蒸压加气混凝土(Autoclaved Aerated Concrete,简称AAC)作为一种新型绿色建筑材料,是唯一能满足65%建筑节能设计标准要求的单一墙体材料,集新型墙体材料、保温绿色材料、防火材料于一体,是现阶段建材发展的主要产品之一。随着对墙体自保温要求越来越高,自保温制品对导热系数的要求也更高。本文通过概括国内外相关学者对AAC的力学和热工性能的研究现状,探讨了在细观尺度方面AAC改性性质的研究,提出AAC的性能与孔的形式、孔隙率及孔壁的密实度等关系较大,AAC的优化生产技术也应围绕上述指标进行改进,以达到指导AAC的生产及工程应用的目的。 As a new green building material, autoclaved aerated concrete (Abbreviation AAC) is the only single wall material that can meet the requirements of 65% building energy saving design standards, which integrates new wall materials, thermal insulation green materials and fire protection materials. It is one of the main products in the development of building materials at the present stage. With the increasing requirements for wall self-insulation, self-insulation products have higher requirements for thermal conductivity. In this paper, the current research status of mechanical and thermal properties of AAC by relevant scholars at home and abroad were summarized, the study on the modification properties of AAC in mesoscale was discussed, and the performance of AAC was closely related to the form of the hole, porosity and the density of the hole wall was proposed. The optimized production technology of AAC should also be improved around the above indexes to achieve the purpose of guiding the production and engineering application of AAC.
As a new green building material, autoclaved aerated concrete (Abbreviation AAC) is the only single wall material that can meet the requirements of 65% building energy saving design standards, which integrates new wall materials, thermal insulation green materials and fire protection materials. It is one of the main products in the development of building materials at the present stage. With the increasing requirements for wall self-insulation, self-insulation products have higher requirements for thermal conductivity. In this paper, the current research status of mechanical and thermal properties of AAC by relevant scholars at home and abroad were summarized, the study on the modification properties of AAC in mesoscale was discussed, and the performance of AAC was closely related to the form of the hole, porosity and the density of the hole wall was proposed. The optimized production technology of AAC should also be improved around the above indexes to achieve the purpose of guiding the production and engineering application of AAC.
周 楠,范学颖,陈贡联. AAC在细观尺度上强度和热工性能的研究进展Research Progress in Strength and Thermal Properties of AAC at Microscomic Mesoscale[J]. 土木工程, 2022, 11(12): 1341-1350. https://doi.org/10.12677/HJCE.2022.1112151
参考文献References
Jiang, J., Ma, B., Cai, Q., et al. (2021) Utilization of ZSM-5 Waste for the Preparation of Autoclaved Aerated Concrete (AAC): Mechanical Properties and Reaction Products. Construction and Building Materials, 297, Article ID: 123821. https://doi.org/10.1016/j.conbuildmat.2021.123821
河南省住房和城乡建设厅. DBJ41/T100-2015砌块墙体保温体系技术规程[S]. 郑州: 郑州大学出版社, 2015.
彭军芝. 蒸压加气混凝土中孔的形成、特征及对性能的影响研究[D]: [博士学位论文]. 重庆: 重庆大学, 2011.
Fomina, E.V., Chulenyov, A.S. and Kozhukhova, N.I. (2018) Properties Control in Autoclave Aerated Concrete by Choosing of Pore Forming AL-Agent. Materials Science and Engineering, 365, Article ID: 032044. https://doi.org/10.1088/1757-899X/365/3/032044
Lekūnaitė-Lukošiūnė, L., Balčiūnas, G. and Kligys, M. (2017) Influence of Micro Additives on Macrostructure of Autoclaved Aerated Concrete. International Journal of Engineering Science Invention, 6, 72-79.
Hamad, A.J. (2014) Materials, Production, Properties and Application of Aerated Lightweight Concrete: Review. International Journal of Materials Science and Engineering, 2, 152-157. https://doi.org/10.12720/ijmse.2.2.152-157
胡新萍, 李翔宇, 韩保清, 邓庆阳. GEM方程的多孔混凝土导热行为表征. 硅酸盐通报, 2014, 33(10): 2597-2603.
朱明, 王方刚, 张旭龙, 王发洲. 泡沫混凝土孔结构与导热性能的关系研究[J]. 武汉理工大学学报, 2013, 35(3): 20-25.
Li, H., Zeng, Q. and Xu, S. (2017) Effect of Pore Shape on Thermal Conductivity of Partially Saturated Cement-Based Porous Composites. Cement and Concrete Composites, 81, 87-96. https://doi.org/10.1016/j.cemconcomp.2017.05.002
Li, F., Chen, G., Zhang, Y., Hao, Y. and Si, Z. (2020) Fundamental Properties and Thermal Transferability of Masonry Built by Autoclaved Aerated Concrete Self-Insulation Blocks. Materials, 13, Article No. 1680. https://doi.org/10.3390/ma13071680
Chen, G., Li, F., Jing, P., Geng, J. and Si, Z. (2021) Effect of Pore Structure on Thermal Conductivity and Mechanical Properties of Autoclaved Aerated Concrete. Materials, 14, Article No. 339. https://doi.org/10.3390/ma14020339
彭军芝. 蒸压加气混凝土孔结构及其对性能的影响研究进展[J]. 材料导报A: 综述篇, 2013, 27(8): 103-107.
袁誉飞, 梁啓成, 黄照明, 等. MATLAB图像处理技术在加气混凝土孔结构研究中的应用[J]. 混凝土, 2012, 268(2): 51-54.
彭军芝, 彭小芹, 桂苗苗, 蔡振哲. 蒸压加气混凝土孔结构表征的图像分析方法[J]. 材料导报B: 研究篇, 2011, 25(1): 125-129.
廖明顺. 多孔材料力学性能数值模拟[D]: [硕士学位论文]. 昆明: 昆明理工大学, 2006.
郭玉顺, 陆爱萍, 郭自力. 多孔混凝土成分、孔结构与力学性能关系的研究[J]. 清华大学学报(自然学科学版), 1996, 36(8): 44-49.
田威, 党发宁, 陈厚群. 混凝土CT图像的3维重建技术[J]. 四川大学学报(工程科学版), 2010, 42(6): 12-15.
毛灵涛, 刘永亮, 薛茹. 混凝土三维细观数值模拟与CT试验研究[J]. 混凝土, 2015, 313(12): 7-11.
柏巍, 彭刚. 蒙特卡罗法生成混凝土随机骨料模型的ANSYS实现[J]. 石河子大学学报(自然学科学版), 2007, 25(4): 504-507.
程书怀, 任志刚, 李培鹏, 上官瑾瑜. 基于LS-DYNA的混凝土三维随机凹凸型骨料数值建模[J]. 武汉理工大学学报, 2014, 36(12): 89-94.
叶志强, 焦生杰, 叶敏. 混凝土骨料预冷热力学仿真分析[J]. 水利水电技术, 2014, 45(1): 84-89.
张燕坤, 吴海英, 张兵. 基于细观层次的次轻混凝土受力性能数值模拟分析[J]. 混凝土, 2015, 312(10): 1-3+13.
Chen, G., Li, F., Geng, J., Jing, P. and Si, Z. (2021) Identification, Generation of Autoclaved Aerated Concrete Pore Structure and Simulation of Its Influence on Thermal Conductivity. Construction and Building Materials, 294, Article ID: 123572. https://doi.org/10.1016/j.conbuildmat.2021.123572
Ioannis, I., Andrea, H. and Christopher, H. (2008) Capillary Absorption of Water and n-Decane by Autoclaved Aerated Concrete. Cement and Concrete Research, 38, 766-771. https://doi.org/10.1016/j.cemconres.2008.01.013
Jin, H.-Q., Yao, X.-L., Fan, L.-W., Xu, X. and Yu, Z.-T. (2016) Experimental Determination and Fractal Modeling of the Effective Thermal Conductivity of Autoclaved Aerated Concrete: Effects of Moisture Content. International Journal of Heat and Mass Transfer, 92, 589-602. https://doi.org/10.1016/j.ijheatmasstransfer.2015.08.103
郑万廪, 郭树云. 加气混凝土孔结构及其与强度的关系[J]. 工业建筑, 1982, 19(9): 38-40.
孙抱真, 贾传久. 加气混凝土孔结构与强度的数学关系式[J]. 建筑节能, 1983, 11(5): 25-27.
Arandigoyen, M. and Alvarez, J.I. (2007) Pore Structure and Mechanical Properties of Cement-Lime Mortars. Cement and Concrete Research, 37, 767-775. https://doi.org/10.1016/j.cemconres.2007.02.023
金南国, 金贤玉, 郭剑飞. 混凝土孔结构与强度关系模型研究[J]. 浙江大学学报(工学版), 2005, 39(11): 1680-1684.
吴剑锋, 李慧剑, 王彩华, 等. 基于强度表征的混凝土脆性指标影响因素研究[J]. 力学季刊, 2020, 41(3): 528-536.
Ferretti, D., Michelini, E. and Rosati, G. (2015) Cracking in Autoclaved Aerated Concrete: Experimental Investigation and XFEM Modeling. Cement and Concrete Research, 67, 156-167. https://doi.org/10.1016/j.cemconres.2014.09.005
程书怀, 任志刚, 余细东, 付应兵. 钢纤维混凝土细观二维建模与数值研究[J]. 武汉理工大学学报, 2015, 37(3): 69-74.
秦武, 杜成斌. 基于CT切片的三维混凝土细观层次力学建模[J]. 工程力学, 2012, 29(7): 186-193.
李鹏, 荆鹏飞, 耿静亚, 陈贡联. 蒸压加气混凝土等效导热系数的数值模拟研究[J]. 华北水利水电大学学报(自然科学版), 2018, 39(6): 91-96.
王从锋, 刘富德. 高透水混凝土细观抗压破坏数值仿真模拟研究[J]. 混凝土, 2010, 254(12): 14-16.
李朝红, 王海龙, 徐光兴. 混凝土损伤断裂的三维细观数值模拟[J]. 中南大学学报(自然科学版), 2011, 42(2): 463-469.
程从密. EPS轻集料混凝土组成结构与性能研究[D]: [博士学位论文]. 广州: 华南理工大学, 2013.
李翔宇, 赵宵龙, 郭向勇, 曹力强. 泡沫混凝土导热系数模型研究[J]. 建筑科学, 2010, 26(9): 69-73.
胡新萍, 李翔宇, 韩保清, 邓庆阳. GEM方程的多孔混凝土导热行为表征[J]. 硅酸盐学报, 2014, 33(10): 2597-2603.
周强. 基于离散元方法的颗粒材料热传导研究[D]: [博士学位论文]. 大连: 大连理工大学, 2011.
Jerman, M., Keppert, M., Výborný, J. and Černý, R. (2013) Hygric, Thermal and Durability Properties of Autoclaved Aerated Concrete. Construction and Building Materials, 41, 352-359. https://doi.org/10.1016/j.conbuildmat.2012.12.036
黄建恩, 吕恒林, 冯伟, 等. 蒸压加气混凝土墙体热湿耦合传递特征[J]. 建筑材料学报, 2015,18(1): 88-94.
姜勇, 齐子刚. 蒸压加气混凝土生产技术[M]. 北京: 中国建材工业出版社, 2021.
Seddighi, F., Pachideh, G. and Salimbahrami, S.B. (2021) A Study of Mechanical and Mechanical and Microstructures Properties of Autoclavedaerated Concrete Containing Nano-Graphene. Journal of Building Engineering, 43, Article ID: 1034106. https://doi.org/10.1016/j.jobe.2021.103106
Zhang, P., Wan, J., Wang, K. and Li, Q. (2017) Influence of Nano-SiO2 on Properties of Fresh and Hardened High Performance Concrete: A State-of-the-Art Review. Construction and Building Materials, 148, 648-658. https://doi.org/10.1016/j.conbuildmat.2017.05.059
应姗姗. 加气混凝土的纳米碳酸钙改性及高铝质加气混凝土的制备[D]: [博士学位论文]. 杭州: 浙江大学, 2014.
应姗姗, 钱晓倩, 詹树林. 纳米碳酸钙对蒸压加气混凝土性能的影响[J]. 硅酸盐通报, 2011, 30(6): 1254-1259.
Liu, R., Xiao, H., Geng, J., Du, J. and Liu, M. (2020) Effect of Nano-CaCO3 and Nano-SiO2 on Improving the Properties of Carbon Fibre-Reinforced Concrete and Their Pore-Structure Models. Construction and Building Materials, 244, 118-297. https://doi.org/10.1016/j.conbuildmat.2020.118297
Cosentino, I., Liendo, F., Arduino, M., et al. (2020) Nano CaCO3 Particles in Cement Mortars towards Developing a Circular Economy in the Cement Industry. Procedia Structural Integrity, 26, 155-165. https://doi.org/10.1016/j.prostr.2020.06.019
Muhd Norhasri, M.S., Hamidah, M.S. and Fadzil, A.M. (2017) Applications of Using Nano Material in Concrete: A Review. Construction and Building Materials, 133, 91-97. https://doi.org/10.1016/j.conbuildmat.2016.12.005
杨东升, 杨小春, 赵玉印. 不同长度玻璃纤维对陈积粉煤灰假期混凝土力学性能影响[J]. 混凝土, 2019, 41(12): 92-94.
吕信敏, 陈国新, 王佳慧, 陈亮亮. 纤维增强型蒸压加气混凝土砌块力学性能研究[J]. 混凝土, 2015, 37(2): 114-117.
李敏, 吴智深. 短切玄武岩纤维增强低导热型加气混凝土的试验研究[J]. 东南大学学报(自然科学版), 2010, 40(S2): 61-65.
Ayudhya, B.I.N. (2016) Comparison of Compressive and Splitting Tensile Strength of Autoclaved Aerated Concrete (AAC) Containing Water Hyacinth and Polypropylene Fibre Subjected to Elevated Temperatures. Materials and Structures, 49, 1455-1468. https://doi.org/10.1617/s11527-015-0588-4
Pehlivanlı, Z.O. and Uzun, İ. (2022) Effect of Polypropylene Fiber Length on Mechanical and Thermal Properties of Autoclaved Aerated Concrete. Construction and Building Materials, 322, Article ID: 126506. https://doi.org/10.1016/j.conbuildmat.2022.126506
He, T., Xu, R., Da, Y., et al. (2019) Experiential Study of High-Performance Autoclaved Concrete Produced with Recycled Wood Fibre and Rubber Powder. Journal of Cleaner Production, 234, 559-567. https://doi.org/10.1016/j.jclepro.2019.06.276
Pehlivanlı, Z.O., Uzun, İ., Yücel, Z.P. and Demir, İ. (2016) The Effect of Different Fiber Reinforcement on the Thermal and Mechanical Properties of Autoclaved Aerated Concrete. Construction and Building Materials, 112, 325-330. https://doi.org/10.1016/j.conbuildmat.2016.02.223
Xargay, H., Folino, P., Nuňez, N., et al. (2018) Acoustic Emission Behavior of Thermally Damaged Self-Compacting High Strength Fiber Reinforced Concrete. Construction and Building Materials, 187, 519-530. https://doi.org/10.1016/j.conbuildmat.2018.07.156
Peng, Y., Liu, Y., Zhan, B. and Xu, G. (2021) Preparation of Autoclaved Aerated Concrete by Using Graphite Tailings as an Alternative Silica Source. Construction and Building Materials, 267, Article ID: 121792. https://doi.org/10.1016/j.conbuildmat.2020.121792
Wan, H., Hu, Y., Liu, G. and Qu, Y. (2018) Study on the Structure and Properties of Autoclaved Aerated Concrete Produced with the Stone-Sawing Mud. Construction and Building Materials, 184, 20-26. https://doi.org/10.1016/j.conbuildmat.2018.06.214
Jiang, J., Cai, Q., Ma, B., et al. (2021) Effect of ZSM-5 Waste Dosage on the Properties of Autoclaved Aerated Concrete. Construction and Building Materials, 278, Article ID: 122114. https://doi.org/10.1016/j.conbuildmat.2020.122114