本文采用水热法制备NaTaO3/SnO2纳米材料,系统地研究了其湿度传感性能。实验结果表明,NaTaO3/SnO2复合材料比表面积比纯NaTaO3更大,这使得复合材料表面吸附更多的水分子,增强了 NaTaO3/ SnO2湿度传感器的性能。 NaTaO3/ SnO2复合材料表面氧空位含量明显提升,使其吸附大量水分,促进水分子分解为导电离子,提高NaTaO3/SnO2湿度传感器的响应和恢复速度。该NaTaO3/SnO2湿度传感器电阻达到3个数量级,在11%~95%相对湿度范围内具有高响应度(303,959%)、良好的线性度、低的湿滞(1.99%)、长期稳定性和快的响应和恢复时间(分别为15 s和13 s)。通过对NaTaO3/SnO2湿度传感器的复阻抗谱分析,对其传感机理进行了解释。NaTaO3/SnO2复合材料的成功制备也为具有高湿敏性能的NaTaO3基电阻传感器的设计开辟了新的方向。 NaTaO3/SnO2nanomaterials were prepared by hydrothermal method, and their humidity sensing properties were studied systematically in this paper. The experimental results show that the specific surface area of NaTaO3/SnO2composite is larger than that of pure NaTaO3, which makes the surface of the composite absorb more water molecules and enhances the response of NaTaO3/SnO2humidity sensor. The oxygen vacancies on the surface of NaTaO3/SnO2composite material are significantly increased, which makes it absorb a large amount of water, promote the decomposition of water molecules into conductive ions, and improve the response and recovery speed of NaTaO3/SnO2humidity sensor. The NaTaO3/SnO2humidity sensor has a resistance of 3 orders of magnitude, high responsiveness (303,959%), good linearity, low hysteresis (1.99%), long-term stability and fast response and recovery time (15 s and 13 s, respectively) in the range of 11%~95% relative humidity. By analyzing the complex impedance spectrum of NaTaO3/SnO2humidity sensor, the sensing mechanism was explained. The successful prepara-tion of NaTaO3/SnO2composites also provides a new direction for the design of high humidity-sensitive NaTaO3-based resistance sensors.
本文采用水热法制备NaTaO3/SnO2纳米材料,系统地研究了其湿度传感性能。实验结果表明,NaTaO3/SnO2复合材料比表面积比纯NaTaO3更大,这使得复合材料表面吸附更多的水分子,增强了NaTaO3/SnO2湿度传感器的性能。NaTaO3/SnO2复合材料表面氧空位含量明显提升,使其吸附大量水分,促进水分子分解为导电离子,提高NaTaO3/SnO2湿度传感器的响应和恢复速度。该NaTaO3/SnO2湿度传感器电阻达到3个数量级,在11%~95%相对湿度范围内具有高响应度(303,959%)、良好的线性度、低的湿滞(1.99%)、长期稳定性和快的响应和恢复时间(分别为15 s和13 s)。通过对NaTaO3/SnO2湿度传感器的复阻抗谱分析,对其传感机理进行了解释。NaTaO3/SnO2复合材料的成功制备也为具有高湿敏性能的NaTaO3基电阻传感器的设计开辟了新的方向。
NaTaO3/SnO2,氧空位,高响应度
Yanhui Mi, Peng Li*
School of Physics and Technology, Xinjiang University, Urumqi Xinjiang
Received: Apr. 6th, 2023; accepted: May 11th, 2023; published: May 19th, 2023
NaTaO3/SnO2nanomaterials were prepared by hydrothermal method, and their humidity sensing properties were studied systematically in this paper. The experimental results show that the specific surface area of NaTaO3/SnO2composite is larger than that of pure NaTaO3, which makes the surface of the composite absorb more water molecules and enhances the response of NaTaO3/SnO2humidity sensor. The oxygen vacancies on the surface of NaTaO3/SnO2composite material are significantly increased, which makes it absorb a large amount of water, promote the decomposition of water molecules into conductive ions, and improve the response and recovery speed of NaTaO3/SnO2humidity sensor. The NaTaO3/SnO2humidity sensor has a resistance of 3 orders of magnitude, high responsiveness (303,959%), good linearity, low hysteresis (1.99%), long-term stability and fast response and recovery time (15 s and 13 s, respectively) in the range of 11%~95% relative humidity. By analyzing the complex impedance spectrum of NaTaO3/SnO2humidity sensor, the sensing mechanism was explained. The successful preparation of NaTaO3/SnO2composites also provides a new direction for the design of high humidity-sensitive NaTaO3-based resistance sensors.
Keywords:NaTaO3/SnO2, Oxygen Vacancy, High Response
Copyright © 2023 by author(s) and beplay安卓登录
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/
湿度传感不仅应用于大气监测、国防科技和航空航天等行业中,而且在日常生活中还应用于工农业生产、食品加工和粮食蔬菜运输储存等方面。随着社会和科技的发展,人们对湿度传感器也有了更多的要求,进一步需求响应度更高、响应和恢复时间更短、可重复性和稳定性以及选择性更好的湿度传感器。因此,研究开发高性能的湿度传感器是非常必要的。NaTaO3不仅具有钙钛矿化合物制备响应快、长期稳定性好的独特优点,也具有与水相互作用的活性位点,且有一定湿敏性能,可以将其应用在湿度传感器中。然而,纯NaTaO3湿度传感器的性能受比表面积和氧空隙的影响,存在线性度差、测试范围有限、恢复时间长 [
为了提高NaTaO3湿度传感器的性能,通常采用掺杂和复合的方法。SnO2由于其结构简单、容易制备、电化学稳定性好、成本低廉等优点,常被用于制作湿度传感器。NaTaO3/SnO2复合材料的形成可以促进产生更大的比表面积,可以吸收更多的水分子,从而提高NaTaO3/SnO2湿度传感器的响应。此外,NaTaO3/SnO2复合材料表面产生了丰富的氧空位缺陷,可以吸附大量水分子,并将水分子分解成导电离子,使复合材料的电导率有明显的提高,进而缩短了NaTaO3/SnO2湿度传感器的响应时间。
本研究采用水热法制备了NaTaO3/SnO2湿度传感器。通过对NaTaO3/SnO2湿度传感器的复阻抗谱分析,对其传感机理进行了解释。
无水乙醇(C2H5OH)、氢氧化钠(NaOH)购自天津市鑫铂特化工有限公司。五氧化二钽(Ta2O5)、五水四氯化锡(SnCl4·5H2O)购自阿拉丁试剂有限公司。化学试剂均为分析级(AR),无需纯化;此外,实验全部过程均使用去离子水。
首先,分别将0.002 mol的SnCl4∙5H2O和Ta2O5加入含有40 ml无水乙醇溶液的中,磁力搅拌形成白色乳浊液A。在装有20 ml去离子水的烧杯中加入0.1 mol的NaOH,形成透明B溶液。将白色乳浊液A逐滴加入到透明B溶液形成C溶液。将C溶液转移到100特氟龙内衬的不锈钢高压釜中,160℃反应12 h。自然冷却到室温,多次洗涤和离心处理。沉淀物在80℃下干燥8 h,得到白色粉末。最白色粉末在350℃退火3 h,得到最终产物NaTaO3/SnO2。
材料的结晶度和相结构分析所用的仪器是德国布鲁克D8 Advance X-射线衍射谱;形貌结构是由日本日立SU8010扫描电子显微镜测试获得。使用英国克拉托斯Axis Supra X-射线光电子能谱分析表面组成和元素状态。样品的结构使用美国赛默飞世尔Nicolet iS50傅里叶变换红外光谱仪进行了识别。
首先,将1 ml去离子水和制备的样品分别少量倒入玛瑙研钵中研磨成糊状,涂在Ag-Pd叉指电极表面。然后,将Ag-Pd叉指电极置于80℃的烘箱中6 h,形成湿度传感元件。在24℃的温度下使用德国札纳公司Zennium X工作站进行湿度感应性能测试,测试交流电压设置为1 V。使用LiCl、MgCl2、K2CO3、NaBr、NaCl、KCl和KNO3饱和盐溶液分别获得11%、33%、43%、59%、75%、85%和95%的相对湿度(RH)环境。将湿度传感器置于不同的RH环境中进行测试,测试过程如图1所示。将NaTaO3/SnO2湿度传感器依次放置在11%~95% RH环境中,在每一个相对湿度环境一段时间后电阻达到一个稳定值,然后迅速切换到下一个湿度环境,转换时间小于1 s。
图1. NaTaO3/SnO2湿度传感器性能测试过程
图2所展示的是NaTaO3、SnO2和NaTaO3/SnO2复合材料的X射线衍射谱图(XRD),我们可以通过XRD来分析每个样品的结晶度和相结构。我们可以清楚地看到图中SnO2和NaTaO3/SnO2样品的衍射峰,分别在26.58˚、33.87˚、51.77˚、65.96˚、83.71˚和89.77˚对应于(110)、(101)、(211)、(301)、(222)和(312)的晶格平面,这与正方金红石型SnO2(JCPDS, No. 71-0652)晶面一致 [
图2. NaTaO3、SnO2和NaTaO3/SnO2复合材料的XRD谱图
图3. NaTaO3(a)与(d)、SnO2(b)与(e)和NaTaO3/SnO2(c)与(f)复合材料的SEM图
为了解样品的表面形貌。对NaTaO3、SnO2和NaTaO3/SnO2复合材料的SEM图像进行分析,进一步表征其表面形貌。从图3(a)和图3(d)中可以看出,NaTaO3以300 nm的立方体颗粒形式出现,并且观察到轻微的团聚现象。如图3(b)和图3(e)所示,SnO2以不规则的直径为500 nm的扁平花状颗粒形式出现,并且观察到大量团聚现象。从图3(c)和图3(f)中我们可以看到,NaTaO3/SnO2样品有良好的结晶度,NaTaO3附着在SnO2表面,并且NaTaO3含量多于SnO2,这与图2中XRD分析的结果相一致。图3(c)和图3(f)中NaTaO3/SnO2复合材料有粗糙的表面也反映了复合材料比NaTaO3具有更大的比表面积;这些属性有助于产生大量的吸附位点,能吸附大量的水子,从而提高了传感器的响应。
为了解样品材料的化学状态和组成,对样品进行了XPS分析,研究了NaTaO3、SnO2和NaTaO3/SnO2复合材料的化学状态和组成。在图4(a)的XPS全谱中可以看出,NaTaO3/SnO2复合材料中含有Ta、O、Na和Sn,进一步验证了复合材料制备是成功的。如图4(b)所示,可以明显看到SnO2和NaTaO3/SnO2的Sn 3d峰。在SnO2中,Sn 3d5/2特征峰处的结合能为486.706 eV,在Sn 3d3/2特征峰处的结合能为495.173 eV,在NaTaO3/SnO2复合材料中,Sn 3d5/2特征峰处的结合能和Sn 3d3/2特征峰处的结合能分别为486.209 eV和494.671 eV。在SnO2和NaTaO3/SnO2中,Sn 3d3/2与Sn 3d5/2特征峰处的结合能之差都为8.46 eV,此结果表明,样品中的Sn是以Sn4+的形式存在 [
图4. (a) NaTaO3/SnO2复合材料XPS光谱全谱;(b) NaTaO3/SnO2复合材料和SnO2材料的Sn 3d 光谱
图5. (a) NaTaO3材料的Ta 4f光谱;(b) NaTaO3/SnO2复合材料的Ta 4f光谱
图5(a)显示了NaTaO3的Ta 4f7/2和Ta 4f5/2两个特征峰下的结合能分别为25.839 eV和27.720 eV,其能带能差为1.88 eV,表明材料中存在正常的Ta5+状态 [
NaTaO3、SnO2和NaTaO3/SnO2复合材料的O 1s光谱如图6所示。O 1s峰,可分为O1、O2和O3峰,其中O1代表晶格氧,O2代表氧空位,O3代表化学吸附解离氧 [
图6. NaTaO3(a)、SnO2(b)和NaTaO3/SnO2(c)复合材料的O 1s光谱
样品 | O的种类 | 结合能(eV) | 相对百分率(%) |
---|---|---|---|
NaTaO3 | O2 | 531.18 | 18.4 |
SnO2 | O2 | 530.755 | 37.8 |
NaTaO3/SnO2 | O2 | 530.256 | 45.52 |
表1. 在O 1s光谱中,O1、O2和O3各自的峰位和百分比
在图7中,利用FTIR分析了NaTaO3、SnO2和NaTaO3/SnO2复合材料的化学键。在NaTaO3中,在649.35 cm−1和3357.03 cm−1处有二个峰,分别对应于Ta-O的拉伸振动模式和O-H的拉伸振动模式 [
图7. NaTaO3、SnO2和NaTaO3/SnO2复合材料的FTIR光谱
图8(a)为在工作频率为100 Hz的条件下,NaTaO3、SnO2、NaTaO3/SnO2湿度传感器在不同相对湿度下的阻抗变化曲线。在图中,可以看出NaTaO3和SnO2湿度传感器的阻抗变化是2个多数量级,而NaTaO3/SnO2湿度传感器的阻抗变化提高到了3个数量级。此外,还可以发现NaTaO3湿度传感器在11%相对湿度到33%相对湿度之间阻抗几乎没变,这说明NaTaO3湿度传感器在低湿度不响应,其线性度很差,而SnO2和NaTaO3/SnO2湿度传感器线性度好。
NaTaO3/SnO2湿度传感器不仅阻抗变化大,而且线性度好。因此,NaTaO3/SnO2湿度传感器优于NaTaO3和SnO2湿度传感器。响应度计算公式 [
R = R L − R H R H × 100 % (1)
其中,RL是湿度传感器在11%相对湿度环境下的阻抗值,RH是95%相对湿度环境下的阻抗值。
利用响应度公式(1)计算出NaTaO3、SnO2、NaTaO3/SnO2湿度传感器的响应分别为160,201%、17,378%和303,959%。NaTaO3/SnO2湿度传感器的响应度最大,主要是因为复合材料具有丰富的氧空位(O2),非常有利于吸附水分子并分解水分子,增加了响应度,缩短了响应恢复时间。
图8(b)研究了不同频率下NaTaO3/SnO2湿度传感器阻抗随相对湿度的变化而变化。随着相对湿度的增大,传感器阻抗在40 kHz~100 kHz范围内呈下降趋势。NaTaO3/SnO2传感器在40 Hz和100 Hz时响应度高,然而在40 Hz下,低相对湿度环境中响应不明显并且线性度较差。从1 kHz到100 kHz,NaTaO3/SnO2湿度传感器在较低相对湿度时几乎没有明显的响应,导致整体线性度较差。这种现象主要是由于水分子在高频下不易极化造成的 [
图8(c)是不同相对湿度水平下NaTaO3/SnO2湿度传感器对水分子的吸附和解吸过程。在RH相同条件下,吸附和解吸的阻抗最大差可定义为滞后。
湿滞误差公式如(2)所示:
γ H = Δ H max 2 F F S (2)
其中,ΔHmax为阻抗在吸附和解吸过程的最大差值,FFS为满量程量输出 [
最大滞后发生在43% RH下,用湿滞误差公式(2)计算得出NaTaO3/SnO2湿度传感器滞后误差为1.99%。NaTaO3/SnO2传感器吸附解析过程曲线很相似,说明可逆性好。图8(d)为NaTaO3/SnO2湿度传感器在最佳频率100 Hz条件下的线性拟合响应函数。其函数公式如(3)所示:
Y = 1.059 × 10 8 e − X / 20.29 − 2.37 × 10 6 (3)
其中,X为RH,Y为阻抗。
其回归系数为(R2= 0.9817),这说明NaTaO3/SnO2湿度传感器的线性度还是很不错的。
图8. (a) NaTaO3、SnO2、NaTaO3/SnO2湿度传感器在最佳频率100 Hz不同相对湿度环境下的阻抗变化;(b) NaTaO3/SnO2湿度传感器在不同频率下的阻抗随相对湿度的变化;(c) NaTaO3/SnO2湿度传感器的湿滞回线;(d) NaTaO3/SnO2的线性拟合响应函数
图9(a)为NaTaO3/SnO2湿度传感器在11%相对湿度和95%相对湿度下连续3个周期的响应和恢复曲线测试。响应或恢复时间定义为水分子的吸附或解吸过程中阻抗变化值达到稳态变化的90%所需的时间 [
图9. (a) 响应/恢复特性曲线;(b) NaTaO3/SnO2湿度传感器在不同相对湿度水平下的长期稳定性
图10. 11%~59% RH下NaTaO3/SnO2传感器的复阻抗谱(CIS)及对应的等效电路(EC)
众所周知,钙钛矿氧化物和金属氧化物的湿敏传感机理都是与其表面吸附的水分子相关 [
如图10(a)所示,在11%相对湿度下的复数阻抗谱图为曲率极小的弧线,几乎呈现出一条直线,此时化学吸附到NaTaO3/SnO2材料表面和空隙中的极少量水分子形成了化学吸附水层。化学吸附水层很难转移,此时的阻抗值很高可以说代表NaTaO3/SnO2固有阻抗,对应的等效电路近似元件CPE [
随着湿度增加吸附的水分子也逐渐增加,从而漏导电流也逐渐增大,因此复数阻抗谱图如10(b)所示:从一条曲率极小的近似直线的曲线逐渐变成为曲率逐渐增大的弧线。此时,对应的等效电路由电容器(C)和电阻(R)并联组成。当相对湿度增加到43%相对湿度时,复数阻抗谱图已完全变成为半圆弧,如图10(c)所示。在图10(d)中,当相对湿度增加到59%时,复数阻抗谱图呈现出在半圆弧的尾部区域有一条长的低频尾线 [
在59%相对湿度条件下,大量的水分子被吸附到NaTaO3/SnO2材料表面,形成连续的液态水层。在液态水层上水分子逐渐分解为OH−和H3O+,此时发生Grotthuss循环机制(H2O + H3O+→ H3O++ H2O) [
图11. 高湿度75%~95% RH下NaTaO3/SnO2传感器的复阻抗谱(CIS)及对应的等效电路(EC)
随着湿度不断增加,从75%相对湿度到95%相对湿度,NaTaO3/SnO2材料表面吸附的水分子越来越多,水合氢离子的导电能力也越来越强,复数阻抗谱图11(a)~(c)中高频区的半圆弧已经消失,低频区的拖尾直线越来越长,最后基本就只剩一条拖尾直线。此时,复合材料表面吸附了大量的水分,Grotthuss链式反应明显增强,水合氢的数量增多且传播速度加快,从而使材料的电阻迅速下降。与之对应的等效电路是电容(C)与Zw的串联,此时Zw占绝对优势 [
本文采用水热法成功地制备了高性能的NaTaO3/SnO2湿敏传感传感器,系统地研究了其湿度传感性能。制备的材料通过XRD、SEM、XPS、FTIR表征,结果表明,NaTaO3/SnO2复合材料比表面积比纯NaTaO3更大,这使得复合材料表面吸附更多的水分子,增强了NaTaO3/SnO2湿度传感器的性能。NaTaO3/SnO2复合材料表面氧空位含量明显提升,使其吸附大量水分,促进水分子分解为导电离子,提高NaTaO3/SnO2湿度传感器的响应和恢复速度。NaTaO3/SnO2湿度传感器在11%~95%相对湿度范围内具有高响应度(303,959%)、良好的线性度、低的湿滞(1.99%)、长期稳定性和快的响应和恢复时间(分别为15 s和13 s)。通过对NaTaO3/SnO2湿度传感器的复阻抗谱分析,对其传感机理进行了解释。NaTaO3/SnO2复合材料的成功制备也为具有高湿敏性能的NaTaO3基电阻传感器的开发提供了新的思路,具有一定的应用前景。
感谢新疆固态物理与器件重点实验室的支持。
米彦辉,李 鹏. 高响应NaTaO3/SnO2湿度传感器的制备及性能研究Study on the Preparation and Performance of NaTaO3/SnO2Humidity Sensor with High Response[J]. 凝聚态物理学进展, 2023, 12(02): 24-35. https://doi.org/10.12677/CMP.2023.122004
https://doi.org/10.1016/j.snb.2012.08.050
https://doi.org/10.1016/S1872-2067(09)60052-8
https://doi.org/10.3390/s22010293
https://doi.org/10.1016/j.matlet.2019.05.078
https://doi.org/10.1016/j.matlet.2018.03.107
https://doi.org/10.1016/j.apsusc.2019.05.176
https://doi.org/10.1016/j.apcatb.2018.02.031
https://doi.org/10.1016/j.jallcom.2019.07.052
https://doi.org/10.1016/j.molcata.2012.04.006
https://doi.org/10.1016/j.apcatb.2014.05.031
https://doi.org/10.1111/jace.14850
https://doi.org/10.1039/C6CP02236G
https://doi.org/10.1016/j.snb.2020.127803
https://doi.org/10.1016/j.snb.2021.129536
https://doi.org/10.1016/j.solidstatesciences.2008.08.001
https://doi.org/10.1021/acsami.7b14275
https://doi.org/10.1016/j.ceramint.2022.09.211
https://doi.org/10.1016/j.matpr.2022.04.255
https://doi.org/10.1016/j.matlet.2011.01.052
https://doi.org/10.1021/acsami.6b02206
https://doi.org/10.1021/acsami.9b05709
https://doi.org/10.1038/srep04103
https://doi.org/10.1016/j.colsurfa.2015.07.046
https://doi.org/10.1016/j.snb.2020.129239
https://doi.org/10.1016/j.snb.2018.05.084
https://doi.org/10.1021/acsami.6b08071
https://doi.org/10.1021/acsami.8b08493
https://doi.org/10.1016/j.cap.2022.08.006
https://doi.org/10.1016/j.snb.2015.08.004
https://doi.org/10.1016/j.snb.2009.02.027
https://doi.org/10.1016/j.apsusc.2011.06.126
https://doi.org/10.1016/j.snb.2010.03.045