NST Nuclear Science and Technology 2332-7111 Scientific Research Publishing 10.12677/NST.2023.112013 NST-64161 NST20230200000_71854097.pdf 工程技术 考虑一二回路耦合的核电站凝结水泵跳闸工况分析 Analysis of Condensate Pumptrip in Nuclear Power Plant Considering Two-Circuit Coupling 俊文 2 1 道纲 2 1 丹婷 2 1 2 1 思龙 2 1 华北电力大学核科学与工程学院,北京;非能动核能安全技术北京市重点实验室,北京 null 09 03 2023 11 02 119 126 © Copyright 2014 by authors and Scientific Research Publishing Inc. 2014 This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/

凝结水系统是核电站二回路的主要组成部分之一,丧失凝结水会导致除氧器水位降低,进而导致给水泵跳闸,影响SG水位。核电站目前对于凝结水泵跳闸的控制策略是快速降负荷以减少核岛对主给水量的需求,稳定除氧器和SG水位。本文以先进压水堆AP1000为例,通过FLOWNEX和RELAP软件将一二回路进行耦合计算,对凝结水泵跳闸后未降负荷工况进行分析计算。计算结果表明,凝结水泵跳泵后,除氧器水位会以0.009 m/s的速率下降,在运行148 s后,给水泵由于除氧器触发低低水位而跳闸,主给水完全丧失。在主给水完全丧失后38 s (运行186 s),反应堆因SG水位低低而发生停堆。如果SG水位保护系统未响应,主给水流量与主蒸汽流量不匹配,有在主给水完全丧失之前因SG水位低低而停堆的风险。 The condensate system is one of the main components of the second circuit of the nuclear power plant. The loss of condensate water will cause the deaerator water level to decrease, which will cause the feed pump to trip and affect the SG water level. The current control strategy for condensate pump tripping at the nuclear power plant is to rapidly reduce the load to reduce the main water supply demand of the nuclear island and stabilize the deaerator and SG water level. Taking advanced pressurized water reactor AP1000 as an example, this paper analyzes and calculates the tripping condition of condensate pump by coupling the one-two circuit with FLOWNEX and RELAP software. The calculation results show that after the condensate pump jumps off the pump, the water level of the deaerator will drop at a rate of 0.009 m/s. After 148 s of operation, the feed pump will trip due to the low water level triggered by the deaerator, and the main water supply will be completely lost. At 186s after operation (38 s after total loss of main feed water), the reactor was shut down due to low SG water level. If the SG water level protection system is not responsive, there is a risk of shutdown due to low SG water level before the main feed is completely lost.

FLOWNEX,RELAP5,AP1000,凝结水泵故障, FLOWNEX RELAP5 AP1000 Condensate Pump Trip
摘要

凝结水系统是核电站二回路的主要组成部分之一,丧失凝结水会导致除氧器水位降低,进而导致给水泵跳闸,影响SG水位。核电站目前对于凝结水泵跳闸的控制策略是快速降负荷以减少核岛对主给水量的需求,稳定除氧器和SG水位。本文以先进压水堆AP1000为例,通过FLOWNEX和RELAP软件将一二回路进行耦合计算,对凝结水泵跳闸后未降负荷工况进行分析计算。计算结果表明,凝结水泵跳泵后,除氧器水位会以0.009 m/s的速率下降,在运行148 s后,给水泵由于除氧器触发低低水位而跳闸,主给水完全丧失。在主给水完全丧失后38 s (运行186 s),反应堆因SG水位低低而发生停堆。如果SG水位保护系统未响应,主给水流量与主蒸汽流量不匹配,有在主给水完全丧失之前因SG水位低低而停堆的风险。

关键词

FLOWNEX,RELAP5,AP1000,凝结水泵故障

Analysis of Condensate Pumptrip in Nuclear Power Plant Considering Two-Circuit Coupling<sup> </sup>

Junwen Huang1,2, Daogang Lu1,2, Danting Sui1,2, Qian Yu1,2, Silong Zhou1,2

1School of Nuclear Science and Engineering, North China Electric Power University, Beijing

2Beijing Key Laboratory of Passive Safety Technology for Nuclear Energy, Beijing

Received: Feb. 20th, 2023; accepted: Feb. 28th, 2023; published: Apr. 20th, 2023

ABSTRACT

The condensate system is one of the main components of the second circuit of the nuclear power plant. The loss of condensate water will cause the deaerator water level to decrease, which will cause the feed pump to trip and affect the SG water level. The current control strategy for condensate pump tripping at the nuclear power plant is to rapidly reduce the load to reduce the main water supply demand of the nuclear island and stabilize the deaerator and SG water level. Taking advanced pressurized water reactor AP1000 as an example, this paper analyzes and calculates the tripping condition of condensate pump by coupling the one-two circuit with FLOWNEX and RELAP software. The calculation results show that after the condensate pump jumps off the pump, the water level of the deaerator will drop at a rate of 0.009 m/s. After 148 s of operation, the feed pump will trip due to the low water level triggered by the deaerator, and the main water supply will be completely lost. At 186s after operation (38 s after total loss of main feed water), the reactor was shut down due to low SG water level. If the SG water level protection system is not responsive, there is a risk of shutdown due to low SG water level before the main feed is completely lost.

Keywords:FLOWNEX, RELAP5, AP1000, Condensate Pump Trip

Copyright © 2023 by author(s) and beplay安卓登录

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

在核电站中,凝结水系统是核电站二回路的主要组成部分之一 [ 1 ] ,凝结水泵跳闸是核电站运行期间常见的故障 [ 2 ] ,丧失凝结水会导致除氧器水位降低 [ 3 ] ,进而导致给水泵跳闸,影响SG水位 [ 4 ] 。核电站会在凝结水泵跳泵后快速降负荷 [ 5 ] ,减少核岛对主给水量的要求,稳定除氧器和SG水位,但该工况后一二回路关键参数的变化会相互影响,需要对一二回路进行耦合计算。因此,本文基于FLOWNEX和RELAP软件建立一二回路耦合模型 [ 6 ] [ 7 ] ,对凝结水泵跳闸后未降负荷工况进行分析计算,能为核电站凝结水泵跳闸工况及后续降负荷工况的控制操作提供数据支持和指导策略。

核电站系统分为两个主要部分:核岛和常规岛,大部分对核电站的系统安全建模分析都是将这些核岛和常规岛分开单独进行建模分析。常规岛的热工水力系统因为和火电厂很类似,可以通过很多种方式进行建模分析,例如通过常用的商业建模分析软件如:MATLAB和FLUENT等等,或者建立数学模型 [ 8 ] ,每一种方法都有着各自的适用范围和优点。本文使用的二回路建模软件Flownex是一个集成了CFD程序的热工水力系统设计软件 [ 9 ] ,通过了IS09001:2008质量认证,能对二回路热工水力系统准确快速地进行建模 [ 10 ] ,同时又可以完成与常用的核岛系统程序RELAP5的耦合,便于下一步快速降负荷工况的进行。

本文以先进压水堆AP1000为例,基于FLOWNEX和RELAP软件将一二回路进行耦合计算,完成了对核电站凝结水泵跳闸后未降负荷工况进行分析计算。结果表明,当凝结水泵跳泵后,操作员无任何动作,不进行降负荷操作,反应堆可能会因为SG水位过低而停堆,应该在凝结水泵跳闸之后进行降负荷操作,减少核岛对主给水量的要求,稳定除氧器和SG水位,避免反应堆停堆情况的发生。

2. 一二回路的耦合

本工作采用的是压力流量耦合,耦合处为蒸汽发生器换热部分的二次侧,耦合示意图如图1所示,阴影部分为耦合处。

图1. 耦合示意图

耦合模型计算流程示意图如图2所示,二回路模型将主给水流量和SG出口压力传给一回路模型,一回路根据更改后的主给水流量和SG出口压力更新边界参数,计算出主蒸汽流量传回二回路重新计算,直到最后一步完成整个计算。

图2. 耦合模型计算流程示意图 [ 11 ]

对耦合模型进行计算,将关键参数的计算值与设计值进行对比,误差结果如表1所示,结果表明耦合模型误差可控,可以为后续凝结水泵跳闸工况提供模型基础。

Calculation error of key parameters at full power [12
参数 设计值 计算值 误差%
一回路 反应堆热功率/MWt 3400 3400 0
主泵流量/m3∙h−1 17,886 17,626 1.45
反应堆运行压力/MPa 15.4 15.3 0.65
堆芯进口温度/℃ 280 280.43 0.15
堆芯出口温度/℃ 321.1 323.06 0.6
蒸汽发生器一次侧温度/℃ 343.3 344.9 0.46
耦合处 主蒸汽流量/kg∙h−1 6,799,000 6,774,120 0.037
SG出口压力/MPa 5.34 5.31069 0.54
主给水流量/kg∙h−1 6,799,000 6,840,000 0.6
二回路 高压缸入口流量/kg∙h−1 6,606,298 6,563,065 0.65
低压缸入口流量/kg∙h−1 4,510,748 4,507,702 0.067
凝结水流量/kg∙h−1 4,080,428 4,082,416 0.048
主蒸汽压力/MPa 5.34 5.38 0.75
主给水压力/MPa 6.52 6.52 0.00
除氧器压力/MPa 0.941 0.935 0.64
主蒸汽温度℃ 268.6 268.6 0.00
主给水温度/℃ 226.7 226.7 0.00
凝结水温度/℃ 28.5 28.5 0.00

表1. 满功率(100%FP)下关键参数计算误差 [ 12 ]

3. 工况计算 3.1. 事故分析及控制逻辑

初始运行工况为满功率运行工况,不考虑泵惰转的情况下,模型运行1 s后全部凝结水泵发生故障而跳泵。随后给水泵因除氧器丧失凝结水而降至低低水位触发跳泵,从而主给水完全丧失,SG水位下降至低低水位,触发停堆。控制逻辑设置如表2所示。

Control logi
初始运行工况 满功率运行
凝结水泵跳泵时间 运行后1 s
是否考虑泵惰转
给水泵跳泵信号 除氧器水位低于1.5 m
停堆信号 SG水位低于原水位的25% (取1.25 m)

表2. 控制逻辑

3.2. 凝结水泵跳闸后瞬态分析计算 3.2.1. 维持给水流量

初始满功率运行1 s后凝结水泵跳泵,除氧器失去全部凝结水后,在SG水位保护系统的作用下,主给水流量会维持在1890 kg/s左右,除氧器水位以0.009 m/s的速率下降,主蒸汽流量也维持在1890 kg/s左右并未改变,在运行148 s后,给水泵由于除氧器触发低低水位而跳闸,主给水完全丧失,主给水流量和除氧器水位如图3和图4所示。

在凝结水泵跳闸后,由于主给水流量维持在了1890 kg/s和主蒸汽流量一致,蒸汽发生器水位在原水位上下波动,在运行后148 s,主给水泵跳闸,主给水完全丧失,SG水位会以0.098 m/s的速率下降,在运行后186 s (主给水完全丧失后38 s)因SG水位低低而发生停堆,之后辅助给水启动,SG水位变化曲线如图5所示。

图3. 主给水流量

图4. 除氧器水位

图5. SG水位

3.2.2. 不维持给水流量

初始满功率运行1 s后凝结水泵跳泵,除氧器失去全部凝结水后,如果SG水位保护系统未响应,主给水流量会降至1500 kg/s,并在之后随着除氧器水位降低而降低。除氧器水位以0.0073 m/s的速率下降,而主蒸汽流量因为汽轮机功率并未改变,所以主蒸汽流量前期并未波动,后期因为主给水流量不足,SG水位下降而波动下降。在190 s左右除氧器水位降至低低水位触发给水泵跳闸,主给水完全丧失,主给水流量和除氧器水位如图6和图7所示。

图6. 主给水流量

图7. 除氧器水位

由于凝结水的丧失,主给水流量降至1500 kg/s并随着除氧器水位下降而下降,而主蒸汽流量还维持在1900 kg/s左右,SG水位维持不住,会以0.023 m/s的速率下降,并在160 s (给水泵跳闸时间190 s)的时候到达SG低低水位触发停堆,SG水位变化曲线如图8所示。

图8. SG水位

4. 结论

当凝结水泵跳泵后,操作员无任何动作,不进行降负荷操作,若SG水位保护系统自动响应,维持主给水流量至1890 kg/s,除氧器水位会以0.009 m/s的速率下降在运行148 s后,给水泵由于除氧器触发低低水位而跳闸,主给水完全丧失。在主给水完全丧失后38 s (运行后186 s),反应堆因SG水位低低而发生停堆。

当凝结水泵跳泵后,操作员无任何动作,不进行降负荷操作,若SG水位保护系统未自动响应,主给水流量下降,除氧器水位以0.0073 m/s的速率下降,在190 s左右除氧器水位降至低低水位触发给水泵跳闸,主给水完全丧失。而SG水位会因主给水和主蒸汽流量不匹配,会以0.023 m/s的速率下降,并在160 s (给水泵跳闸时间190 s)的时候到达SG低低水位触发停堆。存在主给水完全丧失之前因SG水位低低而停堆的风险。

文章引用

黄俊文,陆道纲,隋丹婷,于 倩,周思龙. 考虑一二回路耦合的核电站凝结水泵跳闸工况分析Analysis of Condensate Pumptrip in Nuclear Power Plant Considering Two-Circuit Coupling[J]. 核科学与技术, 2023, 11(02): 119-126. https://doi.org/10.12677/NST.2023.112013

参考文献 References 龙腾. 重水堆CANDU-6机组失去两台凝泵的影响及对策[J]. 电工技术, 2019(13): 87-88.
https://doi.org/10.19768/j.cnki.dgjs.2019.13.033
罗传杰, 漆向前, 周琦. 核电站凝结水泵气蚀保护的改进[J]. 广东电力, 2011, 24(4): 31-33. 陈海鹏. CANDU6核电厂失去凝结水故障预想及诊断[J]. 科技视界, 2015(12): 249+305.
https://doi.org/10.19694/j.cnki.issn2095-2457.2015.12.190
熊义强, 林萌, 刘鹏飞, 等. CPR1000型核电站给水泵事故瞬态分析[J]. 原子能科学技术, 2012, 46(7): 831-836. 温庆邦, 朱立新, 熊兴华. 核电厂满功率运行时只有一台凝结水泵运行的对策[J]. 科技展望, 2015, 25(16): 86. 魏承君, 于倩, 李立晓, 等. 基于FLOWNEX的AP1000常规岛热力系统全范围建模及瞬态工况模拟[J]. 科学技术与工程, 2021, 21(16): 6710-6717. 刘爱明. 改进型AP1000失水事故的仿真模拟[D]: [硕士学位论文]. 北京: 华北电力大学(北京), 2011. 张小勇, 刘琦, 杨志平, 吴志钢. AP1000核电厂二回路热力系统计算与分析[J]. 热能动力工程, 2018, 33(9): 107-113. 白佳琦, 杨严, 谭彭燕, 等. Flownex在循环冷却水系统仿真模拟中的应用[C]//中国建筑学会建筑给水排水研究分会. 中国建筑学会建筑给水排水研究分会第三届第一次全体会员大会暨学术交流会论文集. 2016: 867-872. 吴俊宏. 流体网络方法在航空发动机中的应用[C]//中国机械工程学会机械工业自动化分会、中国力学学会产学研工作委员会、中国计算机学会高性能计算专业委员会、陕西省国防科技工业信息化协会: 中国力学学会产学研工作委员会. 第十二届中国CAE工程分析技术年会论文集. 2016: 5. 何帆, 蔡翔舟, 郭威, 何龙, 崔蕾, 赵恒. RELAP5/FLUENT耦合程序的开发[J]. 原子能科学技术, 2021, 55(4): 693-703. 孙汉虹, 程平东, 缪鸿兴, 等. 第三代核电技术AP1000 [M]. 第2版. 北京: 中国电力出版社, 2016: 62-65.
Baidu
map