溶磷微生物是目前世界上公认的安全、经济和有效的生物措施,关于微生物溶解难溶性磷酸盐的分子机理,目前大部分学者认可的机理为微生物有机酸的分泌和磷酸酶的水解作用。溶磷机理的研究通常伴随着溶磷基因的挖掘,本文就有机酸相关基因、磷酸酶相关基因以及其他一些其他溶磷基因做一个简单综述,为将来溶磷机制的研究提供新的认识和参考。 Phosphorus-solubilizing mi-croorganisms are currently recognized as safe, economical and effective biological measures in the world. As for the molecular mechanism of the dissolution of insoluble phosphate by microorgan-isms, most scholars agree that the mechanism is the secretion of organic acid by microorganisms and the hydrolysis of phosphatase. The study of the mechanism of phosphorus dissolution is usually accompanied by the excavating of phosphorus soluble genes. In this paper, the organic acid-related genes, phosphatase related genes and some other phosphorus dissolution genes are briefly re-viewed to provide new understanding and reference for the study of phosphorus dissolution mech-anism in the future.
Institute of Microbiology Heilongjiang Academy of Aciences, Harbin Heilongjiang
Received: Jul. 25th, 2022; accepted: Aug. 17th, 2022; published: Aug. 26th, 2022
ABSTRACT
Phosphorus-solubilizing microorganisms are currently recognized as safe, economical and effective biological measures in the world. As for the molecular mechanism of the dissolution of insoluble phosphate by microorganisms, most scholars agree that the mechanism is the secretion of organic acid by microorganisms and the hydrolysis of phosphatase. The study of the mechanism of phosphorus dissolution is usually accompanied by the excavating of phosphorus soluble genes. In this paper, the organic acid-related genes, phosphatase related genes and some other phosphorus dissolution genes are briefly reviewed to provide new understanding and reference for the study of phosphorus dissolution mechanism in the future.
王向向,陈静宇,孟利强,张 烨,李 萌,曹 旭. 溶磷微生物功能基因的研究进展 Advances in Functional Genes of Phosphorus-Solubilizing Microorganisms[J]. 生物过程, 2022, 12(03): 170-175. https://doi.org/10.12677/BP.2022.123019
参考文献References
Saber, K., Nahla, L., Ahmed, D., et al. (2005) Effect of P on Nodule Formation and N Fixation in Bean. Agronomy for Sustainable Development, 25, 389-393.
Wen, W.J., Zhuang, Y.H., Zhang, L., et al. (2021) Preferred Hierarchical Control Strategy of Phosphorus from Non- Point Source Pollution at Regional Scale. Environmental Science and Pollu-tion Research (International), 28, 60111- 60121. https://doi.org/10.1007/s11356-021-14138-4
El-Gawad, A.M.A., Hendawey, M.H. and Farag, H.I.A. (2009) Interaction between Biofertilization and Canola Genotypes in Rela-tion to Some Biochemical Constituents under Siwa Oasis Conditions. Research Journal of Agriculture and Biological Sciences, 5, 82-96.
Rivas, R., Peix, A., Mateos, P.F., et al. (2006) Biodiversity of Populations of Phosphate Solu-bilizing Rhizobia That Nodulates Chickpea in Different Spanish Soils. Plant and Soil, 287, 23-33. https://doi.org/10.1007/s11104-006-9062-y
王向向, 陈静宇, 曹旭, 孟利强, 刘志庭, 张烨, 李萌, 于德水. 土壤溶磷微生物的研究进展及应用[J]. 农业科学, 2022, 12(6): 453-458.
Han, S.H., Kim, C.H., Lee, J.H., Paris, J.Y., Cho, S.M., Park, S.K., et al. (2008) Inactivation of pqq Genes of Enterobacter intermedium 60-2G Reduces Antifungal Activity and Induction of Systemic Resistance. FERNS Microbiology Letters, 282, 140-146. https://doi.org/10.1111/j.1574-6968.2008.01120.x
Goldstein, A.H. and Liu, S.T. (1987) Molecular Cloning and Regulation of a Mineral Phosphate Solubilizing Gene from Erwinia herbicola. Biotechnology, 5, 72-74. https://doi.org/10.1038/nbt0187-72
Kim, K.Y., Jordan, D. and Krishinan, H.G. (1998) Expression of Genes from Ranella apuatilis That Are Necessary for Mineral Phosphate Solubilization in Escherichia coli. FEMS Microbiology Letters, 159, 121-127. https://doi.org/10.1016/S0378-1097(97)00558-2
Cleton-Jansen, A.M., Goosen, N., Fayet, O. and van, P. (1990) Cloning, Mapping, and Sequencing of the Gene Encoding Escherichia coli Quinoprotein Glucose Dehydrogen-ase. The Journal of Applied Bacteriology, 172, 6308-6315. https://doi.org/10.1128/jb.172.11.6308-6315.1990
Goldstein, A.H., Braverman, K. and Osorio, N. (1999) Evidence for Mutualism between a Plant Growing in a Phosphate-Limited Desert Environment and a Mineral Phosphate Solubilizing (MPS) Rhizobacterium. FEMS Microbiology Ecology, 30, 295-300. https://doi.org/10.1111/j.1574-6941.1999.tb00657.x
Li, L., Jiao, Z.W., Lauren, H., et al. (2014) Disruption of Gene pqqA or pqqB Reduces Plant Growth Promotion Activity and Biocontrol of Grown Galldisease by Rahnella aquatilis HX2. PLOS ONE, 9, e115010. https://doi.org/10.1371/journal.pone.0115010
杨晓玫. 珠芽蓼根际促生菌Bacillus mycoides Gnyt1比较基因组及其功能基因研究[D]: [博士学位论文]. 兰州: 甘肃农业大学, 2020.
焦子伟, 张相锋, 努尔买买提, 任艳利, 吾尔恩, 郭岩彬. pqq基因簇在Escherichia coli DH5α中表达及对其溶磷促生的影响[J]. 农业资源与环境学报, 2016, 33(1): 43-48.
李欣, 张磊, 胡景江. 拐枣七内生细菌溶磷相关基因的鉴定[J]. 西北植物学报, 2017, 37(8): 1500-1506.
陈炯宇, 覃英, 谢显秋, 黄毓燕, 董登峰, 邢永秀, 李杨瑞. 甘蔗内生固氮菌Klebsiella variicola DX120E溶磷基因GDH和pqqE的克隆及溶磷特性分析[J]. 热带作物学报, 2021, 42(10): 2819-2827.
Sashidhar, B. and Podile, A.R. (2010) Mineral Phosphate Solubilization by Rhizosphere Bacteria and Scope for Manipulation of the Direct Oxidation Pathway Involving Glucose Dehydrogenase. Journal of Applied Micro-biology, 109, 1-12. https://doi.org/10.1111/j.1365-2672.2009.04654.x
Tripura, C., Sashidhar, B. and Podile, A. (2005) Transgenic Mineral Phosphate Solubilizing Bacteria for Improved Agricultural Productivity. In: Satyanarayana, T. and Johri, B.N., Eds., Microbial Diversity Current Perspectives and Potential Applications, West Sussex, West Sus-sex, 375-392.
Pérez, E., Sulbarán, M., Ball, M.M., et al. (2007) Isolation and Characterization of Mineral Phos-phate-Solubilizing Bacteria Naturally Colonizing a Limonitic Crust in the South-Eastern Venezuelan Region. Soil Biology and Biochemistry, 39, 2905-2914. https://doi.org/10.1016/j.soilbio.2007.06.017
Suleman, M., Yasmin, S., Rasul, M., et al. (2018) Phosphate Solubilizing Bacteria with Glucose Dehydrogenase Gene for Phosphorus Uptake and Beneficial Effects on Wheat. PLOS ONE, 13, e0204408. https://doi.org/10.1371/journal.pone.0204408
Babu-khan, S., Yeo, T.H. and Martin, W. (1995) Cloning of a Mineral Phosphate-Solubilizing Gene from Pseudomonas cepacia. Applied and Environmental Microbiology, 61, 972-981. https://doi.org/10.1128/aem.61.3.972-978.1995
赵珂. 溶磷菌YM3-2S溶磷特性及溶磷基因的克隆[D]: [硕士学位论文]. 成都: 四川农业大学, 2007.
吕军. 转基因烟草对土壤磷吸收利用的研究[D]: [博士学位论文]. 大连: 大连理工大学, 2011.
张健. 低磷胁迫下草酸青霉菌BK溶磷的分子机制[D]: [硕士学位论文]. 大连: 大连理工大学, 2014.
Thaller, M.C., Berlutti, F., Schippa, S., et al. (1994) Characterization and Se-quence of PhoC, the Principal Phosphate- Irrepressible Acid Phosphatase of Morganella morgani. Microbiology, 140, 1341-1350. https://doi.org/10.1099/00221287-140-6-1341
Fraga, R., Rodríguez, H. and González, T. (2001) Transfer of the Gene Encoding the Napa Acid Phosphatase from Morganella morganii to a Burkholderia cepacia Strain. Acta Bio-technologica, 21, 359-369. https://doi.org/10.1002/1521-3846(200111)21:4<359::AID-ABIO359>3.0.CO;2-B
Feng, K., Lu, H.M., Sheng, H.J., Wang, X.L. and Mao, J. (2004) Effect of Organic Ligands on Biological Avail Ability of Inorganic Phos-phorus in Soils. Pedosphere, 14, 85-92.
Wanner, B.L. and McSharry, R. (1982) Phosphate Controlled Gene Ex-pression in E. coli K12 Using Mudl-Directed LacZ Fusions. Molecular Biology, 158, 347-363. https://doi.org/10.1016/0022-2836(82)90202-9
熊梦霞, 廖华媛, 郑金, 何景锋, 曹锟, 余兴龙. 一株产高酶活性碱性磷酸酶解淀粉芽孢杆菌的分离及其phoD碱性磷酸酶基因的克隆与表达[J]. 微生物学通报, 2022, 49(2): 505-513.
郎明, 李佳颖, 苏卫华, 邹温馨, 刘于, 陈新平. 长期施磷对石灰性土壤中编码碱性磷酸酶基因的细菌群落的影响[J]. 微生物学报, 2022, 62(1): 242-258.
Zhu, Y.P., Zhang, P.P., Lu, T., et al. (2021) Im-pact of MtrA on Phosphate Metabolism Genes and the Response to Altered Phosphate Conditions in Streptomyces. En-vironmental Microbiology, 23, 6907-6923. https://doi.org/10.1111/1462-2920.15719
Martín, J.F., Liras, P., et al. (2021) Molecular Mechanisms of Phosphate Sensing, Transport and Signalling in Streptomyces and Related Actinobacteria. International Journal of Mo-lecular Sciences, 22, Article No. 1129. https://doi.org/10.3390/ijms22031129
唐超西, 龚明波, 李顺鹏, 朱昌雄. 草酸青霉菌I1的cDNA文库构建及其溶磷相关基因的筛选[J]. 中国农业科学, 2012, 45(18): 3792-3800.
唐超西, 龚明波, 李顺鹏, 朱昌雄. 黑曲霉H1的cDNA文库构建及其溶磷相关基因的筛[J]. 微生物学报, 2012, 52(3): 311-317.
龚明波. 溶磷微生物分离、应用及其相关基因的克隆与功能鉴定[D]: [博士学位论文]. 北京: 中国农业科学院, 2011.
殷中伟. 真菌溶磷相关基因的克隆与功能分析[D]: [博士学位论文]. 北京: 中国农业大学, 2015.
Liu, C.J., Mou, L., Yi, J.L., et al. (2019) The Eno Gene of Burkholderia cenocepacia Strain 71-2 Is Involved in Phosphate Solubilization. Current Microbiology, 76, 495-502. https://doi.org/10.1007/s00284-019-01642-7