随着人工智能(AI)的广泛应用和个体化医疗的兴起,影像组学近年来受到了人们的关注,具有极大的临床价值。超声作为肝脏肿瘤的首选检查方法在早期筛查和诊断中有重要作用,本文主要探讨基于超声的影像组学在肝细胞癌中的应用,并展望肝癌超声影像组学的发展前景。 With the widespread application of Artificial Intelligence (AI) and the rise of personalized medicine, radiomics has gained significant attention in recent years due to its immense clinical value. Ultra-sonography, as the preferred imaging modality for liver tumor examination, plays a crucial role in early screening and diagnosis. This article primarily explores the application of ultrasound-based radiomics in hepatocellular carcinoma and prospects the future development of radiomics in liver cancer ultrasound imaging.
With the widespread application of Artificial Intelligence (AI) and the rise of personalized medicine, radiomics has gained significant attention in recent years due to its immense clinical value. Ultrasonography, as the preferred imaging modality for liver tumor examination, plays a crucial role in early screening and diagnosis. This article primarily explores the application of ultrasound-based radiomics in hepatocellular carcinoma and prospects the future development of radiomics in liver cancer ultrasound imaging.
王馨瑶,张建蕾,何光彬. 超声影像组学在肝细胞癌诊疗中的应用价值Application Value of Ultasound-Based Radiomics in the Diagnosis and Treatment of Hepatocellular Carcinoma[J]. 临床医学进展, 2023, 13(11): 18386-18391. https://doi.org/10.12677/ACM.2023.13112582
参考文献References
Vogel, A., Meyer, T., Sapisochin, G., et al. (2022) Hepatocellular Carcinoma. The Lancet (London, England), 400, 1345-1362. https://doi.org/10.1016/S0140-6736(22)01200-4
Robinson, P. (2008) Hepatocellular Carcinoma: Development and Early Detection. Cancer Imaging: The Official Publication of the International Cancer Imaging Society, 8, S128-S131. https://doi.org/10.1102/1470-7330.2008.9019
Lambin, P., Rios-Velazquez, E., Leijenaar, R., et al. (2012) Radiomics: Extracting More Information from Medical Images Using Advanced Feature Analysis. European Journal of Cancer (Oxford, England: 1990), 48, 441-446. https://doi.org/10.1016/j.ejca.2011.11.036
Aerts, H.J.W.L., Velazquez, E.R., Leijenaar, R.T.H., et al. (2014) Decoding Tumour Phenotype by Noninvasive Imaging Using a Quantitative Radiomics Approach. Nature Communica-tions, 5, Article No. 4006. https://doi.org/10.1038/ncomms5644
Ahn, J.C., Qureshi, T.A., Singal, A.G., et al. (2021) Deep Learning in Hepatocellular Carcinoma: Current Status and Future Perspectives. World Journal of Hepatology, 13, 2039-2051. https://doi.org/10.4254/wjh.v13.i12.2039
Nam, D., Chapiro, J., Paradis, V., et al. (2022) Artificial Intelligence in Liver Diseases: Improving Diagnostics, Prognostics and Response Prediction. JHEP Reports: Innovation in Hepatol-ogy, 4, Article ID: 100443. https://doi.org/10.1016/j.jhepr.2022.100443
Liu, J.Q., Ren, J.Y., Xu, X.L., et al. (2022) Ultrasound-Based Artificial Intelligence in Gastroenterology and Hepatology. World Journal of Gastroenterology, 28, 5530-5546. https://doi.org/10.3748/wjg.v28.i38.5530
Sujana, H., Swarnamani, S. and Suresh, S. (1996) Application of Artificial Neural Networks for the Classification of Liver Lesions by Image Texture Parameters. Ultrasound in Medicine & Biology, 22, 1177-1181. https://doi.org/10.1016/S0301-5629(96)00144-5
Mittal, D., Kumar, V., Saxena, S.C., et al. (2011) Neural Network Based Focal Liver Lesion Diagnosis Using Ultrasound Images. Computerized Medical Imaging and Graphics: The Official Journal of the Computerized Medical Imaging Society, 35, 315-323. https://doi.org/10.1016/j.compmedimag.2011.01.007
Shiraishi, J., Sugimoto, K., Moriyasu, F., et al. (2008) Computer-Aided Diagnosis for the Classification of Focal Liver Lesions by Use of Contrast-Enhanced Ultrasonography. Medical Physics, 35, 1734-1746. https://doi.org/10.1118/1.2900109
Yoshida, H., Casalino, D.D., Keserci, B., et al. (2003) Wave-let-Packet-Based Texture Analysis for Differentiation between Benign and Malignant Liver Tumours in Ultrasound Im-ages. Physics in Medicine and Biology, 48, 3735-3753. https://doi.org/10.1088/0031-9155/48/22/008
Schmauch, B., Herent, P., Jehanno, P., et al. (2019) Diagnosis of Focal Liver Lesions from Ultrasound Using Deep Learning. Diagnostic and Interventional Imaging, 100, 227-233. https://doi.org/10.1016/j.diii.2019.02.009
Yang, Q., Wei, J., Hao, X., et al. (2020) Improving B-Mode Ultra-sound Diagnostic Performance for Focal Liver Lesions Using Deep Learning: A Multicentre Study. EBioMedicine, 56, Article ID: 102777. https://doi.org/10.1016/j.ebiom.2020.102777
Guo, L.H., Wang, D., Qian, Y.Y., et al. (2018) A Two-Stage Multi-View Learning Framework Based Computer-Aided Diagnosis of Liver Tumors with Contrast Enhanced Ultra-sound Images. Clinical Hemorheology and Microcirculation, 69, 343-354. https://doi.org/10.3233/CH-170275
Virmani, J., Kumar, V., Kalra, N., et al. (2013) SVM-Based Characteriza-tion of Liver Ultrasound Images Using Wavelet Packet Texture Descriptors. Journal of Digital Imaging, 26, 530-543. https://doi.org/10.1007/s10278-012-9537-8
Virmani, J., Kumar, V., Kalra, N., et al. (2013) A Comparative Study of Computer-Aided Classification Systems for Focal Hepatic Lesions from B-Mode Ultrasound. Journal of Medi-cal Engineering & Technology, 37, 292-306. https://doi.org/10.3109/03091902.2013.794869
Virmani, J., Kumar, V., Kalra, N., et al. (2014) Neural Net-work Ensemble Based CAD System for Focal Liver Lesions from B-Mode Ultrasound. Journal of Digital Imaging, 27, 520-537. https://doi.org/10.1007/s10278-014-9685-0
Hwang, Y.N., Lee, J.H., Kim, G.Y., et al. (2015) Clas-sification of Focal Liver Lesions on Ultrasound Images by Extracting Hybrid Textural Features and Using an Artificial Neural Network. Bio-Medical Materials and Engineering, 26, S1599-S1611. https://doi.org/10.3233/BME-151459
Yao, Z., Dong, Y., Wu, G., et al. (2018) Preoperative Diagnosis and Prediction of Hepatocellular Carcinoma: Radiomics Analysis Based on Multi-Modal Ultrasound Images. BMC Cancer, 18, Article No. 1089. https://doi.org/10.1186/s12885-018-5003-4
Sugimoto, K., Shiraishi, J., Moriyasu, F., et al. (2010) Comput-er-Aided Diagnosis for Contrast-Enhanced Ultrasound in the Liver. World Journal of Radiology, 2, 215-223. https://doi.org/10.4329/wjr.v2.i6.215
Oezdemir, I., Wessner, C.E., Shaw, C., et al. (2020) Tumor Vascular Networks Depicted in Contrast-Enhanced Ultrasound Images as a Predictor for Transarterial Chemoembolization Treat-ment Response. Ultrasound in Medicine & Biology, 46, 2276-2286. https://doi.org/10.1016/j.ultrasmedbio.2020.05.010
Turco, S., Tiyarattanachai, T., Ebrahimkheil, K., et al. (2022) Interpretable Machine Learning for Characterization of Focal Liver Lesions by Contrast-Enhanced Ultrasound. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 69, 1670-1681. https://doi.org/10.1109/TUFFC.2022.3161719
戴猛, 董怡, 韩红, 等. 原发性肝细胞肝癌Ki-67表达的影像组学预测[J]. 肿瘤影像学, 2018, 27(1): 7-11.
Dong, Y., Zhou, L., Xia, W., et al. (2020) Preoperative Predic-tion of Microvascular Invasion in Hepatocellular Carcinoma: Initial Application of a Radiomic Algorithm Based on Grayscale Ultrasound Images. Frontiers in Oncology, 10, Article No. 353. https://doi.org/10.3389/fonc.2020.00353
Hu, H.T., Wang, Z., Huang, X.W., et al. (2019) Ultrasound-Based Radiomics Score: A Potential Biomarker for the Prediction of Microvascular Invasion in Hepatocellular Carcinoma. Eu-ropean Radiology, 29, 2890-2901. https://doi.org/10.1007/s00330-018-5797-0
刘桐桐, 董怡, 韩红, 等. 基于影像组学方法的原发性肝细胞癌微血管侵犯和肿瘤分化等级预测[J]. 中国医学计算机成像杂志, 2018, 24(1): 83-87. https://doi.org/10.19627/j.cnki.cn31-1700/th.2018.01.018
Liu, F., Liu, D., Wang, K., et al. (2020) Deep Learning Radiomics Based on Contrast-Enhanced Ultrasound Might Optimize Curative Treatments for Very-Early or Early-Stage Hepatocellular Carcinoma Patients. Liver Cancer, 9, 397-413. https://doi.org/10.1159/000505694
Zhang, H. and Huo, F. (2022) Prediction of Early Recurrence of HCC after Hepatectomy by Contrast-Enhanced Ultrasound-Based Deep Learning Radiomics. Frontiers in Oncology, 12, Article ID: 930458. https://doi.org/10.3389/fonc.2022.930458
Ma, Q.P., He, X.L., Li, K., et al. (2021) Dynamic Con-trast-Enhanced Ultrasound Radiomics for Hepatocellular Carcinoma Recurrence Prediction after Thermal Ablation. Mo-lecular Imaging and Biology, 23, 572-585. https://doi.org/10.1007/s11307-021-01578-0
Loosen, S.H., Schulze-Hagen, M., Leyh, C., et al. (2018) IL-6 and IL-8 Serum Levels Predict Tumor Response and Overall Survival after TACE for Primary and Secondary Hepatic Malignancies. International Journal of Molecular Sciences, 19, Article No. 1766. https://doi.org/10.3390/ijms19061766
Liu, D., Liu, F., Xie, X., et al. (2020) Accurate Prediction of Responses to Transarterial Chemoembolization for Patients with Hepatocellular Carcinoma by Using Artificial Intelligence in Con-trast-Enhanced Ultrasound. European Radiology, 30, 2365-2376. https://doi.org/10.1007/s00330-019-06553-6