目的:建立一种直接使用口腔上皮细胞为模板PCR扩增ApoE基因rs429358和rs7412位点从而采用桑格法测序鉴定ApoE基因型的方法。方法:自行设计3条引物,以口腔上皮细胞粗处理物为模板,通过半巢式PCR扩增包含ApoE基因2个SNP位点的靶片段,PCR产物经桑格法测序鉴定样本基因型。结果:所检样本能扩增出预期大小的PCR产物,测序峰图清晰。结论:成功建立了一种直接半巢式PCR结合测序鉴定ApoE基因型的方法,有良好的应用前景。
Objective: To establish a method for identifying ApoE genotype by PCR and Sanger sequencing directly using oral epithelial cells. Meth-ods: Self-designed three primers were used to amplify the target fragments containing two SNP loci of ApoE gene by semi-nested PCR. The PCR products were sequenced to identify the genotype of the samples. Results: The PCR products of the expected size can be amplified from the tested samples, and the sequencing peak diagram is clear. Conclusion: A method of direct semi-nested PCR com-bined with sequencing to identify ApoE gene was successfully established, which has a certain ap-plication value.
ApoE基因,直接半巢式PCR,测序, Apolipoprotein E Gene Direct Semi-Nested PCR Sequencing摘要 - beplay安卓登录
Objective: To establish a method for identifying ApoE genotype by PCR and Sanger sequencing directly using oral epithelial cells. Methods: Self-designed three primers were used to amplify the target fragments containing two SNP loci of ApoE gene by semi-nested PCR. The PCR products were sequenced to identify the genotype of the samples. Results: The PCR products of the expected size can be amplified from the tested samples, and the sequencing peak diagram is clear. Conclusion: A method of direct semi-nested PCR combined with sequencing to identify ApoE gene was successfully established, which has a certain application value.
Keywords:Apolipoprotein E Gene, Direct Semi-Nested PCR, Sequencing
黄振辉,尹明星,游 娟,何震宇. 直接半巢式PCR结合测序鉴定ApoE基因型的方法的建立 Establishment of Method for Identifying ApoE Genotype by Direct Semi-Nested PCR Combined with Sequencing[J]. 生物过程, 2022, 12(04): 199-204. https://doi.org/10.12677/BP.2022.124022
ReferencesIlveskoski, E., Järvinen, O., Sisto, T., et al. (2000) Apolipoprotein E Polymorphism and Atherosclerosis: Association of the Epsilon4 Allele with Defects in the Internal Elastic Lamina. Atherosclerosis, 153, 155-160.
<br>https://doi.org/10.1016/S0021-9150(00)00388-9王琪, 李颖, 秦伟, 等. 阿尔茨海默病患者载脂蛋白E3种分型方法的比较[J]. 国际检验医学杂志, 2022, 43(2): 156-160.Serrano-Pozo, A., Das, S. and Hyman, B.T. (2021) ApoE and Alzheimer’s Disease: Advances in Genetics, Pathophysiology, and Therapeutic Approaches. The Lan-cet Neurology, 20, 68-80.
<br>https://doi.org/10.1016/S1474-4422(20)30412-9Belloy, M.E., Napolioni, V. and Greicius, M.D. (2019) A Quarter Century of ApoE and Alzheimer’s Disease: Progress to Date and the Path Forward. Neuron, 101, 820-838. <br>https://doi.org/10.1016/j.neuron.2019.01.056刘瑷瑜, 张少轲, 谈畅. ApoE基因多态性与缺血性卒中的相关性研究[J]. 东南大学学报(医学版), 2019, 38(6): 941-946.Marais, A.D. (2019) Apolipoprotein E in Lipopro-tein Metabolism, Health and Cardiovascular Disease. Pathology, 51, 165-176. <br>https://doi.org/10.1016/j.pathol.2018.11.002任家孚, 李婧. ApoE基因多态性与心血管疾病的研究进展[J]. 心脏杂志, 2022(2): 232-238.高辉, 王杨, 陈婉婷. SLCO1B1和ApoE基因多态性与他汀类药物疗效的相关性[J]. 实用医学杂志, 2019, 35(14): 2300-2303.Wang, Y., Du, X., Zhao, R., et al. (2021) Association of ApoE Polymorphisms with Lipid-Lowering Efficacy of Statins in Atherosclerotic Cardiovascular Diseases. Annals Academy of Medicine Singapore, 50, 474-480.
<br>https://doi.org/10.47102/annals-acadmedsg.2020505Cooper-DeHoff, R.M., Niemi, M., Ramsey, L.B., et al. (2022) The Clinical Pharmacogenetics Implementation Consortium Guideline for SLCO1B1, ABCG2, and CYP2C9 Genotypes and Statin-Associated Musculoskeletal Symptoms. Clinical Pharmacology & Therapeutics, 111, 1007-1021. <br>https://doi.org/10.1002/cpt.2557Rihn, B.H., Berrahmoune, S., Jouma, M., et al. (2009) ApoE Genotyping: Comparison of Three Methods. Clinical and Experimental Medicine, 9, 61-65. <br>https://doi.org/10.1007/s10238-008-0012-2Rasmussen, K.L., Tybjaerg-Hansen, A., Nordestgaard, B.G., et al. (2020) APOE and Dementia—Resequencing and Genotyping in 105,597 Individuals. Alzheimers Dement, 16, 1624-1637. <br>https://doi.org/10.1002/alz.12165Mamedov, T.G., Pienaar, E., Whitney, S.E., et al. (2008) A Fundamental Study of the PCR Amplification of GC-Rich DNA Templates. Computational Biology and Chemistry, 32, 452-457.
<br>https://doi.org/10.1016/j.compbiolchem.2008.07.021Mousavian, Z., Sadeghi, H.M., Sabzghabaee, A.M., et al. (2014) Polymerase Chain Reaction Amplification of a GC Rich Region by Adding 1,2 Propanediol. Advanced Biomedi-cal Research, 3, 65.
<br>https://doi.org/10.4103/2277-9175.125846邢玉华, 戴素琴, 刘体颜. 高GC含量DNA模板的PCR扩增[J]. 生物技术通讯, 2013, 24(5): 645-649.Green, M.R. and Sambrook, J. (2019) Polymerase Chain Reaction (PCR) Amplification of GC-Rich Templates. Cold Spring Harbor Protocols, 436-457. <br>https://doi.org/10.1101/pdb.prot095141