[2,3]-Wittig重排不同于传统的[3,3]-Claisen重排,自发现起得到了合成化学家的广泛关注,并得到了充分的研究。由于其能实现化学键高效简洁的转化,且能得到具有高度衍生化的含烯丙基的产物,[2,3]-Wittig重排在全合成领域具有重要的地位。本文旨在从该反应的最初发现、重排前体的构建、不对成重排的实现等方面,全面系统的介绍有别于传统[3,3]-Claisen重排的[2,3]-Wittig重排反应。 [2,3]-Wittig rearrangement is an attractive reaction, which is extremely different from the traditional [3,3]-claisen rearrangement, and has received extensive attention from chemists since its initial discovery. Due to its efficient and concise transformation of chemical bonds and the ability to obtain highly derivatized allyl-containing products, [2,3]-Wittig rearrangement plays an important role in total synthesis. This review attempts to provide comprehensive knowledge about [2,3]-Wittig rearrangement, including initial discovery, construction of substrates, asymmetrical rearrangements, and so on.
[2
3]-Wittig重排,重排前体,烯丙基化, [2
3]-Wittig Rearrangement
Substrates of Rearrangement
Allylation
摘要
[2,3]-Wittig rearrangement is an attractive reaction, which is extremely different from the traditional [3,3]-claisen rearrangement, and has received extensive attention from chemists since its initial discovery. Due to its efficient and concise transformation of chemical bonds and the ability to obtain highly derivatized allyl-containing products, [2,3]-Wittig rearrangement plays an important role in total synthesis. This review attempts to provide comprehensive knowledge about [2,3]-Wittig rearrangement, including initial discovery, construction of substrates, asymmetrical rearrangements, and so on.
Keywords:[2,3]-Wittig Rearrangement, Substrates of Rearrangement, Allylation
该反应还第一次以锡-锂交换的方式生成碳负离子,有别于传统的拔质子的方式,使底物兼容性有了大幅提高。因此,Still-Wittig 重排反应广泛应用于天然产物全合成中,如Pre-schisanartanin C [
10
]、(±)-Maoecrystal V [
11
]、(−)-Candelalide A [
12
] (图3)等。
参考文献References
Hoffmann, R.W. (1979) Stereochemistry of [2,3] Sigmatropic Rearrangements. Angewandte Chemie International Edition, 18, 563-572.
https://doi.org/10.1002/anie.197905633
Lansbury, P.T. and Pattison, V.A. (1962) Some Reactions of α-Metalated Ethers. The Journal of Organic Chemistry, 27, 1933-1939.
https://doi.org/10.1021/jo01053a001
Cast, J., Stevens, T.S. and Holmes, J. (1960) Molecular Rearrangement and Fission of Ethers by Alkaline Reagents. Journal of the Chemical Society, 3521-3527.
https://doi.org/10.1039/jr9600003521
Baldwin, J.E., De Bernardis, J. and Patrick, J.E. (1970) Anion Rearrangements: Duality of Mechanism in the Decomposition of Allylic Ether Anions and Synthetic Applications. Tetrahedron Letters, 11, 353-356.
https://doi.org/10.1016/0040-4039(70)80082-X
Denmark, S.E. and Cullen, L.R. (2015) Development of a Phase-Transfer-Catalyzed, [2,3]-Wittig Rearrangement. The Joural of Organic Chemistry, 80, 11818-11848.
https://doi.org/10.1021/acs.joc.5b01759
Everett, R.K. and Wolfe, J.P. (2013) Synthesis of Substituted 3-Hydroxy-2-Furanone Derivatives via an Unusual Enolate Wittig Rearrangement/Alkylative Cyclization Sequence. Organic Letter, 15, 2926-2929.
https://doi.org/10.1021/ol4009188
McNally, A., Evans, B. and Gaunt, M.J. (2006) Organocatalytic Sigmatropic Reactions: Development of a [2,3] Wittig Rearrangement through Secondary Amine Catalysis. Angewandte Chemie International Edition, 45, 2116-2119.
https://doi.org/10.1002/anie.200504301
Laconsay, C.J. and Tantillo, D.J. (2021) Metal Bound or Free Ylides as Reaction Intermediates in Metal-Catalyzed [2,3]-Sigmatropic Rearrangements? It Depends. ACS Catalysis, 11, 829-839.
https://doi.org/10.1021/acscatal.0c04768
Still, W.C. and Mitra, A. (1978) A Highly Stereoselective Synthesis of Z-Trisubstituted Olefins via [2,3]-Sigmatropic Rearrangement. Preference for a Pseudoaxially Substituted Transition State. Journal of the American Chemical Society, 100, 1927-1928.
https://doi.org/10.1021/ja00474a049
Jiang, Y.L., Yu, H.X., Li, Y., Qu, P., Han, Y.X., Chen, J.H. and Yang, Z. (2020) Asymmetric Total Synthesis of Pre-Schisanartanin C. Journal of the American Chemical Society, 142, 573-580.
https://doi.org/10.1021/jacs.9b11872
Peng, F. and Danishefsky, S.J. (2012) Total Synthesis of (+/-)-Maoecrystal V. Journal of the American Chemical Society, 134, 18860-18867.
https://doi.org/10.1021/ja309905j
Watanabe, K., Iwasaki, K., Abe, T., Inoue, M., Suzuki, T. and Katoh, T. (2005) Enantioselective Total Synthesis of (-)-Candelalide A, a Novel Blocker of the Voltage-Gated Potassium Channel Kv1.3 for an Immunosuppressive Agent. Organic Letter, 7, 3745-3748.
https://doi.org/10.1021/ol051398c
Durst, T., Van den Elzen, R. and LeBelle, M.J. (1972) Base-Induced Ring Enlargements of 1-Benzyl- and 1-allyl-2-azetidinones. Journal of the American Chemical Society, 94, 9261-9263.
https://doi.org/10.1021/ja00781a065
Coldham, I., Collis, A.J., Mould, R.J. and Rathmell, R.E. (1995) Ring Expansion of Aziridines to Piperidines Using the Aza-Wittig Rearrangement. Tetrahedron Letters, 36, 3557-3560.
https://doi.org/10.1016/0040-4039(95)00557-S
Anderson, J.C., Siddons, D.C., Smith, S.C. and Swarbrick, M.E. (1995) Aza-[2,3]-Wittig Sigmatropic Rearrangement of Crotyl Amines. Journal of the Chemical Society, Chemical Communications, 1835-1836.
https://doi.org/10.1039/c39950001835
Anderson, J.C. and Davies, E.A. (2010) Diastereoselective Synthesis of Substituted Prolines via 5-Endo-Trig Cyclisations of Aza-[2,3]-Wittig Sigmatropic Rearrangement Products. Tetrahedron, 66, 6300-6308.
https://doi.org/10.1016/j.tet.2010.04.095
Gawley, R.E. and Moon, K. (2007) Stereoselective [2,3]-Sigmatropic Rearrangements of Unstabilized Nitrogen Ylides. Organic Letter, 9, 3093-3096.
https://doi.org/10.1021/ol071188v
West, T.H., Daniels, D.S., Slawin, A.M. and Smith, A.D. (2014) An Isothiourea-Catalyzed Asymmetric [2,3]-Rearrangement of Allylic Ammonium Ylides. Journal of the American Chemical Society, 136, 4476-4479.
https://doi.org/10.1021/ja500758n
Soheili, A. and Tambar, U.K. (2011) Tandem Catalytic Allylic Amination and [2,3]-Stevens Rearrangement of Tertiary Amines. Journal of the American Chemical Society, 133, 12956-12959.
https://doi.org/10.1021/ja204717b
Mikami, K., Kimura, Y., Kishi, N. and Nakai, T. (1983) Acyclic Diastereoselection of the [2,3]-Wittig Sigmatropic Rearrangement of a Series of Isomeric Crotyl Ethers. A Conceptual Model for the Transition-State Geometry. The Journal of Organic Chemistry, 48, 279-281.
https://doi.org/10.1021/jo00150a033
Workman, J.A., Garrido, N.P., Sancon, J., Roberts, E., Wessel, H.P. and Sweeney, J.B. (2005) Asymmetric [2,3]- Rearrangement of Glycine-Derived Allyl Ammonium Ylids. Journal of the American Chemical Society, 127, 1066-1067.
https://doi.org/10.1021/ja043768i
Rodriguez, R.I., Ramirez, E., Fernandez-Salas, J.A., Sanchez-Obregon, R., Yuste, F. and Aleman, J. (2018) Asymmetric [2,3]-Wittig Rearrangement: Synthesis of Homoallylic, Allenylic, and Enynyl Alpha-Benzyl Alcohols. Organic Letter, 20, 8047-8051.
https://doi.org/10.1021/acs.orglett.8b03659
Blackburn, T.J., Kilner, M.J. and Thomas, E.J. (2015) Synthetic Approaches to Phomactins: On the Stereoselectivity of Some [2,3]-Wittig Rearrangements. Tetrahedron, 71, 7293-7309.
https://doi.org/10.1016/j.tet.2015.04.005
Kawasaki, T. and Kimachi, T. (1999) Sparteine-Mediated Enantioselective [2,3]-Wittig Rearrangement of Allyl Ortho-Substituted Benzyl Ethers and Ortho-Substituted Benzyl Prenyl Ethers. Tetrahedron, 55, 6847-6862.
https://doi.org/10.1016/S0040-4020(99)00338-5
Kennedy, C.R., Guidera, J.A. and Jacobsen, E.N. (2016) Synergistic Ion-Binding Catalysis Demonstrated via an Enantioselective, Catalytic [2,3]-Wittig Rearrangement. ACS Central Science, 2, 416-423.
https://doi.org/10.1021/acscentsci.6b00125
Xu, X., Zhang, J., Dong, S., Lin, L., Lin, X., Liu, X. and Feng, X. (2018) Nickel(II)-Catalyzed Asymmetric Propargyl [2,3] Wittig Rearrangement of Oxindole Derivatives: A Chiral Amplification Effect. Angewandte Chemie International Edition, 57, 8734-8738.
https://doi.org/10.1002/anie.201804080