层状氮掺杂石墨炔(NGDY)的成功合成(Nano Energy, 2018, 44, 144)引起了凝聚态物理和材料学领域科学家的广泛关注。在此,我们首先基于密度泛函理论计算确定了NGDY原子层的最佳堆垛次序,然后研究了其在双轴应变下的力学和电子性质。结果表明,NGDY能量最低的构型是ABC-堆垛结构。值得注意的是,在沿a、b方向的双轴应变下,该材料在c方向上表现出半拉胀行为。具体表现为:在双轴压缩应变下表现为普通材料的性质,即c方向晶格参数随双轴压缩应变增大而增大;在双轴拉伸应变下表现出拉胀材料的性质,即c方向晶格参数随双轴拉伸应变增大而增大。另外,在−0.05 ≤ ε ≤ 0.05的应变范围内,不管是拉伸应变还是压缩应变的增加均会导致体系带隙的增大。NGDY材料这种不同寻常的机械和电子性质表明其在新颖机械电子器件设计方面具有巨大潜力。 The successful synthesis of layered nitrogen-doped graphdiyne (NGDY) (Nano Energy, 2018, 44, 144) has attracted wide attention from scientists in condensed matter physics and materials. Firstly, we calculated the optimal stacking order of the NGDY atomic layer based on density functional theory, and then investigated its mechanical and electronic properties under biaxial strains. The results show that ABC-stacking structure has the lowest energy. It is worth noting that under biaxial strains along directions a and b, the material exhibits a half-auxetic behavior in direction c. Specifically, it shows the properties of ordinary materials under biaxial compression strains, that is, the lattice parameters in the c direction increase with the increase of biaxial compression strain. The lattice parameters in the c direction increase with the increase of the biaxial tensile strain. In addition, in the range of −0.05 ≤ ε ≤ 0.05, the increase of both tensile strain and compressive strain will lead to the increase of band gap. The unusual mechanical and electronic properties of NGDY material indicate that it has great potential in the design of electromechanical devices.
氮掺杂石墨炔,半拉胀,双轴应变,密度泛函理论, Nitrogen-Doped Graphdiyne
Half-Auxeticity
Biaxial Strain
Density Functional Theory
摘要
The successful synthesis of layered nitrogen-doped graphdiyne (NGDY) (Nano Energy, 2018, 44, 144) has attracted wide attention from scientists in condensed matter physics and materials. Firstly, we calculated the optimal stacking order of the NGDY atomic layer based on density functional theory, and then investigated its mechanical and electronic properties under biaxial strains. The results show that ABC-stacking structure has the lowest energy. It is worth noting that under biaxial strains along directions a and b, the material exhibits a half-auxetic behavior in direction c. Specifically, it shows the properties of ordinary materials under biaxial compression strains, that is, the lattice parameters in the c direction increase with the increase of biaxial compression strain. The lattice parameters in the c direction increase with the increase of the biaxial tensile strain. In addition, in the range of −0.05 ≤ ε ≤ 0.05, the increase of both tensile strain and compressive strain will lead to the increase of band gap. The unusual mechanical and electronic properties of NGDY material indicate that it has great potential in the design of electromechanical devices.
Keywords:Nitrogen-Doped Graphdiyne, Half-Auxeticity, Biaxial Strain, Density Functional Theory
Lattice constants (a), interlayer distances (d), maximal differences of the intralayer atomic z-coordinates (Δz), symmetry and interlayer binding energies (Eb) of NGDY with A-, AB- and ABC-stacking calculated based on DFT-D2, DFTD3 and vdW-DF vdW correction methods, respectivel
为了阐明NGDY的力学行为,我们绘制了不同双轴应变下体系的体积应变( Δ V / V 0 )和c轴晶格参数应变( Δ c / c 0 )。 Δ V = V − V 0 和 Δ c = c − c 0 分别反映了体系体积和c轴晶格参数的变化,其中V0和c0分别是无应变下体系的体积和c轴晶格参数;V和c分别是体系在双轴应变下的体积和c轴晶格参数。如图3(b)所示,体系的体积和c轴晶格参数不但随压缩应变的增加而增大,而且随拉伸应变的增加也增大。这表明,在拉伸应变下,NGDY表现出拉胀材料的行为 [
28
] [
29
] 。但是,与传统的拉胀材料会在挤压下收缩的情况不同,当沿a和b方向施加双轴压缩应变时,NGDY的c轴晶格参数将增加而不是减小。换句话说,NGDY体系在双轴拉伸应变下表现出拉胀材料的行为,而在双轴压缩应变下表现普通材料的性能。该材料的这种行为即为半拉胀行为,是凝聚态物理和材料科学中较为罕见的现象。
吴盛飞,潘洪哲. 层状氮掺杂石墨炔半拉胀行为研究Study on the Half-Auxetic Behavior of Layered Nitrogen-Doped Graphdiyne[J]. 凝聚态物理学进展, 2023, 12(01): 1-8. https://doi.org/10.12677/CMP.2023.121001
参考文献References
Novoselov, K.S., Geim, A.K., Morozov, S., Jiang, V.D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V. and Firsov, A.A. (2004) Electric Field Effect in Atomically Thin Carbon Films. Science, 306, 666-669. https://doi.org/10.1126/science.1102896
Mortazavi, B., Shahrokhi, M., Shapeev, A.V., Rabczuk, T. and Zhuang, X. (2019) Prediction of C7N6 and C9N4: Stable and Strong Porous Carbon-Nitride Nanosheets with At-tractive Electronic and Optical Properties. Journal of Materials Chemistry C, 7, 10908-10917. https://doi.org/10.1039/C9TC03513C
Tan, C., Cao, X., Wu, X.-J., He, Q., Yang, J., Zhang, X., Chen, J., Zhao, W., Han, S., Nam, G.-H., Sindoro, M. and Zhang, H. (2017) Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chemical Reviews, 117, 6225-6331. https://doi.org/10.1021/acs.chemrev.6b00558
Gao, X., Liu, H., Wang, D. and Zhang, J. (2019) Graphdiyne: Synthesis, Properties, and Applications. Chemical Society Reviews, 48, 908-936. https://doi.org/10.1039/C8CS00773J
Yu, H., Xue, Y. and Li, Y. (2019) Graphdiyne and Its Assembly Architectures: Synthesis, Functionalization, and Applications. Advanced Materials, 31, Article ID: 1803101. https://doi.org/10.1002/adma.201803101
Baughman, R.H., Eckhardt, H. and Kertesz, M. (1987) Struc-ture-Property Predictions for New Planar Forms of Carbon: Layered Phases Containing sp2 and sp Atoms. The Journal of Chemical Physics, 87, 6687-6699. https://doi.org/10.1063/1.453405
Li, G., Li, Y., Liu, H., Guo, Y., Li, Y. and Zhu, D. (2010) Architecture of Graphdiyne Nanoscale Films. Chemical Communications, 46, 3256-3258. https://doi.org/10.1039/b922733d
He, J., Wang, N., Cui, Z., Du, H., Fu, L., Huang, C., Yang, Z., Shen, X., Yi, Y., Tu, Z. and Li, Y. (2017) Hydrogen Substituted Graphdiyne as Carbon-Rich Flexible Electrode for Lithium and Sodium Ion Batteries. Nature Communications, 8, 1172. https://doi.org/10.1038/s41467-017-01202-2
Wang, N., Li, X., Tu, Z., Zhao, F., He, J., Guan, Z., Huang, C., Yi, Y. and Li, Y. (2018) Synthesis and Electronic Structure of Boron-Graphdiyne with an sp-Hybridized Carbon Skeleton and Its Application in Sodium Storage. Angewandte Chemie International Edition, 57, 3968-3973. https://doi.org/10.1002/anie.201800453
Jiao, Y., Du, A., Hankel, M., Zhu, Z., Rudolph, V. and Smith, S.C. (2011) Graphdiyne: A Versatile Nanomaterial for Electronics and Hydrogen Purification. Chemical Communications, 47, 11843-11845. https://doi.org/10.1039/c1cc15129k
Tang, H., Hessel, C.M., Wang, J., Yang, N., Yu, R., Zhao, H. and Wang, D. (2014) Two-Dimensional Carbon Leading to New Photoconversion Processes. Chemical Society Reviews, 43, 4281-4299. https://doi.org/10.1039/C3CS60437C
Huang, C., Li, Y., Wang, N., Xue, Y., Zuo, Z., Liu, H. and Li, Y. (2018) Progress in Research into 2D Graphdiyne-Based Materials. Chemical Reviews, 118, 7744-7803. https://doi.org/10.1021/acs.chemrev.8b00288
Yang, Z., Shen, X., Wang, N., He, J., Li, X., Wang, X., Hou, Z., Wang, K., Gao, J. and Jiu, T. (2018) Graphdiyne Containing Atomically Precise N Atoms for Efficient Anchoring of Lithium Ion. ACS Applied Materials & Interfaces, 11, 2608-2617. https://doi.org/10.1021/acsami.8b01823
Mortazavi, B., Makaremi, M., Shahrokhi, M., Fan, Z. and Rabczuk, T. (2018) N-Graphdiyne Two-Dimensional Nanomaterials: Semiconductors with Low Thermal Conduc-tivity and High Stretchability. Carbon, 137, 57-67. https://doi.org/10.1016/j.carbon.2018.04.090
Kresse, G. and Furthmüller, J. (1996) Efficient Iterative Schemes for ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Physical Review B, 54, 11169-11186. https://doi.org/10.1103/PhysRevB.54.11169
Kresse G. and Joubert, D. (1999) From Ultrasoft Pseudo-potentials to the Projector Augmented-Wave Method. Physical Review B, 59, 1758. https://doi.org/10.1103/PhysRevB.59.1758
Grimme, S. (2006) Semiempirical GGA-Type Density Func-tional Constructed with a Long-Range Dispersion Correction. Journal of Computational Chemistry, 27, 1787-1799. https://doi.org/10.1002/jcc.20495
Grimme, S., Antony, J., Ehrlich, S. and Krieg, H. (2010) A Consistent and Accurate ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. The Journal of Chemical Physics, 132, Article ID: 154104. https://doi.org/10.1063/1.3382344
Vydrov, O.A. and Voorhis, T.V. (2009) Nonlocal van der Waals Density Functional Made Simple. Physical Review Letters, 103, Article ID: 063004. https://doi.org/10.1103/PhysRevLett.103.063004
Monkhorst, H.J. and Pack, J.D. (1976) Special Points for Brillouin-Zone Integrations. Physical Review B, 13, 5188-5192. https://doi.org/10.1103/PhysRevB.13.5188
Heyd, J., Scuseria, G.E. and Ernzerhof, M. (2003) Hybrid Functionals Based on a Screened Coulomb Potential. The Journal of Chemical Physics, 118, 8207-8215. https://doi.org/10.1063/1.1564060
Zhou, M., Liu, Z., Ming, W., Wang, Z. and Liu, F. (2014) sd2 Graphene: Kagome Band in a Hexagonal Lattice. Physical Review Letters, 113, Article ID: 236802. https://doi.org/10.1103/PhysRevLett.113.236802
Endo, S., Oka, T. and Aoki, H. (2010) Tight-Binding Photonic Bands in Metallophotonic Waveguide Networks and Flat Bands in Kagome Lattices. Physical Review B, 81, Article ID: 113104. https://doi.org/10.1103/PhysRevB.81.113104
Pan, H., Han, Y., Li, J., Zhang, H., Du, Y. and Tang, N. (2018) Half-Metallicity in a Honeycomb-Kagome-Lattice Mg3C2 Monolayer with Carrier Doping. Physical Chemistry Chemical Physics, 20, 14166-14173. https://doi.org/10.1039/C8CP01727A
Zheng, Q., Luo, G., Liu, Q., Quhe, R., Zheng, J., Tang, K., Gao, Z., Nagase, S. and Lu, J. (2012) Structural and Electronic Properties of Bilayer and Trilayer Graphdiyne. Nanoscale, 4, 3990-3996. https://doi.org/10.1039/c2nr12026g
Shi, L.-B., Zhang, Y.-Y., Xiu, X.-M. and Dong, H.-K. (2018) Structural Characteristics and Strain Behavior of Two-Dimensional C3N: First Principles Calculations. Carbon, 134, 103-111. https://doi.org/10.1016/j.carbon.2018.03.076
Guan, S., Cheng, Y., Liu, C., Han, J., Lu, Y., Yang, S.A. and Yao, Y. (2015) Effects of Strain on Electronic and Optic Properties of Holey Two-Dimensional C2N Crystals. Ap-plied Physics Letters, 107, Article ID: 231904. https://doi.org/10.1063/1.4937269
Evans, K.E. and Alderson A. (2000) Auxetic Materials: Functional Materials and Structures from Lateral Thinking. Advanced Materials, 12, 617-628. https://doi.org/10.1002/(SICI)1521-4095(200005)12:9<617::AID-ADMA617>3.0.CO;2-3
Dagdelen, J., Montoya, J., de Jong, M. and Persson, K. (2017) Computational Prediction of New Auxetic Materials. Nature Communications, 8, 323. https://doi.org/10.1038/s41467-017-00399-6
Wang, X., Wang, Y., Miao, M., Zhong, X., Lv, J., Cui, T., Li, J., Chen, L., Pickard, C.J. and Ma, Y. (2012) Cagelike Diamondoid Nitrogen at High Pressures. Physical Review Letters, 109, Article ID: 175502. https://doi.org/10.1103/PhysRevLett.109.175502