月出现臭氧浓度最大值,其余最低值、次峰值与谷值所在层在12个月中臭氧浓度最高与最低值出现的月份均不同。这也说明两地区在不同的大气环流影响下有不同的臭氧垂直分布特征。

5) 两地区五年平均臭氧廓线函数拟合效果很好,输出的公式R2均接近1,分别为0.94和0.97,可为更深入研究两地区臭氧廓线提供支撑。

基金项目

感谢NASA提供数据支持,感谢国家重点研发计划项目(2018YFC1506304)资助。

文章引用

韦玉婷,黄 俊,王潞椰,陈明涛,王洪强. 基于5年OMI卫星数据分析长三角与珠三角臭氧廓线时间变化规律Analysis of Typhoon Impact on Ozone Profile Changes in the Yangtze River Delta and Pearl River Delta Based on 5-Year OMI Satellite Data[J]. 气候变化研究快报, 2024, 13(01): 1-10. https://doi.org/10.12677/CCRL.2024.131001

参考文献 References 刘寅. FY-3A气象卫星臭氧总量数据的质量控制方案及其在台风Tembin (2012)和Isaac (2012)中的应用[J]. 大气科学, 2014, 38(6): 1066-1078. 吴焕波, 谷新波. 呼和浩特市PM10、PM2.5、O3特征分析及O3预报方法的建立[C]//中国气象学会. 第35届中国气象学会年会 S12 大气成分与天气、气候变化与环境影响暨环境气象预报及影响评估: 2018年卷. 合肥, 2018: 603-618. 耿福海, 刘琼, 陈勇航. 近地面臭氧研究进展[J]. 沙漠与绿洲气象, 2012, 6(6): 8-14. 韩余, 周国兵, 陈道劲, 等. 重庆市臭氧污染及其气象因子预报方法对比研究[J]. 气象与环境学报, 2020, 36(4): 59-66. 李顺姬, 李红, 陈妙, 等. 气象因素对西安市西南城区大气中臭氧及其前体物的影响[J]. 气象与环境学报, 2018, 34(4): 59-67. 陈立新, 邓慧颖, 林晖, 梁益. 天气尺度条件下武夷山市臭氧演变规律及污染成因分析[J]. 海峡科学, 2021(6): 67-73. 陈莉, 高云峰, 忽建永, 彭思晴. 东亚季风及台风过程与臭氧含量变化的关系分析[J]. 高原山地气象研究, 2017, 37(1): 66-72. 宋佳颖, 刘旻霞, 孙瑞弟, 等. 基于OMI数据的东南沿海大气臭氧浓度时空分布特征研究[J]. 环境科学学报, 2020, 40(2): 438-449. 王宏, 林长城, 陈晓秋, 等. 天气条件对福州近地层臭氧分布的影响[J]. 生态环境学报, 2011, 20(Z2): 1320-1325. 赵少华, 杨晓钰, 李正强, 等. 臭氧卫星遥感六十年进展[J]. 遥感学报, 2022, 26(5): 817-833. 石广玉, 许黎, 吕位秀, 等. 0-33公里大气臭氧和气溶胶垂直分布的气球观测[J]. 科学通报, 1986(15): 1165-1167. 王庚辰, 孔琴心, 陈洪滨, 等. 北京上空大气臭氧垂直分布的特征[J]. 地球科学进展, 2004, 19(5): 743-748. 王馨琦, 张天舒, 裴成磊, 等. 差分吸收激光雷达监测广州市臭氧垂直分布特征[J]. 中国激光, 2019, 46(12): 279-287. 岳海燕, 蒋媛, 顾桃峰, 等. 基于广州塔多层观测的城市臭氧污染垂直分布特征及成因分析[J]. 环境科学学报, 2023, 43(1): 54-62. 郑永光, 陈鲁言, 陈尊裕, 等. 2001年春季临安、昆明和香港臭氧垂直分布特征的对比分析[J]. 北京大学学报(自然科学版), 2005, 41(1): 104-114.
Baidu
map