体细胞胚胎发生(SE)是体细胞产生体细胞胚胎的一种自然现象。它被认为是植物繁殖最有效的形态发生途径。体细胞胚胎发生的关键特征之一是利用细胞全能性,即诱导去分化以促进细胞增殖,然后使用植物生长调节剂诱导分化以产生完整新植株。近年来,大量研究报道了木本植物体细胞胚胎发生过程的多项进展。本文综述了植物生长调节剂、温度、溶氧水平、化学环境、外植体类型和植物材料基因型等主要因素对SE的影响,旨在寻找影响木本植物体胚发生的关键问题以及进一步研究的方向,以期确定改善体胚发生的策略,从而促进体胚发生,为有效保存濒危种质资源以及快速繁殖高质量的遗传改良材料提供选择。 Somatic Embryogenesis (SE) is a natural phenomenon through which somatic embryos are produced from somatic cells although. It is considered the most efficient morphogenic pathway for plant multiplication. One of the key features of somatic embryo-genesis is the use of cellular totipotency, where dedifferentiation is induced to foster cell prolifera-tion, followed by the induction of differentiation using plant growth regulators to produce complete new plants. In recent years, many advances in somatic embryogenesis in woody plants have been reported. In this paper, the effects of plant growth regulators, temperature, dissolved oxygen level, chemical environment, explants type and plant material genotype on SE were reviewed. The pur-pose of this paper was to find out the key issues affecting somatic embryogenesis in woody plants and the direction of further research, so as to determine the strategies to improve somatic embry-ogenesis and promote somatic embryogenesis. To provide options for effective conservation of en-dangered germplasm resources and rapid propagation of high-quality genetic improved materials.
体细胞胚胎,植物生长调节剂,外植体类型,基因型, Somatic Embryo
Plant Growth Regulator
Explants Type
Genotype
摘要
Somatic Embryogenesis (SE) is a natural phenomenon through which somatic embryos are produced from somatic cells although. It is considered the most efficient morphogenic pathway for plant multiplication. One of the key features of somatic embryogenesis is the use of cellular totipotency, where dedifferentiation is induced to foster cell proliferation, followed by the induction of differentiation using plant growth regulators to produce complete new plants. In recent years, many advances in somatic embryogenesis in woody plants have been reported. In this paper, the effects of plant growth regulators, temperature, dissolved oxygen level, chemical environment, explants type and plant material genotype on SE were reviewed. The purpose of this paper was to find out the key issues affecting somatic embryogenesis in woody plants and the direction of further research, so as to determine the strategies to improve somatic embryogenesis and promote somatic embryogenesis. To provide options for effective conservation of endangered germplasm resources and rapid propagation of high-quality genetic improved materials.
严 治,潘池钦. 木本植物体细胞胚胎发生的影响因素研究 Study on Influencing Factors of Somatic Embryogenesis in Woody Plants[J]. 生物过程, 2023, 13(02): 77-84. https://doi.org/10.12677/BP.2023.132011
参考文献References
唐丽苹, 李兴国, 张宪省, 等. 体细胞胚胎发生: 植物体细胞命运的重塑[J]. 植物生理学报, 2020, 56(8): 1664-1680.
Ramirez-Mosqueda, M.A. (2022) Overview of Somatic Embryogenesis. In: Ramírez-Mosqueda, M.A., Ed., Somatic Embryogenesis, Methods in Molecular Biology, Vol. 2527, Humana, New York, 1-8. https://doi.org/10.1007/978-1-0716-2485-2_1
Ramirez-Mosqueda, M.A. (2022) Perspectives of Somatic Embryo-genesis: Concluding Remarks. In: Ramírez-Mosqueda, M.A., Ed., Somatic Embryogenesis, Methods in Molecular Biology, Vol. 2527, Humana, New York, 267-270. https://doi.org/10.1007/978-1-0716-2485-2_19
Perez-Pastrana, J., Testillano, P.S., Barany, I., et al. (2021) Endoge-nous Auxin Accumulation/Localization during Zygotic and Somatic Embryogenesis of Capsicum chinense Jacq. Journal of Plant Physiology, 258-259, Article ID: 153333. https://doi.org/10.1016/j.jplph.2020.153333
Asghar, S., Ghori, N., Hyat, F., Li, Y. and Chen, C. (2022) Use of Auxin and Cytokinin for Somatic Embryogenesis in Plant: A Story from Competence towards Com-pletion. Plant Growth Regulation, 99, 413-428. https://doi.org/10.1007/s10725-022-00923-9
Wang, D., Guo, Y., Long, X., et al. (2020) Exogenous Spermidine Promotes Somatic Embryogenesis of Cunninghantia Lanceolata by Altering the Endogenous Phytohormone Content. Phy-ton-International Journal of Experimental Botany, 89, 27-34. https://doi.org/10.32604/phyton.2020.08971
Qi, S., Zhao, R., Yan, J., et al. (2021) Global Transcriptome and Coexpression Network Analyses Reveal New Insights into Somatic Embry-ogenesis in Hybrid Sweetgum (Liquidambar styraciflua × Liquidambar formosana). Frontiers in Plant Science, 12, Article 751866. https://doi.org/10.3389/fpls.2021.751866
Castander-Olarieta, A., Pereira, C., Montalbán, I.A., et al. (2021) Quantifi-cation of Endogenous Aromatic Cytokinins in Pinus radiata Embryonal Masses after Application of Heat Stress during Initiation of Somatic Embryogenesis. Trees, 35, 1075-1080. https://doi.org/10.1007/s00468-020-02047-x
Berenguer, E., Carneros, E., Perez-Perez, Y., Gil, C., Martínez, A. and Testillano, P.S. (2021) Small Molecule Inhibitors of Mammalian GSK-3β Promote in Vitro Plant Cell Reprogramming and Somatic Embryogenesis in Crop and Forest Species. Journal of Experimental Botany, 72, 7808-7825. https://doi.org/10.1093/jxb/erab365
程雨飞, 季雯, 王建文, 冯立国, 朱向涛. “凤丹白”牡丹体细胞胚的诱导及萌发[J]. 分子植物育种, 2021, 19(17): 5775-5781.
高芳, 陈士刚, 秦彩云, 才巨锋, 王聪慧, 董环宇, 陶晶. 红皮云杉体胚发生体系优化和超低温保存技术研究[J]. 南京林业大学学报(自然科学版), 2021, 45(3): 100-108.
吕守芳, 张守攻, 齐力旺, 孙晓梅, 王建华. 落叶松体细胞胚胎发生研究进展[J]. 林业科学研究, 2004, 17(3): 392-398.
曲弈, 吴华, 施季森, 郑仁华, 王鹏凯, 陆叶, 陈金慧. 杉木体胚再生植株低温胁迫的响应机制[J]. 林业科技开发, 2014, 28(5): 49-52.
Pereira, C., Castander-Olarieta, A., Montalbán, I.A., et al. (2020) Embryonal Masses Induced at High Temperatures in Aleppo Pine: Cytokinin Profile and Cytological Characterization. Forests, 11, Article 8078. https://doi.org/10.3390/f11080807
IPCC (2007) Climate Change 2022: Impacts, Adaptation and Vulnerability. Work-ing Group II Contribution to the Fourth Assessment Report, WHO and UNEP, Geneva. https://www.scirp.org/reference/referencespapers.aspx?referenceid=98143
Mazri, M.A., Belkoura, I., Meziani, R., Mokh-less, B. and Nour, S. (2017) Somatic Embryogenesis from Bud and Leaf Explants of Date Palm (Phoenix dactylifera L.) Cv. Najda. 3 Biotech, 7, Article No. 58. https://doi.org/10.1007/s13205-017-0676-y
苏江, 岑忠用, 邓晰朝, 覃勇荣. 不同外植体类型诱导岩黄连愈伤组织和再分化的初步研究[J]. 广东农业科学, 2013, 40(17): 13-15.
李玲, 黄榕, 艾薇, 王友如. 香椿离体再生技术研究进展[J]. 浙江农业科学, 2023, 64(2): 366-370.
Wu, G., Wei, X., Wang, X. and Wei, Y. (2020) Induction of Somatic Embryogenesis in Different Explants Fromormosiahenryiprain. Plant Cell, Tissue and Organ Culture, 142, 229-240. https://doi.org/10.1007/s11240-020-01822-5
Shimazu, T. and Kurata, K. (2010) Improvement of Synchronization on Carrot Somatic Embryo Culture by Controlling Dissolved Oxygen Concentration. Environment Control in Biology, 37, 179-184. https://doi.org/10.2525/ecb1963.37.179
Do Nascimento, A.M.M., Polesi, L.G., Back, F.P., et al. (2021) The Chemi-cal Environment at Maturation Stage in Pinus spp. Somatic Embryogenesis: Implications in the Polyamine Profile of Somatic Embryos and Morphological Characteristics of the Developed Plantlets. Frontiers in Plant Science, 12, Article 771464. https://doi.org/10.3389/fpls.2021.771464
Sundararajan, S., Sivakumar, H.P., Nayeem, S., et al. (2021) Influence of Exogenous Polyamines on Somatic Embryogenesis and Regeneration of Fresh and Long-Term Cultures of Three Elite Indica Rice Cul-tivars. Cereal Research Communications, 49, 245-253. https://doi.org/10.1007/s42976-020-00098-x
Zhu, H., Cheng, W., Tian, W., et al. (2018) Itraq-Based Comparative Proteomic Analysis Provides Insights into Somatic Embryogenesis in Gossypium hirsutum L. Plant Molecular Biology, 96, 89-102. https://doi.org/10.1007/s11103-017-0681-x
Baron, K. and Stasolla, C. (2008) The Role of Polyamines during in Vivo and in Vitro Development. In Vitro Cellular & Developmental Biology-Plant, 44, 384-395. https://doi.org/10.1007/s11627-008-9176-4
Gambino, G., Moine, A., Boccacci, P., Perrone, I. and Pagliarani, C. (2021) Somatic Embryogenesis Is an Effective Strategy for Dissecting Chimerism Phenomena in Vitis vinifera cv Nebbiolo. Plant Cell Reports, 40, 205-211. https://doi.org/10.1007/s00299-020-02626-9
Martins, J., Correia, S., Pinto, G. and Canhoto, J. (2022) Cloning Adult Trees of Arbutus unedo L. through Somatic Embryogenesis. Plant Cell Tissue and Organ Culture, 150, 611-626. https://doi.org/10.1007/s11240-022-02314-4
Bradaï, F. and Sanchez-Romero, C. (2021) Effect of Cryopreservation on Olive (Olea europaea L.) Plant Regeneration via Somatic Embryogenesis. Plants, 10, Article 34. https://doi.org/10.3390/plants10010034