炎症是机体受到刺激后出现的一种保护性反应,然而,失调的炎症反应又会引发各种炎症性疾病。受体相互作用蛋白激酶2 (receptor interacting protein kinase 2, RIPK2)是核苷酸结合寡聚化结构域蛋白1和2 (nucleotide-binding oligomerization domain containing protein 1/2, NOD1/2)下游的信号转导分子,在NOD介导的炎症反应中起到了关键的调控作用。NOD-RIPK2信号通路与多种炎症性疾病存在联系,本文对RIPK2的结构功能、RIPK2与炎症性疾病的关系以及RIPK2抑制剂的研发进展进行综述,希望为炎症性疾病的治疗提供新的思路。 Inflammation is a protective response that occurs in response to stimuli. However, dysregulated inflammation can lead to various inflammato-ry diseases. Receptor-interacting protein kinase 2 (RIPK2) is a downstream signaling molecule of nucleotide-binding oligomerization domain-containing proteins 1 and 2 (NOD1/2) and plays a cru-cial role in regulating NOD-mediated inflammatory responses. The NOD-RIPK2 pathway is associ-ated with various inflammatory diseases. In this review, we summarize the recent advances in un-derstanding the role of RIPK2 in inflammatory diseases and the development of RIPK2 inhibitors, with the aim of providing new ideas for the treatment of inflammatory diseases.
Inflammation is a protective response that occurs in response to stimuli. However, dysregulated inflammation can lead to various inflammatory diseases. Receptor-interacting protein kinase 2 (RIPK2) is a downstream signaling molecule of nucleotide-binding oligomerization domain-containing proteins 1 and 2 (NOD1/2) and plays a crucial role in regulating NOD-mediated inflammatory responses. The NOD-RIPK2 pathway is associated with various inflammatory diseases. In this review, we summarize the recent advances in understanding the role of RIPK2 in inflammatory diseases and the development of RIPK2 inhibitors, with the aim of providing new ideas for the treatment of inflammatory diseases.
赖宇俊,郑 珩. RIPK2:治疗炎症性疾病的新靶点 RIPK2: A New Therapeutic Target for Inflammatory Diseases[J]. 生物过程, 2023, 13(02): 105-114. https://doi.org/10.12677/BP.2023.132015
参考文献References
Fullerton, J.N. and Gilroy, D.W. (2016) Resolution of Inflammation: A New Therapeutic Frontier. Nature Reviews Drug Discovery, 15, 551-567. https://doi.org/10.1038/nrd.2016.39
Zarrin, A.A., Bao, K., Lupardus, P. and Vucic, D. (2021) Kinase Inhibition in Autoimmunity and Inflammation. Nature Reviews Drug Discovery, 20, 39-63. https://doi.org/10.1038/s41573-020-0082-8
Eng, V.V., Wemyss, M.A. and Pearson, J.S. (2021) The Diverse Roles of RIP Kinases in Host-Pathogen Interactions. Seminars in Cell and Developmental Biology, 109, 125-143. https://doi.org/10.1016/j.semcdb.2020.08.005
Trindade, B.C. and Chen, G.Y. (2020) NOD1 and NOD2 in In-flammatory and Infectious Diseases. Immunological Reviews, 297, 139-161. https://doi.org/10.1111/imr.12902
Zhao, W., Leng, R.X. and Ye, D.Q. (2023) RIPK2 as a Promising Drugga-ble Target for Autoimmune Diseases. International Immunopharmacology, 118, Article ID: 110128. https://doi.org/10.1016/j.intimp.2023.110128
Mccarthy, J.V., Ni, J. and Dixit, V.M. (1998) RIP2 Is a Novel NF-κB-Activating and Cell Death-Inducing Kinase. Journal of Biological Chemistry, 273, 16968-16975. https://doi.org/10.1074/jbc.273.27.16968
Inohara, N., Del Peso, L., Koseki, T., Chen, S. and Nunez, G. (1998) RICK, a Novel Protein Kinase Containing a Caspase Recruitment Domain, Interacts with CLARP and Regulates CD95-Mediated Apoptosis. Journal of Biological Chemistry, 273, 12296-12300. https://doi.org/10.1074/jbc.273.20.12296
Thome, M., Hofmann, K., Burns, K., Martinon, F., Bodmer, J.L., Mattmann, C. and Tschopp, J. (1998) Identification of CARDIAK, a RIP-Like Kinase That Associates with Caspase-1. Current Biology, 8, 885-888. https://doi.org/10.1016/S0960-9822(07)00352-1
Cuny, G.D. and Degterev, A. (2021) RIPK Protein Kinase Family: Atypical Lives of Typical Kinases. Seminars in Cell and Developmental Biology, 109, 96-105. https://doi.org/10.1016/j.semcdb.2020.06.014
Chen, G., Shaw, M.H., Kim, Y.G. and Nunez, G. (2009) NOD-Like Receptors: Role in Innate Immunity and Inflammatory Disease. Annual Review of Pathology, 4, 365-398. https://doi.org/10.1146/annurev.pathol.4.110807.092239
Girardin, S.E., Boneca, I.G., Carneiro, L.A., Anti-gnac, A., Jehanno, M., Viala, J., Tedin, K., Taha, M.K., Labigne, A., Zahringer, U., Coyle, A.J., Distefano, P.S., Bertin, J., Sansonetti, P.J. and Philpott, D.J. (2003) Nod1 Detects a Unique Muropeptide from Gram-Negative Bacterial Pepti-doglycan. Science, 300, 1584-1587. https://doi.org/10.1126/science.1084677
Girardin, S.E., Boneca, I.G., Viala, J., Chamaillard, M., Labigne, A., Thomas, G., Philpott, D.J. and Sansonetti, P.J. (2003) Nod2 Is a General Sensor of Peptidoglycan through Muramyl Di-peptide (MDP) Detection. Journal of Biological Chemistry, 278, 8869-8872. https://doi.org/10.1074/jbc.C200651200
Mukherjee, T., Hovingh, E.S., Foerster, E.G., Abdel-Nour, M., Philpott, D.J. and Girardin, S.E. (2019) NOD1 and NOD2 in Inflammation, Immunity and Disease. Archives of Bio-chemistry and Biophysics, 670, 69-81. https://doi.org/10.1016/j.abb.2018.12.022
Krieg, A., Correa, R.G., Garrison, J.B., Le Negrate, G., Welsh, K., Huang, Z., Knoefel, W.T. and Reed, J.C. (2009) XIAP Mediates NOD Signaling via Interaction with RIP2. Proceedings of the National Academy of Sciences of the United States of America, 106, 14524-14529. https://doi.org/10.1073/pnas.0907131106
Damgaard, R.B., Nachbur, U., Yabal, M., Wong, W.W., Fiil, B.K., Kastirr, M., Rieser, E., Rickard, J.A., Bankovacki, A., Peschel, C., Ruland, J., Bekker-Jensen, S., Mailand, N., Kauf-mann, T., Strasser, A., Walczak, H., Silke, J., Jost, P.J. and Gyrd-Hansen, M. (2012) The Ubiquitin Ligase XIAP Re-cruits LUBAC for NOD2 Signaling in Inflammation and Innate Immunity. Molecular Cell, 46, 746-758. https://doi.org/10.1016/j.molcel.2012.04.014
Wang, C., Deng, L., Hong, M., Akkaraju, G.R., Inoue, J. and Chen, Z.J. (2001) TAK1 Is a Ubiquitin-Dependent Kinase of MKK and IKK. Nature, 412, 346-351. https://doi.org/10.1038/35085597
Hasegawa, M., Fujimoto, Y., Lucas, P.C., Nakano, H., Fukase, K., Nunez, G. and Inohara, N. (2008) A Critical Role of RICK/RIP2 Polyubiquitination in Nod-Induced NF-κB Activation. EMBO Journal, 27, 373-383. https://doi.org/10.1038/sj.emboj.7601962
Watanabe, T., Asano, N., Fichtner-Feigl, S., Gorelick, P.L., Tsuji, Y., Matsumoto, Y., Chiba, T., Fuss, I.J., Kitani, A. and Strober, W. (2010) NOD1 Contributes to Mouse Host Defense against Helicobacter pylori via Induction of Type I IFN and Activation of the ISGF3 Signaling Pathway. Journal of Clinical Investigation, 120, 1645-1662. https://doi.org/10.1172/JCI39481
Pandey, A.K., Yang, Y., Jiang, Z., Fortune, S.M., Coulombe, F., Behr, M.A., Fitzgerald, K.A., Sassetti, C.M. and Kelliher, M.A. (2009) NOD2, RIP2 and IRF5 Play a Critical Role in the Type I Interferon Response to Mycobacterium tuberculosis. PLOS Pathogens, 5, e1000500. https://doi.org/10.1371/journal.ppat.1000500
Moreira, L.O. and Zamboni, D.S. (2012) NOD1 and NOD2 Signaling in Infection and Inflammation. Frontiers in Immunology, 3, Article 328. https://doi.org/10.3389/fimmu.2012.00328
Park, J.H., Kim, Y.G., Mcdonald, C., Kanneganti, T.D., Hasegawa, M., Body-Malapel, M., Inohara, N. and Nunez, G. (2007) RICK/RIP2 Mediates Innate Immune Responses Induced through Nod1 and Nod2 but Not TLRs. Journal of Immunology, 178, 2380-2386. https://doi.org/10.4049/jimmunol.178.4.2380
Chin, A.I., Dempsey, P.W., Bruhn, K., Miller, J.F., Xu, Y. and Cheng, G. (2002) Involvement of Receptor-Interacting Protein 2 in Innate and Adaptive Immune Responses. Nature, 416, 190-194. https://doi.org/10.1038/416190a
Balamayooran, T., Batra, S., Balamayooran, G., Cai, S., Kobayashi, K.S., Flavell, R.A. and Jeyaseelan, S. (2011) Receptor-Interacting Protein 2 Controls Pulmonary Host Defense to Esche-richia coli Infection via the Regulation of Interleukin-17A. Infection and Immunity, 79, 4588-4599. https://doi.org/10.1128/IAI.05641-11
Zhang, F.R., Huang, W., Chen, S.M., Sun, L.D., Liu, H., Li, Y., Cui, Y., Yan, X.X., Yang, H.T., Yang, R.D., Chu, T.S., Zhang, C., Zhang, L., Han, J.W., Yu, G.Q., Quan, C., Yu, Y.X., Zhang, Z., Shi, B.Q., Zhang, L.H., Cheng, H., Wang, C.Y., Lin, Y., Zheng, H.F., Fu, X.A., Zuo, X.B., Wang, Q., Long, H., Sun, Y.P., Cheng, Y.L., Tian, H.Q., Zhou, F.S., Liu, H.X., Lu, W.S., He, S.M., Du, W.L., Shen, M., Jin, Q.Y., Wang, Y., Low, H.Q., Erwin, T., Yang, N.H., Li, J.Y., Zhao, X., Jiao, Y.L., Mao, L.G., Yin, G., Jiang, Z.X., Wang, X.D., Yu, J.P., Hu, Z.H., Gong, C.H., Liu, Y.Q., Liu, R.Y., Wang, D.M., Wei, D., Liu, J.X., Cao, W.K., Cao, H.Z., Li, Y.P., Yan, W.G., Wei, S.Y., Wang, K.J., Hibberd, M.L., Yang, S., Zhang, X.J. and Liu, J.J. (2009) Genomewide Association Study of Leprosy. New England Journal of Medicine, 361, 2609-2618. https://doi.org/10.1056/NEJMoa0903753
Song, J., Liu, T., Jiao, L., Zhao, Z., Hu, X., Wu, Q., Bai, H., Lv, M., Meng, Z., Wu, T., Chen, H., Chen, X., Song, X. and Ying, B. (2019) RIPK2 Polymorphisms and Susceptibility to Tu-berculosis in a Western Chinese Han Population. Infection, Genetics and Evolution, 75, Article ID: 103950. https://doi.org/10.1016/j.meegid.2019.103950
Li,, Z.Z., Tao, L.L., Zhang, J., Zhang, H.J. and Qu, J.M. (2012) Role of NOD2 in Regulating the Immune Response to Aspergillus fumigatus. Inflammation Research, 61, 643-648. https://doi.org/10.1007/s00011-012-0456-4
Wu, J., Zhang, Y., Xin, Z. and Wu, X. (2015) The Crosstalk be-tween TLR2 and NOD2 in Aspergillus fumigatus Keratitis. Molecular Immunology, 64, 235-243. https://doi.org/10.1016/j.molimm.2014.11.021
Pham, O.H., Lee, B., Labuda, J., Keestra-Gounder, A.M., Byndloss, M.X., Tsolis, R.M. and Mcsorley, S.J. (2020) NOD1/NOD2 and RIP2 Regulate Endoplasmic Reticulum Stress-Induced Inflammation during Chlamydia Infection. mBio, 11, e00979-20. https://doi.org/10.1128/mBio.00979-20
Fan, Y.H., Roy, S., Mukhopadhyay, R., Kapoor, A., Duggal, P., Wojcik, G.L., Pass, R.F. and Arav-Boger, R. (2016) Role of Nucleotide-Binding Oligomerization Domain 1 (NOD1) and Its Variants in Human Cytomegalovirus Control in Vitro and in Vivo. Proceedings of the National Academy of Sci-ences of the United States of America, 113, E7818-E7827. https://doi.org/10.1073/pnas.1611711113
Eickhoff, J., Hanke, M., Stein-Gerlach, M., Kiang, T.P., Herzberger, K., Habenberger, P., Muller, S., Klebl, B., Marschall, M., Stamminger, T. and Cotten, M. (2004) RICK Activates a NF-κB-Dependent Anti-Human Cytomegalovirus Response. Journal of Biological Chemistry, 279, 9642-9652. https://doi.org/10.1074/jbc.M312893200
Kapoor, A., Forman, M. and Arav-Boger, R. (2014) Activation of Nucleotide Oligomerization Domain 2 (NOD2) by Human Cytomegalovirus Initiates Innate Immune Responses and Re-stricts Virus Replication. PLOS ONE, 9, e92704. https://doi.org/10.1371/journal.pone.0092704
Kim, Y.G., Park, J.H., Reimer, T., Baker, D.P., Kawai, T., Ku-mar, H., Akira, S., Wobus, C. and Nunez, G. (2011) Viral Infection Augments Nod1/2 Signaling to Potentiate Lethality Associated with Secondary Bacterial Infections. Cell Host & Microbe, 9, 496-507. https://doi.org/10.1016/j.chom.2011.05.006
Lupfer, C., Thomas, P.G., Anand, P.K., Vogel, P., Milasta, S., Martinez, J., Huang, G., Green, M., Kundu, M., Chi, H., Xavier, R.J., Green, D.R., Lamkanfi, M., Dinarello, C.A., Doherty, P.C. and Kanneganti, T.D. (2013) Receptor Interacting Protein Kinase 2-Mediated Mitophagy Regulates In-flammasome Activation during Virus Infection. Nature Immunology, 14, 480-488. https://doi.org/10.1038/ni.2563
Sparks, J.A. (2019) Rheumatoid Arthritis. Annals of Internal Medicine, 170, ITC1-ITC16. https://doi.org/10.7326/AITC201901010
温志华. 类风湿性关节炎发病机制的临床研究进展[J]. 临床医学, 2022, 42(7): 123-125
Cross, M., Smith, E., Hoy, D., Carmona, L., Wolfe, F., Vos, T., Williams, B., Gabriel, S., Lassere, M., Johns, N., Buchbinder, R., Woolf, A. and March, L. (2014) The Global Burden of Rheumatoid Arthritis: Estimates from the Global Burden of Disease 2010 Study. Annals of the Rheumatic Diseases, 73, 1316-1322. https://doi.org/10.1136/annrheumdis-2013-204627
Smolen, J.S., Aletaha, D. and Mcinnes, I.B. (2016) Rheu-matoid Arthritis. The Lancet, 388, 2023-2038. https://doi.org/10.1016/S0140-6736(16)30173-8
Sokka, T., Kautiainen, H., Pincus, T., Verstappen, S.M., Aggarwal, A., Alten, R., Andersone, D., Badsha, H., Baecklund, E., Belmonte, M., Craig-Muller, J., Da, Mota, L.M., Dimic, A., Fathi, N.A., Ferraccioli, G., Fukuda, W., Geher, P., Gogus, F., Hajjaj-Hassouni, N., Hamoud, H., Haugeberg, G., Henrohn, D., Horslev-Petersen, K., Ionescu, R., Karateew, D., Kuuse, R., Laurindo, I.M., Lazovskis, J., Luukkainen, R., Mofti, A., Murphy, E., Nakajima, A., Oyoo, O., Pandya, S.C., Pohl, C., Predeteanu, D., Rexhepi, M., Rexhepi, S., Sharma, B., Shono, E., Sibilia, J., Sierakowski, S., Skopouli, F.N., Stropuviene, S., Toloza, S., Valter, I., Woolf, A., Yamanaka, H. and Quest, R.A. (2010) Work Disability Remains a Major Problem in Rheumatoid Arthritis in the 2000s: Data from 32 Countries in the QUEST-RA Study. Arthritis Research & Therapy, 12, Article No. R42. https://doi.org/10.1186/ar2951
Deane, K.D., Demoruelle, M.K., Kelmenson, L.B., Kuhn, K.A., Norris, J.M. and Holers, V.M. (2017) Genetic and Environmental Risk Factors for Rheumatoid Arthritis. Best Practice & Research: Clinical Rheumatology, 31, 3-18. https://doi.org/10.1016/j.berh.2017.08.003
韩宇飞, 高明利, 刘东武. 类风湿性关节炎的发病机制研究进展综述[J]. 中国卫生标准管理, 2021, 12(1): 162-165.
谢小倩, 王亚乐, 罗沙沙, 等. 类风湿性关节炎发病机制研究进展[J]. 世界最新医学信息文摘, 2019, 19(71): 109-111
Franca, R., Vieira, S.M., Talbot, J., Peres, R.S., Pinto, L.G., Zamboni, D.S., Louzada-Junior, P., Cunha, F.Q. and Cunha, T.M. (2016) Expression and Activity of NOD1 and NOD2/RIPK2 Signalling in Mononuclear Cells from Patients with Rheumatoid Arthritis. Scandinavian Journal of Rheumatology, 45, 8-12. https://doi.org/10.3109/03009742.2015.1047403
Vieira, S.M., Cunha, T.M., Franca, R.F., Pinto, L.G., Talbot, J., Turato, W.M., Lemos, H.P., Lima, J.B., Verri, W.A., Jr., Almeida, S.C., Ferreira, S.H., Louzada-Junior, P., Zamboni, D.S. and Cunha, F.Q. (2012) Joint NOD2/RIPK2 Signaling Regulates IL-17 Axis and Contributes to the Development of Experimental Arthritis. Journal of Immunology, 188, 5116-5122. https://doi.org/10.4049/jimmunol.1004190
Rosen, M.J., Dhawan, A. and Saeed, S.A. (2015) Inflammatory Bowel Disease in Children and Adolescents. JAMA Pediatrics, 169, 1053-1060. https://doi.org/10.1001/jamapediatrics.2015.1982
Ananthakrishnan, A.N. (2015) Epidemiology and Risk Fac-tors for IBD. Nature Reviews: Gastroenterology & Hepatology, 12, 205-217. https://doi.org/10.1038/nrgastro.2015.34
李学锋, 彭霞, 周明欢. 我国炎症性肠病流行病学研究进展[J]. 现代消化及介入诊疗, 2020, 25(9): 1265-1267.
李惠, 李明松. 中国炎症性肠病的挑战和机遇[J]. 现代消化及介入诊疗, 2019, 24(6): 569-572+582.
张兰兰, 牛润章, 司依馨. 炎症性肠病的研究现状[J]. 中国实用内科杂志, 2012, 32(S2): 42-45
赵盈, 宋光. 炎症性肠病: 微生物-宿主因素的研究进展[J]. 现代消化及介入诊疗, 2020, 25(11): 1548-1551.
姜雨薇, 金丹. 炎症性肠病免疫学发病机制研究进展[J]. 延边大学医学学报, 2014, 37(1): 76-78.
Hugot, J.P., Chamaillard, M., Zouali, H., Lesage, S., Cezard, J.P., Belaiche, J., Almer, S., Tysk, C., O’morain, C.A., Gassull, M., Binder, V., Finkel, Y., Cortot, A., Modigliani, R., Laurent-Puig, P., Gower-Rousseau, C., Macry, J., Colombel, J.F., Sahbatou, M. and Thomas, G. (2001) Association of NOD2 Leucine-Rich Repeat Variants with Susceptibility to Crohn’s Disease. Nature, 411, 599-603. https://doi.org/10.1038/35079107
Stronati, L., Negroni, A., Pierdomenico, M., D’ottavio, C., Tirindelli, D., Di, Nardo, G., Oliva, S., Viola, F. and Cucchiara, S. (2010) Altered Expression of Innate Immunity Genes in Different Intestinal Sites of Children with Ulcerative Colitis. Digestive and Liver Disease, 42, 848-853. https://doi.org/10.1016/j.dld.2010.04.003
Negroni, A., Stronati, L., Pierdomenico, M., Tirindelli, D., Di, Nardo, G., Mancini, V., Maiella, G. and Cucchiara, S. (2009) Activation of NOD2-Mediated Intestinal Pathway in a Pediatric Population with Crohn’s Disease. Inflammatory Bowel Diseases, 15, 1145-1154. https://doi.org/10.1002/ibd.20907
Watanabe, T., Minaga, K., Kamata, K., Sakurai, T., Komeda, Y., Nagai, T., Kitani, A., Tajima, M., Fuss, I.J., Kudo, M. and Strober, W. (2019) RICK/RIP2 Is a NOD2-Independent Nodal Point of Gut Inflammation. International Immunology, 31, 669-683. https://doi.org/10.1093/intimm/dxz045
Pham, A.T., Ghilardi, A.F. and Sun, L. (2023) Recent Advances in the Development of RIPK2 Modulators for the Treatment of Inflammatory Diseases. Frontiers in Pharmacology, 14, Article ID: 1127722. https://doi.org/10.3389/fphar.2023.1127722
Windheim, M., Lang, C., Peggie, M., Plater, L.A. and Cohen, P. (2007) Molecular Mechanisms Involved in the Regulation of Cytokine Production by Muramyl Dipeptide. Biochemical Journal, 404, 179-190. https://doi.org/10.1042/BJ20061704
Hollenbach, E., Vieth, M., Roessner, A., Neumann, M., Malfertheiner, P. and Naumann, M. (2005) Inhibition of RICK/Nuclear Factor-kappaB and p38 Signaling Attenuates the Inflammatory Response in a Murine Model of Crohn Disease. Journal of Biological Chemistry, 280, 14981-14988. https://doi.org/10.1074/jbc.M500966200
Huang, L., Jiang, S. and Shi, Y. (2020) Tyrosine Kinase Inhibitors for Solid Tumors in the Past 20 Years (2001-2020). Journal of Hematology & Oncology, 13, Article No. 143. https://doi.org/10.1186/s13045-020-00977-0
Tigno-Aranjuez, J.T., Asara, J.M. and Abbott, D.W. (2010) In-hibition of RIP2’s Tyrosine Kinase Activity Limits NOD2-Driven Cytokine Responses. Genes and Development, 24, 2666-2677. https://doi.org/10.1101/gad.1964410
Canning, P., Ruan, Q., Schwerd, T., Hrdinka, M., Maki, J.L., Saleh, D., Suebsuwong, C., Ray, S., Brennan, P.E., Cuny, G.D., Uhlig, H.H., Gyrd-Hansen, M., Degterev, A. and Bullock, A.N. (2015) Inflammatory Signaling by NOD-RIPK2 Is Inhibited by Clinically Relevant Type II Kinase Inhibi-tors. Chemistry and Biology, 22, 1174-1184. https://doi.org/10.1016/j.chembiol.2015.07.017
Tigno-Aranjuez, J.T., Benderitter, P., Rombouts, F., Deroose, F., Bai, X., Mattioli, B., Cominelli, F., Pizarro, T.T., Hoflack, J. and Abbott, D.W. (2014) In Vivo Inhibition of RIPK2 Kinase Alleviates Inflammatory Disease. Journal of Biological Chemistry, 289, 29651-29664. https://doi.org/10.1074/jbc.M114.591388
Nachbur, U., Stafford, C.A., Bankovacki, A., Zhan, Y., Lindqvist, L.M., Fiil, B.K., Khakham, Y., Ko, H.J., Sandow, J.J., Falk, H., Holien, J.K., Chau, D., Hildebrand, J., Vince, J.E., Sharp, P.P., Webb, A.I., Jackman, K.A., Muhlen, S., Kennedy, C.L., Lowes, K.N., Murphy, J.M., Gyrd-Hansen, M., Parker, M.W., Hartland, E.L., Lew, A.M., Huang, D.C., Lessene, G. and Silke, J. (2015) A RIPK2 Inhibitor Delays NOD Signalling Events Yet Prevents Inflammatory Cytokine Production. Nature Communications, 6, Article No. 6442. https://doi.org/10.1038/ncomms7442
Haile, P.A., Votta, B.J., Marquis, R.W., Bury, M.J., Mehlmann, J.F., Singhaus, R., Jr., Charnley, A.K., Lakdawala, A.S., Convery, M.A., Lipshutz, D.B., Desai, B.M., Swift, B., Capriotti, C.A., Berger, S.B., Mahajan, M.K., Reilly, M.A., Rivera, E.J., Sun, H.H., Nagilla, R., Beal, A.M., Finger, J.N., Cook, M.N., King, B.W., Ouellette, M.T., Totoritis, R.D., Pierdomenico, M., Negroni, A., Stronati, L., Cucchiara, S., Ziol-kowski, B., Vossenkamper, A., Macdonald, T.T., Gough, P.J., Bertin, J. and Casillas, L.N. (2016) The Identification and Pharmacological Characterization of 6-(Tert-Butylsulfonyl)-N-(5-Fluoro-1H-Indazol-3-yl)quinolin-4-Amine (GSK583), a Highly Potent and Selective Inhibitor of RIP2 Kinase. Journal of Medicinal Chemistry, 59, 4867-4880. https://doi.org/10.1021/acs.jmedchem.6b00211
Haile, P.A., Casillas, L.N., Votta, B.J., Wang, G.Z., Charnley, A.K., Dong, X., Bury, M.J., Romano, J.J., Mehlmann, J.F., King, B.W., Erhard, K.F., Hanning, C.R., Lipshutz, D.B., Desai, B.M., Capriotti, C.A., Schaeffer, M.C., Berger, S.B., Mahajan, M.K., Reilly, M.A., Nagilla, R., Rivera, E.J., Sun, H.H., Kenna, J.K., Beal, A.M., Ouellette, M.T., Kelly, M., Stemp, G., Convery, M.A., Vossenkamper, A., Macdonald, T.T., Gough, P.J., Bertin, J. and Marquis, R.W. (2019) Discovery of a First-in-Class Receptor Interacting Protein 2 (RIP2) Kinase Specific Clinical Candidate, 2-((4-(Benzo[d]thiazol-5-Ylamino)-6-(Tert-Butylsulfonyl)quinazolin-7-Yl)oxy)ethyl Dihydrogen Phosphate, for the Treatment of Inflammatory Diseases. Journal of Medicinal Chemistry, 62, 6482-6494. https://doi.org/10.1021/acs.jmedchem.9b00575
Yuan, X., Chen, Y., Tang, M., Wei, Y., Shi, M., Yang, Y., Zhou, Y., Yang, T., Liu, J., Liu, K., Deng, D., Zhang, C. and Chen, L. (2022) Discovery of Potent and Selective Recep-tor-Interacting Serine/Threonine Protein Kinase 2 (RIPK2) Inhibitors for the Treatment of Inflammatory Bowel Diseases (IBDs). Journal of Medicinal Chemistry, 65, 9312-9327. https://doi.org/10.1021/acs.jmedchem.2c00604