开发先进的氧还原反应(ORR)电催化剂是提升燃料电池、金属空气电池器件效率的关键,对可再生清洁能源的存储与转换利用具有重要意义。本文首先通过无机盐氯化钾辅助热解制备了二维氮掺杂碳(2D-NC)纳米片,再利用浸渍和两步退火的方法将铁掺杂到2D-NC基质中,得到二维Fe-N-C (2D-Fe-N-C)纳米片,相对于已被广泛报道的三维Fe-N-C,二维Fe-N-C纳米片将更多的活性位点暴露在表面,有利于提升催化活性。结果表明,通过加入氯化钾,2D-NC在较低温度(700℃)下即可碳化,且通过浸渍和两步低温退火实现铁掺杂,避免了铁物种的团聚。通过优化无机盐的用量,得到2D-Fe-N-C-5催化剂在碱性溶液中具有比较优异的催化活性,相对可逆氢电极,起始电位达0.999 V,半波电位为0.808 V,其氧还原反应的动力学电流密度与商业Pt/C相当,本文的研究工作对金属–氮–碳催化剂的制备具有一定参考意义。 The development of advanced electrocatalysts for oxygen reduction reaction (ORR) is the key to improve the efficiency of fuel cells and metal-air cells, and is of great significance for the storage, conversion and utilization of renewable clean energy. In this paper, two-dimensional nitrogen-doped carbon nanosheets (2D-NC) were prepared by inorganic salt KCl assisted pyrolysis, and then iron was doped into the 2D-NC matrix by immersion and two-step annealing to obtain two-dimensional Fe-N-C nanosheets (2D-Fe-N-C). Compared with the widely reported three-dimensional Fe-N-C, two- dimensional Fe-N-C nanosheets expose more active sites on the surface, which is conducive to improving catalytic activity. The results show that 2D-NC can be carbonized at a lower temperature (700℃) by adding KCl, and iron doping can be achieved by immersion and two-step low temperature annealing, avoiding the agglomeration of iron species. By optimizing the amount of inorganic salts, 2D-Fe-N-C-5 catalyst has excellent catalytic activity in alkaline solution. The onset potential is 0.999 V (vs RHE), and the half-wave potential is 0.808 V (vs RHE). The kinetic current density of its oxygen reduction reaction is equivalent to that of commercial Pt/C. The research work in this paper has certain reference significance for the preparation of metal nitrogen carbon catalysts.
开发先进的氧还原反应(ORR)电催化剂是提升燃料电池、金属空气电池器件效率的关键,对可再生清洁能源的存储与转换利用具有重要意义。本文首先通过无机盐氯化钾辅助热解制备了二维氮掺杂碳(2D-NC)纳米片,再利用浸渍和两步退火的方法将铁掺杂到2D-NC基质中,得到二维Fe-N-C (2D-Fe-N-C)纳米片,相对于已被广泛报道的三维Fe-N-C,二维Fe-N-C纳米片将更多的活性位点暴露在表面,有利于提升催化活性。结果表明,通过加入氯化钾,2D-NC在较低温度(700℃)下即可碳化,且通过浸渍和两步低温退火实现铁掺杂,避免了铁物种的团聚。通过优化无机盐的用量,得到2D-Fe-N-C-5催化剂在碱性溶液中具有比较优异的催化活性,相对可逆氢电极,起始电位达0.999 V,半波电位为0.808 V,其氧还原反应的动力学电流密度与商业Pt/C相当,本文的研究工作对金属–氮–碳催化剂的制备具有一定参考意义。
金属–氮–碳,两步退火,氧还原反应,电催化,无机盐辅助热解
Jinyi Wang, Qian Liu*
Tiangong University, Tianjin
Received: Oct. 25th, 2022; accepted: Nov. 20th, 2022; published: Nov. 28th, 2022
The development of advanced electrocatalysts for oxygen reduction reaction (ORR) is the key to improve the efficiency of fuel cells and metal-air cells, and is of great significance for the storage, conversion and utilization of renewable clean energy. In this paper, two-dimensional nitrogen-doped carbon nanosheets (2D-NC) were prepared by inorganic salt KCl assisted pyrolysis, and then iron was doped into the 2D-NC matrix by immersion and two-step annealing to obtain two-dimensional Fe-N-C nanosheets (2D-Fe-N-C). Compared with the widely reported three-dimensional Fe-N-C, two- dimensional Fe-N-C nanosheets expose more active sites on the surface, which is conducive to improving catalytic activity. The results show that 2D-NC can be carbonized at a lower temperature (700℃) by adding KCl, and iron doping can be achieved by immersion and two-step low temperature annealing, avoiding the agglomeration of iron species. By optimizing the amount of inorganic salts, 2D-Fe-N-C-5 catalyst has excellent catalytic activity in alkaline solution. The onset potential is 0.999 V (vs RHE), and the half-wave potential is 0.808 V (vs RHE). The kinetic current density of its oxygen reduction reaction is equivalent to that of commercial Pt/C. The research work in this paper has certain reference significance for the preparation of metal nitrogen carbon catalysts.
Keywords:Metal-Nitrogen-Carbon, Two-Step Annealing, Oxygen Reduction Reaction, Electrocatalysis, Inorganic Salt Assisted Pyrolysis
Copyright © 2022 by author(s) and beplay安卓登录
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/
氢氧燃料电池和金属–空气电池由于其高能量密度、低运行温度和环境友好性,是实现可再生清洁能源的存储与转换利用的关键技术 [
与过渡金属和氮共掺杂的碳材料(M-N-C),特别是单原子,由于其最大的原子利用率和高固有活性 [
近年来,广大研究者们还发现大多数埋藏在大量碳基质中的Fe-N-C位点不能被全面用于催化ORR [
受上述工作的启发,我们探索了将无机盐辅助热解和两步退火结合起来的方法来提高活性位点的利用率和促进传质。我们首先通过KCl辅助热解法在较低的碳化温度下制备了二维氮掺杂碳基底(2D-NC)。利用2D-NC作为载体,以六水三氯化铁为铁源,通过两步退火处理合成了形貌良好的二维片状Fe-N-C电催化剂(2D-Fe-N-C)。通过对KCl用量的优化,发现用5 g KCl制备的氮掺杂碳再经过两步退火而得到的2D-Fe-N-C-5催化剂在0.1 mol/L KOH中展现出比较优异的催化活性(半波电位E1/2= 0.808 V)。
六水合硝酸锌[Zn(NO3)2∙6H2O]、六水合三氯化铁(FeCl3∙6H2O)、2-甲基咪唑(C4H6N2)、氯化钾(KCl)、盐酸(HCl)、无水乙醇(C2H6O),均为分析纯。实验中所用的试剂未经任何额外处理,实验用水均为去离子水。
称取1.275 g Zn(NO3)2∙6H2O和2.915 g 2-甲基咪唑分别溶解在100 mL去离子水中,然后快速混合两种水溶液,并剧烈搅拌2 h。将所产生的白色沉淀静置12 h。离心收集产物,然后用去离子水和无水乙醇洗涤,在80℃下干燥过夜,得到2D ZIF-8。取0.5 g 2D ZIF-8与一定量的KCl溶解于40 mL的去离子水中,然后旋转蒸发干燥。在干燥(120℃)过夜后,将KCl插入的粉末在N2发酵中加热至700℃ (加热速率为5℃/min),维持5 h,分别用HCl (2 M)、去离子水、无水乙醇洗涤材料,然后在80℃下干燥过夜,最后得到二维氮掺杂碳基底,命名为2D-NC。改变KCl的用量,用5 g和10 g KCl制备的氮掺杂碳分别标记为2D-NC-5和2D-NC-10。
将174 mg FeCl3∙6H2O与100 mg 2D-NC分散在20 mL无水乙醇溶液中,超声10 min,首先旋转蒸发干燥,然后在80℃的烘箱中干燥。首先在N2流中加热到300℃ (加热速率为5℃/min),维持5 h;使用去离子水-无水乙醇混合物彻底洗涤后,干燥的粉末(80℃)在N2流下以550℃ (加热速率为5℃/min),维持5 h。得到最终的催化剂二维片状Fe-N-C电催化剂,命名为2D-Fe-N-C-x (x表示为加入无机盐KCl的用量)。
本文通过扫描电子显微镜(SEM)研究了样品的微观形貌并且通过X射线衍射(XRD)研究了样品的晶体结构。
电化学测试均使用电化学工作站(CHI 760E),选择三电极体系进行相关测试,以旋转圆盘电极(RDE)为工作电极,对电极和参比电极分别为石墨棒电极和Ag/AgCl电极,电解液为0.1 mol/L KOH溶液。测试中的所有电位都转化为可逆氢电极(RHE)电位,转换公式:
ERHE= EAg/AgCl+ 0.0591 × pH + 0.964 (1)
其中,ERHE为相对于可逆氢电极的电势(V),EAg/AgCl为实验测得的相对于Ag/AgCl参比电极的电位(V),pH由电解液的pH测得。
图1(a)为2D ZIF-8前驱体的二维纳米片状形貌。通过旋转蒸发干燥,将Fe源掺杂之后得到的2D-Fe-N-C-5仍然具有二维纳米片的形貌(图1(b))。其中,2D-Fe-N-C-5的表面较为平滑,且无金属颗粒生成。
图1. (a) 2D ZIF-8和(b) 2D-Fe-N-C-5的SEM图
由扫描电镜可以看出,在合成2D-Fe-N-C时,通过添加KCl,催化剂的形貌没有发生明显的变化,但是尺寸相对变小。值得注意的是,扫描电镜图中没有看到明显的金属颗粒/团簇,且2D-Fe-N-C-5样品主要呈现碳材料的二维形貌特征,Fe元素可能是以单分散的Fe-Nx位点分布在碳基底中,而这种高密度的单分散催化活性中心有望在电催化ORR中显现出相对优异的性能。而且相对于已被广泛报道的三维Fe-N-C,二维Fe-N-C纳米片将更多的活性位点暴露在表面,有利于提升催化活性。
我们还通过XRD研究了样品的晶体结构。由图2所示,2D-Fe-N-C-5催化剂在25˚和43˚处有两个明显的峰(图2),它们被鉴定为一定程度的石墨化碳结构,分别对应于石墨碳的(100)和(002)平面。除了两个石墨化的碳峰外,没有观察到其他属于铁种类的峰,这表明所合成的纳米片中可能不存在铁单质颗粒或氧化铁颗粒。
我们在O2饱和的0.1 M KOH电解液中评估了所有催化剂的活性。通过线性扫描伏安法(LSV)进一步研究所有样品的催化活性,扫描速率和旋转速度分别设置为5 m∙V∙s−1和1600 rpm。如图3(a)所示,2D-Fe-N-C-5表现出较优的ORR催化活性,其起始电位(Eonset)为0.999 V,半波电位(E1/2)为0.808 V,极限电流密度(jk)为5.06 mA∙cm−2;超过了2D-Fe-N-C-10 (Eonset= 1 V,E1/2= 0.725 V,jk= 3.9635 mA∙cm−2),且高于文献中报道的不添加KCl的NC (E1/2= 0.77 V) [
图2. 2D-Fe-N-C-5和2D-NC-5的XRD光谱
图3. 2D-Fe-N-C-5催化剂的ORR测试性能。(a) 2D-Fe-N-C-5、2D-Fe-N-C-10及20% Pt/C催化剂的极化曲线;(b) 2D-Fe-N-C-5在不同转速下的极化曲线;(c) 2D-Fe-N-C-5的电子转移数;(d) 2D-Fe-N-C-5、2D-Fe-N-C-10及20% Pt/C催化剂的Tafel斜率
为了进一步理解ORR的动力学信息,我们还利用LSV曲线研究了2D-Fe-N-C-5在不同速度下的电子传递动力学。2D-Fe-N-C-5电极的极限电流密度随着转速的增加而增加,导致更快的氧通量到达电极表面,从而加快ORR的反应动力学过程(图3(b))。如图3(c)所示,电子转移数(n)是ORR催化剂的另一个关键参数。根据K-L方程计算,在0.3~0.55 V的电位范围内,2D-Fe-N-C-5的转移电子数在3.68~3.82之间,说明2D-Fe-N-C-5催化ORR是一个以四电子转移反应为主的过程。为了进一步地验证反应动力学,根据LSV得到了Tafel斜率,如图3(d)所示。在合成氮掺杂碳的过程中,加入KCl辅助热解,使得Tafel斜率逐渐减小,2D-Fe-N-C-5的最终值仅为77.46 mV∙dec−1,低于Pt/C (113.81 mV∙dec−1)。说明KCl辅助热解和两步退火都在ORR动力学方面具有优异的优势。
综上所述,我们通过KCl辅助热解ZIF-8制备了2D-NC,之后又经过两步退火处理合成了形貌良好的二维片状Fe-N-C电催化剂(2D-Fe-N-C)。在合成2D-NC时,加入无机盐KCl,降低了碳化温度(700℃),且形貌也没有发生坍塌和破碎;在Ar气氛中的第一步热解温度低于金属前驱体的分解温度,所以不能全部碳化为单原子,会有团簇或者氧化物附着在表面;再进行一次热解,就可以全部碳化为Fe-Nx,使其成分较均匀化,石墨化程度增加。得益于电子结构和形貌的强协同作用,所得到的催化剂2D-Fe-N-C-5在增强的ORR活性中表现出0.808 V的半波电位,且2D-Fe-N-C-5也显示出了接近四电子过程。因此,KCl辅助热解策略和两步退火方法都可以提高其电催化活性,这对其它氧还原催化剂制备具有一定借鉴作用。
本文作者感谢天津市教委科研计划项目(No.2017KJ098)对本论文的资助。
王晋兿,刘 倩. 二维ZIF8衍生的Fe-N-C纳米片的制备及其氧还原催化性能研究Preparation of Two-Dimensional Fe-N-C Nanosheets Derived from ZIF8 and Their Catalytic Performance for Oxygen Reduction Reaction[J]. 材料科学, 2022, 12(11): 1230-1236. https://doi.org/10.12677/MS.2022.1211137
https://doi.org/10.1038/s41929-019-0304-9
https://doi.org/10.1039/c1cs15228a
https://doi.org/10.1021/acs.chemrev.7b00488
https://doi.org/10.1016/j.apcatb.2020.119300
https://doi.org/10.1021/acscatal.9b02583
https://doi.org/10.1002/adma.201604103
https://doi.org/10.1002/adfm.201802596
https://doi.org/10.1021/jacs.7b06514
https://doi.org/10.1016/j.apcatb.2019.03.046
https://doi.org/10.1002/ange.201702473
https://doi.org/10.1002/cctc.201902109
https://doi.org/10.1016/S1872-2067(19)63507-2
https://doi.org/10.1002/anie.201712451
https://doi.org/10.1016/j.jcat.2019.02.023
https://doi.org/10.1126/science.1200832
https://doi.org/10.1002/anie.201503159
https://doi.org/10.1038/ncomms9618
https://doi.org/10.1016/j.jechem.2017.06.013
https://doi.org/10.1038/s41565-021-01022-y
https://doi.org/10.1002/ente.202100035