蜂窝梁是在H型钢梁的腹板上进行切割、错位焊接而形成的,具有自重轻、抗弯刚度大、造型美观、便于穿越建筑管线、降低层高等特点。开孔导致了梁截面的削弱,使得蜂窝梁的破坏模式趋于复杂。通过文献调研法,总结了蜂窝梁的五种破坏模式以及残余应力对蜂窝梁性能的影响,分析了已有设计计算方法的适用性与局限性,展望了蜂窝梁进一步的研究方向。 Castellated beam is formed by cutting and dislocation welding on the web of an H-shaped steel beam, which has the characteristics of light weight, high bending stiffness, beautiful shape, easy to cross-building pipelines and low story height. Opening holes lead to the weakening of beam section, which makes the failure mode of castellated beam more complicated. Through literature investigation, this paper summarizes five failure modes of castellated beams and the influence of residual stress on the performance of castellated beams, analyzes the applicability and limitations of existing design and calculation methods, and looks forward to the further research direction of castellated beams.
Castellated beam is formed by cutting and dislocation welding on the web of an H-shaped steel beam, which has the characteristics of light weight, high bending stiffness, beautiful shape, easy to cross-building pipelines and low story height. Opening holes lead to the weakening of beam section, which makes the failure mode of castellated beam more complicated. Through literature investigation, this paper summarizes five failure modes of castellated beams and the influence of residual stress on the performance of castellated beams, analyzes the applicability and limitations of existing design and calculation methods, and looks forward to the further research direction of castellated beams.
目前的设计规范中通过整体稳定纯弯系数 C b 将工字型钢梁的整体扭转屈曲名义弯矩 M n 与均匀弯矩下对应的临界屈曲弯矩 M o c r 联系起来,如公式(1)所示,各国规范中建议的 C b 值见表3,该值仅与加载方式有关。Mohebkhah [
20
] 、Kazemi [
21
] 、Sweedan [
22
] 等人的研究表明,蜂窝梁的整体稳定纯弯系数 C b 与构件的长细比、开孔形式均有较大关联,规范中建议的 C b 值趋于不安全,应依据构件的长细比分段给出 C b 的数值。
M n = C b M o c r (1)
The overall stable pure bending coefficient C b values recommended by national regulation
廖利航,耿 凯,周 洋,杨 康. 蜂窝梁破坏模式研究新进展New Progress in the Study of Failure Modes of Castellated Beams[J]. 土木工程, 2023, 12(06): 784-792. https://doi.org/10.12677/HJCE.2023.126089
参考文献References
李霞. 卧式似椭圆孔蜂窝梁的制作与设计计算方法[D]: [硕士学位论文]. 长沙: 中南大学, 2007.
王培军, 王旭东, 马丁. 圆角多边孔蜂窝梁孔间腹板屈曲承载力研究[J]. 工程力学, 2015, 32(4): 145-152.
黄炳生, 黄泰杰, 王维川, 桑伟. 蜂窝梁等效抗弯刚度计算方法及其影响因素分析[J]. 建筑结构学报, 2018, 39(S2): 121-127.
贾连光, 杨建华, 秦晨光. 蜂窝构件开孔截面焊接残余应力分布研究[J]. 工程力学, 2015, 32(Z1): 304-309.
Geng, K., Jia, L., Xu, F. and Li, Q. (2023) Experimental Study on the Mechanical Behaviour of Castellated Composite Beams under a Negative Bending Moment. Structures, 47, 953-965. https://doi.org/10.1016/j.istruc.2022.11.074
Ward, J.K. (1990) Design of Composite and Non-Composite Cellular Beams. Steel Construction Institute, 100.
Chung, K.F., Liu, T.C.H. and Ko, A.C.H. (2001) Investigation on Vierendeel Mechanism in Steel Beams with Circular Web Openings. Journal of Constructional Steel Research, 57, 467-490. https://doi.org/10.1016/S0143-974X(00)00035-3
Tsavdaridis, K.D., ASCE, A.M. and D’Mello, C. (2012) Vierendeel Bending Study of Perforated Steel Beams with Various Novel Web Opening Shapes through Nonlinear Finite-Element Analyses. Journal of Structural Engineering, 138, 1214-1230. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000562
Erdal, F. and Saka, M.P. (2013) Ultimate Load Carrying Capacity of Optimally Designed Steel Cellular Beams. Journal of Constructional Steel Research, 80, 355-368. https://doi.org/10.1016/j.jcsr.2012.10.007
Wang, P., Ma, Q. and Wang, X. (2014) Investigation on Vierendeel Mechanism Failure of Castellated Steel Beams with Fillet Corner Web Openings. Engineering Structures, 74, 44-51. https://doi.org/10.1016/j.engstruct.2014.05.008
Panedpojaman, P., Thepchatri, T. and Limkatanyu, S. (2015) Novel Simplified Equations for Vierendeel Design of Beams with (elongated) Circular Openings. Journal of Constructional Steel Research, 112, 10-21. https://doi.org/10.1016/j.jcsr.2015.04.007
Tsavdaridis, K.D. and D’Mello, C. (2011) Web Buckling Study of the Behaviour and Strength of Perforated Steel Beams with Different Novel Web Opening Shapes. Journal of Constructional Steel Research, 67, 1605-1620. https://doi.org/10.1016/j.jcsr.2011.04.004
Panedpojaman, P., Thepchatri, T. and Limkatanyu, S. (2014) Novel Design Equations for Shear Strength of Local Web-Post Buckling in Cellular Beams. Thin-Walled Structures, 76, 92-104. https://doi.org/10.1016/j.tws.2013.11.007
Jia, L.G., Bi, R., Lang, Y.X. and Li, X.F. (2020) Experimental Study and Theoretical Analysis on Seismic Performance of Castellated Beam with Hexagonal Holes. Advanced Steel Construction, 16, 233-245.
Grilo, L.F., Fakury, R.H., de Castro e Sliva, A.L.R. and de Souza Veríssim, G. (2018) Design Procedure for the Web-Post Buckling of Steel Cellular Beams, 148, 525-541. https://doi.org/10.1016/j.jcsr.2018.06.020
Ferreira, F.P.V., Shamass, R., Santos, L.F., Limbachiya, V. and Tsavdaridis, K.D. (2022) EC3 Design of Web-Post Buckling Resistance for Perforated Steel Beams with Elliptically-Based Web Openings. Thin-Walled Structure, 175, Article ID: 109196. https://doi.org/10.1016/j.tws.2022.109196
罗烈, 于合勇. 六边形孔蜂窝梁腹板的屈曲性能分析[J]. 建筑钢结构进展, 2010, 12(6): 46-53.
周绪红, 李井超, 贺拥军, 何子奇. 蜂窝梁的稳定性能研究进展[J]. 建筑结构学报, 2019, 40(3): 21-32.
Sonck, D. and Belis, J. (2015) Lateral-Torsional Buckling Resistance of Cellular Beams. Journal of Constructional Steel Research, 105, 119-128. https://doi.org/10.1016/j.jcsr.2014.11.003
Mohebkhah, A. (2004) The Moment-Gradient Factor in Lateral-Torsional Buckling on Inelastic Castellated Beams. Journal of Constructional Steel Research, 60, 1481-1494. https://doi.org/10.1016/j.jcsr.2004.02.002
Kazemi, N.K.H.R., Kabir, M.Z. and Molanaei, S. (2010) Lateral-Torsional Buckling of Castellated Beams under End Moments. International Journal of Recent Trends in Engineering and Technology, 3, 16-19.
Sweedan, A.M.I. (2011) Elastic Lateral Stability of I-Shaped Cellular steel Beams. Journal of Constructional Steel Research, 67, 151-163. https://doi.org/10.1016/j.jcsr.2010.08.009
Boissonnade, N., Nseir, J., Lo, M. and Somja, H. (2014) Design of Cellular Beams against Lateral Torsional Buckling. Proceedings of the Institution of Civil Engineers-Structures and Buildings, 167, 436-444. https://doi.org/10.1680/stbu.12.00049
陈鹏. 考虑残余应力的蜂窝梁畸变屈曲性能及承载力计算公式研究[D]: [硕士学位论文]. 重庆: 重庆大学, 2020.
Ellobody, E. (2012) Nonlinear Analysis of Cellular Steel Beams under Combined Buckling Modes. Thin-Walled Structures, 52, 66-79. https://doi.org/10.1016/j.tws.2011.12.009
Ellobody, E. (2011) Interaction of Buckling Modes in Castellated Steel Beams. Journal of Constructional Steel Research, 67, 814-825. https://doi.org/10.1016/j.jcsr.2010.12.012
Hosseinpour, M., Sharifi, Y. and Sharifi, H. (2020) Neural Network Application for Distortional Buckling Capacity Assessment of Castellated Steel Beams. Structures, 27, 1174-1183. https://doi.org/10.1016/j.istruc.2020.07.027
Zhou, X.H., Li, J.C., He, Y.J., He, Z. and Li, Z. (2018) Finite Element Analysis of Thermal Residual Stresses in Castellated Beams. Journal of Constructional Steel Research, 148, 741-755. https://doi.org/10.1016/j.jcsr.2018.06.026
李井超. 残余应力对蜂窝梁稳定性能的影响研究[D]: [博士学位论文]. 长沙: 湖南大学, 2019.
Sonck, D., Impe, R.V. and Belis, J. (2014) Experimental Investigation of Residual Stresses in Steel Cellular and Castellated Members. Construction and Building Materials, 54, 5112-519. https://doi.org/10.1016/j.conbuildmat.2013.12.045
Ferreira, F.P.V., Rossi, A. and Martins, C.H. (2019) Lateral-Torsional Buckling of Cellular Beams According to the Possible Updating of EC3. Journal of Constructional Steel Research, 153, 222-242. https://doi.org/10.1016/j.jcsr.2018.10.011
陈向荣, 吴刚, 冉红东. 焊接残余应力对蜂窝梁整体稳定性能的影响[J]. 建筑结构, 2015, 45(21): 35-40.