近年来,全球肿瘤发病率逐年上升,以单克隆抗体为代表的重组蛋白受到越来越多的关注和应用,推动了搅拌釜式生物反应器在哺乳动物细胞培养工艺开发中的研究和发展。搅拌釜式生物反应器是以通过鼓泡分布器供氧,通过搅拌装置加速传质及实现微环境均一性为特征的一类反应器,广泛应用于重组蛋白生产,反应规模从10 mL到25,000 L不等。其中搅拌系统作为细胞培养中最关键的部分之一,其引导的流体混合特性及带来的剪切应力与细胞表现、代谢产品产量及质量息息相关。针对哺乳动物细胞培养工艺中搅拌系统的选择与设计目前已取得许多研究成果,故本文从常见叶轮类型、桨叶数量、桨叶安装方式、搅拌辅助配件、搅拌转速设计等方面展开论述,综述了搅拌系统的研究现状,以期为细胞培养工艺的反应器优化和规模缩放提供参考。 In recent years, with the rising of the global tumor incidence rate, recombinant proteins, represented by monoclonal antibodies, are gaining more and more attention and clinical application, which has promoted the research and development of the stirred tank bioreactor in mammalian cell culture. The stirred tank bioreactor, a type of reactor featured with a stirring device for enhancing mass transfer and achieving micro environment uniformity, and bubbling spargers for oxygen supply, has been widely used in the production of recombinant proteins, with reaction scales ranging from 10 mL to 25,000 L. The mix-ing system is one of the most critical parts of culture. Cell performance, yield and quality of meta-bolic products are closely related to this system and the fluid mixing characteristics and shear stress induced by it. Achievements have been made in the selection and design of stirring system in mammalian cell culture process. Here, the types, number, installation modes of impellers, auxiliary accessories, and stirring speed setting were reviewed and discussed to provide reference for the bioreactor optimization, and scaling up and down of the cell culture process.
In recent years, with the rising of the global tumor incidence rate, recombinant proteins, represented by monoclonal antibodies, are gaining more and more attention and clinical application, which has promoted the research and development of the stirred tank bioreactor in mammalian cell culture. The stirred tank bioreactor, a type of reactor featured with a stirring device for enhancing mass transfer and achieving micro environment uniformity, and bubbling spargers for oxygen supply, has been widely used in the production of recombinant proteins, with reaction scales ranging from 10 mL to 25,000 L. The mixing system is one of the most critical parts of culture. Cell performance, yield and quality of metabolic products are closely related to this system and the fluid mixing characteristics and shear stress induced by it. Achievements have been made in the selection and design of stirring system in mammalian cell culture process. Here, the types, number, installation modes of impellers, auxiliary accessories, and stirring speed setting were reviewed and discussed to provide reference for the bioreactor optimization, and scaling up and down of the cell culture process.
Keywords:Stirred Tank Bioreactor, Cell Culture, Impeller, Baffle, Stirring Speed
周梦娇,郑 翔,张琼琼,张珊珊,刘 煜. 哺乳动物细胞培养中搅拌系统的研究进展 Research Progress of Stirring System in Mammalian Cell Culture[J]. 生物过程, 2023, 13(01): 7-18. https://doi.org/10.12677/BP.2023.131002
参考文献References
Arena, T.A., Chou, B., Harms, P.D. and Wong, A.W. (2019) An Anti-Apoptotic HEK293 Cell Line Provides a Robust and High Titer Platform for Transient Protein Expression in Bioreactors. mAbs, 11, 977-986. https://doi.org/10.1080/19420862.2019.1598230
Walsh, G. (2014) Biopharmaceutical Benchmarks 2014. Na-ture Biotechnology, 32, 992-1000. https://doi.org/10.1038/nbt.3040
王佃亮, 韩梅胜. 动物细胞培养用生物反应器及相关技术[J]. 中国生物工程杂志, 2003, 23(11): 24-27.
Sieblist, C., Jenzsch, M., Pohlscheidt, M. and Lubbert, A. (2011) Insights into Large-Scale Cell-Culture Reactors: I. Liquid Mixing and Oxygen Supply. Biotechnology Journal, 6, 1532-1546. https://doi.org/10.1002/biot.201000408
Chaudhary, G., Luo, R., George, M., Tescione, L., Khetan, A. and Lin, H. (2020) Understanding the Effect of High Gas Entrance Velocity on Chinese Hamster Ovary (CHO) Cell Culture Per-formance and Its Implications on Bioreactor Scale-Up and Sparger Design. Biotechnology and Bioengineering, 117, 1684-1695. https://doi.org/10.1002/bit.27314
Mcdowell, C.L. and Papoutsakis, E.T. (1998) Increased Agita-tion Intensity Increases CD13 Receptor Surface Content and mRNA Levels, and Alters the Metabolism of HL60 Cells Cultured in Stirred Tank Bioreactors. Biotechnology and Bioengineering, 60, 239-250. https://doi.org/10.1002/(SICI)1097-0290(19981020)60:2<239::AID-BIT11>3.0.CO;2-H
Sieck, J.B., Cordes, T., Budach, W.E., Rhiel, M.H., Suemeghy, Z., Leist, C., Villiger, T.K., Morbidelli, M. and Soos, M. (2013) Develop-ment of a Scale-Down Model of Hydrodynamic Stress to Study the Performance of an Industrial CHO Cell Line under Simulated Production Scale Bioreactor Conditions. Journal of Biotechnology, 164, 41-49. https://doi.org/10.1016/j.jbiotec.2012.11.012
李自良, 赵彩红, 王美皓, 王家敏, 乔自林, 李倬. 动物细胞生物反应器研究进展[J]. 动物医学进展, 2020, 41(6): 103-108.
安笑辉. 错位桨搅拌生物反应器流场特性及溶氧性能研究[D]: [硕士学位论文]. 济南: 山东大学, 2015.
黄志坚, 虞培清, 苏扬, 周国忠. 发酵罐用搅拌器的工业应用进展[J]. 医药工程设计, 2004, 25(1): 1-4.
周志玮. 动物细胞生物反应器关键技术研究及其结构优化[D]: [博士学位论文]. 哈尔滨: 哈尔滨工业大学, 2012.
孙庆丰. 搅拌釜式生物反应器设计及优化[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2007.
曾昭阳. 生物反应器搅拌桨桨叶优化设计[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2014.
林亨特. 斜插式搅拌桨在一次性生物反应器中的应用研究[D]: [硕士学位论文]. 杭州: 浙江工业大学, 2019.
赵学明, 黄霄, 马红武, 樊菽新, 于振生. 搅拌生物反应器的循环时间分布和混合结构模型[J]. 化工学报, 1999, 50(3): 326-336.
Riet, K.V. and Smith, J.M. (1973) The Behav-iour of Gas-Liquid Mixtures near Rushton Turbine Blades. Chemical Engineering Science, 28, 1031-1037. https://doi.org/10.1016/0009-2509(73)80005-3
潘傲. 基于计算流体力学的搅拌式生物反应器内流场环境对微生物发酵过程的影响研究[D]: [博士学位论文]. 上海: 华东理工大学, 2018.
李承拓. 带挡板的锥底振荡生物反应器流场特性研究[D]: [硕士学位论文]. 杭州: 浙江工业大学, 2020.
陈光. 笼式通气搅拌生物反应器的结构优化与性能研究[D]: [硕士学位论文]. 济南: 山东大学, 2016.
Pandit, A.B., Rielly, C.D., Niranjan, K. and Davidson, J.F. (1989) The Convex Bladed Mixed Flow Impeller and the Marine Propeller: A Multipurpose Agi-tator. Chemical Engineering Science, 44, 2463-2474. https://doi.org/10.1016/0009-2509(89)85190-5
Sandadi, S., Pedersen, H., Bowers, J.S. and Rendeiro, D. (2011) A Comprehensive Comparison of Mixing, Mass Transfer, Chinese Hamster Ovary Cell Growth, and Antibody Production Using Rushton Turbine and Marine Impellers. Bioprocess and Biosystems Engineering, 34, 819-832. https://doi.org/10.1007/s00449-011-0532-0
赵晓伟. 采用Elephant Ear桨叶的生物反应器结构优化和细胞剪切特性研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2010.
任杰. 搅拌反应器流场与动力性能的模拟及实验研究[D]: [硕士学位论文]. 郑州: 郑州大学, 2007.
马鑫. 搅拌桨叶表面应力的测量及分析[D]: [硕士学位论文]. 北京: 北京化工大学, 2000.
Collignon, M.L., Delafosse, A., Crine, M. and Toye, D. (2010) Axial Impeller Selection for Anchorage Dependent Animal Cell Culture in Stirred Bioreactors: Methodology Based on the Impeller Comparison at Just-Suspended Speed of Rotation. Chemical Engineering Science, 65, 5929-5941. https://doi.org/10.1016/j.ces.2010.08.027
Simmons, M.J.H., Zhu, H., Bujalski, W., Hewitt, C.J. and Nienow, A.W. (2007) Mixing in a Model Bioreactor Using Agitators with a High Solidity Ratio and Deep Blades. Chemical En-gineering Research and Design, 85, 551-559. https://doi.org/10.1205/cherd06157
Gogate, P.R., Beenackers, A.A. and Pandit, A.B. (2000) Multiple-Impeller Systems with a Special Emphasis on Bioreactors: A Critical Review. Biochemical Engineering Journal, 6, 109-144. https://doi.org/10.1016/S1369-703X(00)00081-4
Arjunwadkar, S.J., Saravanan, K., Pandit, A.B. and Kulkarni, P.R. (1998) Optimizing the Impeller Combination for Maximum Hold-Up with Minimum Power Consumption. Bio-chemical Engineering Journal, 1, 25-30. https://doi.org/10.1016/S1369-703X(97)00005-3
Nocentini, M., Fajner, D., Pasquali, G. and Magelli, F. (1993) Gas-Liquid Mass Transfer and Holdup in Vessels Stirred with Multiple Rushton Turbines: Water and Wa-ter-Glycerol Solutions. Industrial & Engineering Chemistry Research, 32, 19-26. https://doi.org/10.1021/ie00013a003
Zhu, H., Nienow, A.W., Bujalski, W. and Simmons, M.J.H. (2009) Mixing Studies in a Model Aerated Bioreactor Equipped with an Up- or a Down-Pumping “Elephant Ear” Agitator: Power, Hold-Up and Aerated Flow Field Measurements. Chemical Engineering Research and Design, 87, 307-317. https://doi.org/10.1016/j.cherd.2008.08.013
李美婷, 李威, 李晓光, 杨锋苓. 偏心轴搅拌槽内的层流流场特性[J]. 山东大学学报(工学版), 2019, 49(4): 93-98+107.
Büche, W. (1937) Leistungsbedarf von Rührwerken. Zeitschrift des Vereines Deutscher Ingenieure, 81, 1065-1069.
Nienow, A.W., Rielly, C.D., Brosnan, K., Bargh, N., Lee, K., Coopman, K. and Hewitt, C.J. (2013) The Physical Characterisation of a Microscale Parallel Bioreactor Platform with an Industrial CHO Cell Line Expressing an IgG4. Biochemical Engineering Journal, 76, 25-36. https://doi.org/10.1016/j.bej.2013.04.011
Bulnes-Abundis, D., Carrillo-Cocom, L.M., Araiz-Hernandez, D., Garcia-Ulloa, A., Granados-Pastor, M., Sanchez-Arreola, P.B., Murugappan, G. and Alvarez, M.M. (2013) A Simple Eccentric Stirred Tank Mini-Bioreactor: Mixing Characterization and Mammalian Cell Culture Experiments. Biotechnolo-gy and Bioengineering, 110, 1106-1118. https://doi.org/10.1002/bit.24780
郭玉蕾, 唐亮, 孙瑞强, 李尤, 陈依军. 高通量微型生物反应器的研究进展[J]. 中国生物工程杂志, 2018, 38(8): 69-75.
Alcamo, R., Micale, G., Grisafi, F., Brucato, A. and Ciofalo, M. (2005) Large-Eddy Simulation of Turbulent Flow in an Unbaffled Stirred Tank Driven by a Rushton Turbine. Chemical Engineering Science, 60, 2303-2316. https://doi.org/10.1016/j.ces.2004.11.017
Kreitmayer, D., Gopireddy, S.R., Matsuura, T., Aki, Y., Katayama, Y., Nakano, T., Eguchi, T., Kakihara, H., Nonaka, K., Profitlich, T., Urbanetz, N.A. and Gutheil, E. (2022) CFD-Based and Experimental Hydrodynamic Characterization of the Single-Use Bioreactor Xcellerex(TM) XDR-10. Bioengineering (Basel), 9, 22. https://doi.org/10.3390/bioengineering9010022
骆海燕, 窦冰然, 姜开维, 洪厚胜. 搅拌式动物细胞反应器研究应用与发展[J]. 生物加工过程, 2016, 14(2): 75-80.
Myers, K., Reeder, M.E. and Fasano, J.B. (2002) Optimize Mixing by Using the Proper Baffles. Chemical Engineering Progress, 98, 42-47.
佟立军. 机械搅拌槽挡板的研究[J]. 有色设备, 2005(3): 17-19+49.
Lu, W.M., Wu, H.Z. and Ju, M.Y. (1997) Effects of Baffle De-sign on the Liquid Mixing in an Aerated Stirred Tank with Standard Rushton Turbine Impellers. Chemical Engineering Science, 52, 3843-3851. https://doi.org/10.1016/S0009-2509(97)88929-4
沈春银, 陈剑佩, 张家庭, 戴干策. 机械搅拌反应器中挡板的结构设计[J]. 高校化学工程学报, 2005, 19(2): 162-168.
曹杨. Rushton搅拌釜式生物反应器的γ射线CT测量及流体力学模拟计算[D]: [硕士学位论文]. 湘潭: 湘潭大学, 2010.
Xu, S. and Chen, H. (2016) High-Density Mammalian Cell Cultures in Stirred-Tank Bioreactor without External pH Control. Journal of Biotechnol-ogy, 231, 149-159. https://doi.org/10.1016/j.jbiotec.2016.06.019
Chisti, Y. (1993) Animal Cell Culture in Stirred Bioreactors: Observations on Scale-Up. Bioprocess Engineering, 9, 191-196. https://doi.org/10.1007/BF00369402
洪厚胜, 张庆文, 万红贵, 欧阳平凯. 搅拌生物反应器混合特性的数值模拟与实验研究[J]. 过程工程学报, 2005, 5(2): 131-134.
Lu, W.M. and Ju, S.J. (1987) Local Gas Holdup, Mean Liquid Velocity and Turbulence in an Aerated Stirred Tank Using Hot-Film Anemometry. The Chemical Engi-neering Journal, 35, 9-17. https://doi.org/10.1016/0300-9467(87)80035-7
Godoy-Silva, R., Chalmers, J.J., Casnocha, S.A., Bass, L.A. and Ma, N. (2009) Physiological Responses of CHO Cells to Repetitive Hydrodynamic Stress. Biotechnology and Bio-engineering, 103, 1103-1117. https://doi.org/10.1002/bit.22339
Rushton, J.H., Costich, E.W. and Everett, H.J. (1950) Power Characteristics of Mixing Impeller. Chemical Engineering Progress, 46, 395-404.
Garcia-Ochoa, F. and Gomez, E. (2009) Biore-actor Scale-Up and Oxygen Transfer Rate in Microbial Processes: An Overview. Biotechnology Advances, 27, 153-176. https://doi.org/10.1016/j.biotechadv.2008.10.006
Scully, J., Considine, L.B., Smith, M.T., Mcalea, E., Jones, N., O’connell, E., Madsen, E., Power, M., Mellors, P., Crowley, J., O’leary, N., Carver, S. and Van Plew, D. (2020) Beyond Heuristics: CFD-Based Novel Multiparameter Scale-Up for Geometrically Disparate Bioreactors Demonstrated at Industrial 2kL-10kL Scales. Biotechnology and Bioengineering, 117, 1710-1723. https://doi.org/10.1002/bit.27323
Johnson, C., Natarajan, V. and Antoniou, C. (2014) Verification of Energy Dissipation Rate Scalability in Pilot and Production Scale Bioreactors Using Computational Fluid Dynamics. Biotechnol-ogy Progress, 30, 760-764. https://doi.org/10.1002/btpr.1896
Kolmogorov, A.N. (1941) The Local Structure of Turbulence in Incom-pressible Viscous Fluid for Very Large Reynolds Numbers. Proceedings of the USSR Academy of Sciences, 30, 299-303.
Mcqueen, A., Meilhoc, E. and Bailey, J.E. (1987) Flow Effects on the Viability and Lysis of Suspended Mammalian Cells. Biotechnology Letters, 9, 831-836. https://doi.org/10.1007/BF01026191
Ahmed, S.U., Ranganathan, P., Pandey, A. and Sivaraman, S. (2010) Computational Fluid Dynamics Modeling of Gas Dispersion in Multi Impeller Bioreactor. Journal of Bioscience and Bioengineering, 109, 588-597. https://doi.org/10.1016/j.jbiosc.2009.11.014
Martín, M., Montes, F.J. and Galán, M.A. (2010) Mass Transfer Rates from Bubbles in Stirred Tanks Operating with Viscous Fluids. Chemical Engineering Science, 65, 3814-3824. https://doi.org/10.1016/j.ces.2010.03.015
Kawase, Y., Halard, B. and Moo-Young, M. (1992) Liquid-Phase Mass Transfer Coefficients in Bioreactors. Biotechnology and Bioengineering, 39, 1133-1140. https://doi.org/10.1002/bit.260391109
Michel, B.J. and Miller, S.A. (1962) Power Requirements of Gas-Liquid Agitated Systems. AIChE Journal, 8, 262-266. https://doi.org/10.1002/aic.690080226
张永震. 搅拌釜式生物反应器的计算流体力学模拟[D]: [硕士学位论文]. 天津: 天津大学, 2005.
侯仰帅, 费保进, 梁洪, 杨金亮, 宋春雷, 胡珍霞, 张骞, 黄娟, 向雨秘, 雷韬. 生物反应器不同搅拌速度的计算流体力学模拟及对悬浮培养CHO细胞的影响[J]. 中国生物制品学杂志, 2020, 33(11): 1285-1291.
Ghadge, R.S., Patwardhan, A.W. and Joshi, J.B. (2006) Combined Effect of Hydrodynamic and Interfacial Flow Parameters on Lysozyme Deactivation in a stirred Tank Bioreactor. Biotechnology Progress, 22, 660-672. https://doi.org/10.1021/bp050269s
Zhou, G. and Kresta, S.M. (1996) Impact of Tank Geometry on the Maxi-mum Turbulence Energy Dissipation Rate for Impellers. AIChE Journal, 42, 2476-2490. https://doi.org/10.1002/aic.690420908
Fries, S., Glazomitsky, K., Woods, A., Forrest, G. and Chartrain, M. (2005) Evaluation of Disposable Bioreactors Rapid Production of Recombinant Proteins by Several Animal Cell Lines. BioProcess International, 3, 36-44.
Sandner, V., Pybus, L.P., Mccreath, G. and Glassey, J. (2019) Scale-Down Model Development in Ambr Systems: An Industrial Perspective. Biotechnology Journal, 14, e1700766. https://doi.org/10.1002/biot.201700766
Oh, S.K.W., Nienow, A.W., Al-Rubeai, M. and Emery, A.N. (1989) The Effects of Agitation Intensity with and without Continuous Sparging on the Growth and Antibody Production of Hybridoma Cells. Journal of Biotechnology, 12, 45-61. https://doi.org/10.1016/0168-1656(89)90128-4
Sorg, R., Tanzeglock, T., Soos, M., Morbidelli, M., Perilleux, A., Solacroup, T. and Broly, H. (2011) Minimizing Hydrody-namic Stress in Mammalian Cell Culture through the Lobed Taylor-Couette Bioreactor. Biotechnology Journal, 6, 1504-1515. https://doi.org/10.1002/biot.201000477
Keane, J.T., Ryan, D. and Gray, P.P. (2003) Effect of Shear Stress on Expression of a Recombinant Protein by Chinese Hamster Ovary Cells. Biotechnology and Bioengineer-ing, 81, 211-220. https://doi.org/10.1002/bit.10472
Abu-Reesh, I. and Kargi, F. (1991) Biological Responses of Hybridoma Cells to Hydrodynamic Shear in an Agitated Bioreactor. Enzyme and Microbial Technology, 13, 913-919. https://doi.org/10.1016/0141-0229(91)90108-M
谭文松, 戴干策, 陈志宏, 陈因良. 搅拌生物反应器中杂交瘤细胞生长与破损的初步研究[J]. 生物工程学报, 1996(S1): 190-196.
Odeleye, A.O., Marsh, D.T., Osborne, M.D., Lye, G.J. and Micheletti, M. (2014) On the Fluid Dynamics of a Laboratory Scale Single-Use Stirred Bioreactor. Chemical Engineering Science, 111, 299-312. https://doi.org/10.1016/j.ces.2014.02.032
张建文, 刘禹, 夏建业, 郭美锦, 王泽建, 庄英萍. 机械搅拌生物反应器的CFD模拟及剪切力对红花细胞悬浮培养的影响[J]. 华东理工大学学报(自然科学版), 2016, 42(4): 492-498.
Godoy-Silva, R., Mollet, M. and Chalmers, J.J. (2009) Evaluation of the Effect of Chronic Hydrodynam-ical Stresses on Cultures of Suspensed CHO-6E6 Cells. Biotechnology and Bioengineering, 102, 1119-1130. https://doi.org/10.1002/bit.22146
Neunstoecklin, B., Stettler, M., Solacroup, T., Broly, H., Morbidelli, M. and Soos, M. (2015) Determination of the Maximum Operating Range of Hydrodynamic Stress in Mammalian Cell Culture. Journal of Biotechnology, 194, 100-109. https://doi.org/10.1016/j.jbiotec.2014.12.003
Tanzeglock, T., Soos, M., Stephanopoulos, G. and Morbidelli, M. (2009) Induction of Mammalian Cell Death by Simple Shear and Extensional Flows. Biotechnology and Bioengineering, 104, 360-370. https://doi.org/10.1002/bit.22405
Ma, N. (2002) Quantitative Studies of the Bubble-Cell Interactions and the Mechanisms of Mammalian Cell Damage from Hydrody-namic Forces. The Ohio State University, Columbus.
Zhang, S., Handa-Corrigan, A. and Spier, R.E. (1992) Foaming and Media Surfactant Effects on the Cultivation of Animal Cells in Stirred and Sparged Bioreactors. Journal of Biotechnology, 25, 289-306. https://doi.org/10.1016/0168-1656(92)90162-3
Michaels, J.D., Mallik, A.K. and Papoutsakis, E.T. (1996) Sparging and Agitation-Induced Injury of Cultured Animals Cells: Do Cell-to-Bubble Interactions in the Bulk Liquid In-jure Cells? Biotechnology and Bioengineering, 51, 399-409. https://doi.org/10.1002/(SICI)1097-0290(19960820)51:4<399::AID-BIT3>3.0.CO;2-D
Wang, D., Liu, W., Han, B. and Xu, R. (2005) The Bioreactor: A Powerful Tool for Large-Scale Culture of Animal Cells. Current Pharma-ceutical Biotechnology, 6, 397-403. https://doi.org/10.2174/138920105774370580
Zhou, H., Fang, M.Y., Zheng, X. and Zhou, W.C. (2021) Improving an Intensified and Integrated Continuous Bioprocess Platform for Biologics Manufacturing. Biotechnology and Bioengineering, 118, 3618-3623. https://doi.org/10.1002/bit.27768