智能微电网结合通信网络以其高度的灵活性、广泛的适应性、可控的经济性,受到国内外的高度关注。通信约束是影响智能微电网实现综合调度的关键因素,首先简要阐述了包括分层控制和二级控制在内的智能微电网控制结构,对通信网络时延、通信带宽限制和通信链路的不确定性等微电网中常见的通信约束进行了全面的总结,同时,分析了在不同通信约束下智能微电网的二级控制方法,总结了在多种通信约束下智能微电网的稳定性分析方法,最后对这一领域的发展现状和未来的方向进行了讨论和展望。 Smart microgrid combined with communication network has attracted great attention at domestic and overseas for its high flexibility, wide adaptability and controllable economy. Communication constraints are the key factors influencing the microgrid intelligent integrated scheduling. Firstly, the control structure of smart microgrid including hierarchical control and secondary control is briefly described, and the common communication constraints in microgrid such as communication network delay, communication bandwidth limitation and communication link uncertainty are comprehensively summarized. At the same time, the secondary control methods of smart microgrid under different communication constraints are analyzed, and the stability analysis methods of smart microgrid under various communication constraints are summarized. Finally, the development status and future direction of this field are discussed and prospected.
智能微电网,二级控制,通信约束,稳定性分析, Smart Microgrid
The Secondary Control
Communication Constraint
Stability Analysis
摘要
Summary of the Secondary Control and Stability of Microgrid under Communication Constraints
Yiwei Feng, Shunmin Liu
College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou Gansu
Received: Jul. 28th, 2022; accepted: Aug. 8th, 2022; published: Aug. 22nd, 2022
ABSTRACT
Smart microgrid combined with communication network has attracted great attention at domestic and overseas for its high flexibility, wide adaptability and controllable economy. Communication constraints are the key factors influencing the microgrid intelligent integrated scheduling. Firstly, the control structure of smart microgrid including hierarchical control and secondary control is briefly described, and the common communication constraints in microgrid such as communication network delay, communication bandwidth limitation and communication link uncertainty are comprehensively summarized. At the same time, the secondary control methods of smart microgrid under different communication constraints are analyzed, and the stability analysis methods of smart microgrid under various communication constraints are summarized. Finally, the development status and future direction of this field are discussed and prospected.
Keywords:Smart Microgrid, The Secondary Control, Communication Constraint, Stability Analysis
{ δ E = K P E ( v r e f − E ) + K I E ∫ ( v r e f − E ) d t δ ω = K P ω ( ω r e f − ω ) + K I ω ∫ ( ω r e f − ω ) d t + Δ ω s (1)
式中, K P E 、 K I E 分别表示二级控制器的电压幅值补偿的比例系数和积分系数, K P ω 、 K I ω 表示二级控制器频率补偿的比例系数和积分系数, Δ ω s 代表微电网与大电网的频率误差。
在分布式二级控制中,二级控制层抵消由一级控制层引起的局部电压偏差和全局频率偏差。在 [
22
] [
23
] [
24
] 中分布式二级恢复控制是利用 D E R i 中 y i 自身及其邻居 y j 之间的信息交换来调整局部状态设定点的值 y i n 。一般情况下,在不考虑通信约束的具有完美通信的分布式协同控制器 u i ( t ) 可以设计为 [
24
]:
y ˙ i = u i ( t ) = ∑ j ∈ N i a i j [ y j ( t ) − y i ( t ) ] + a i 0 [ y r e f − y i ( t ) ] (2)
式中, a i j 表示 D E R i 到 D E R j 的边权值, a i 0 表示 D E R i 能够通过虚拟微电网 D E R 0 访问状态参考 y r e f , y i 表示 D E R i 的输出状态。因此,将测量稳态误差 y ˙ i 传输到主控制层以恢复终端输出 y i ,则比例积分恢复补偿器可定义为:
δ y i = K i P u i ( t ) + K i I ∫ u i ( t ) d t (3)
其中 δ y i 为PI校正因子,其中 K i P 和 K i I 为分布式次级控制器的PI校正因子。
3. 常见的通信约束3.1. 通信网络延时效应
通信网络延时效应是指控制器通过通信网络与执行器和控制器进行数据交换时产生的时延。通信网络延时可以分为数据从传感器传输到控制器之间的时延 τ s c 、数据从控制器传输到执行器的时延 τ c a ,如图3所示。对于控制器的设计来说,必须考虑到时延的负面影响,否则可能降低系统的控制性能。
根据固定、有界和时变通信延迟的情况下信息从 D E R j 到 D E R i 传输的时间,可以分为对称通信延迟和非对称通信延迟。对称延迟就是指信息从 D E R j 到 D E R i 传输的时间均相同,而非对称通信延迟就是指从 D E R j 到 D E R i 传输的时间不相等,在文献中考虑了非对称通信延迟的分布式控制器可以表示为 [
23
] [
25
]:
u i ( t ) = ∑ j ∈ N i a i j [ y j ( t − τ ( t ) ) − y i ( t ) ] + a i 0 [ y r e f − y i ( t ) ] (4)
其中 y i ( t ) 和 y j ( t − τ ( t ) ) 为从自身出发的无时滞导数及其具有时变时滞的相邻单元导数变量。代表分布式单元从前一个分布式单元接收到了有延时的信息 y i ( t − τ ( t ) ) 而不是 y i ( t ) 。我们注意到, D E R i 可以立即接收到自己发出的信息,可以忽略 D E R i 的计算时间和执行时间的总和。进一步来说,如果考虑 D E R i 的这些时间,则非对称延迟变为对称延迟情况,在文献中描述了对称通信延迟的分布式控制为 [
26
] [
27
]:
u i ( t ) = ∑ j ∈ N i a i j [ y j ( t − τ ( t ) ) − y i ( t − τ ( t ) ) ] + a i 0 [ y r e f − y i ( t − τ ( t ) ) ] (5)
其中 y i ( t − τ ( t ) ) 和 y j ( t − τ ( t ) ) 是自身及其邻近具有时变时滞的 D E R i 单位变量。如果 τ ( t ) 是一个常数,那么相应的时间延迟是固定的,由于链路断开或信息丢失和接收到噪声或控制信号丢失可能导致随机延迟的存在,因此该延迟也可以表示为一个随机变量。在文献中提出了网络预测器和延迟补偿器的概念,它通过在随机延迟中加入网络预测器和延迟补偿器增强了系统性能 [
37
]。如图4所示,网络预测器的方案将传统的延迟补偿器方案与网络控制系统(networked control system, NCS)相结合。
u i ( t ) = ∑ j ∈ N i a i j [ y j ( t k j ' ( t ) j ) − y i ( t k i ) ] + a i 0 [ y r e f − y i ( t k i ) ] (6)
k ′ j ( t ) = arg max l ∈ N : t ≥ t 1 j { t − t l j } , t ∈ [ t k i , t k + 1 i ) (7)
设 0 = t 0 i , t 1 i , ⋯ , t k i 表示 D E R i 单元的控制更新时间的驱动时序 [
39
]。一般情况下,测量误差可以表示为 e i ( t ) = y i ( t k i ) − y i ( t ) 。在分布式事件触发控制方案中,事件触发检测器的设计是核心。对于每个DER单元来说,事件触发检测器用来决定何时使用采样的局部信息来更新自身及其邻居的控制动作。现有的研究主要考虑两种状态相关的事件阈值:连续事件阈值和分段常数事件阈值。在文献中连续事件阈值被表示为 [
39
] [
40
]:
| e i ( t ) | ≤ κ ∑ j ∈ N i | y j ( t ) − y i ( t ) | (8)
图5表示了文献中所描述的DERs之间信息交换的时间轴 [
36
],在第k次迭代过程中,每个DERs的状态值 y i , k ( t ) 都将在每个离散的时间点 t = t k 1 , ⋯ , t k l , ⋯ , t k t * 处使用控制输入 u i , k 进行更新。离散时间控制输入 u i , k 只需要在 t = t k t * 即第k个迭代过程结束时更新,这样DER之间的信息交换只发生在每轮迭代结束时。根据每个DER自身的信息以及当达到终端时间 t * 时相邻DER的信息,文献中离散时间控制器 u i , k 被设计为以下更新规律 [
42
]:
y i , k ( t + 1 ) = y i , k ( t ) + u i , k u i , k + 1 = u i , k + ∑ j ∈ N i γ i j a i j [ y j , k ( t * ) − y i , k ( t * ) ] + γ i 0 a i 0 [ y r e f − y i , k ( t * ) ] (10)
其中, { γ i j } j = 0 N 是要设计的相关学习增益,伴随着跟踪和同步,每个DER依据上面给出的更新规律更新 u i , k 并开始下一轮通信。在每个迭代周期 [ t k , t k + t * ] ,初始值 y i , k ( 0 ) 对所有k保持为 y i , 1 ( 0 ) 。然后通过上述方程的运算, y i , k n ( t * ) 获得的标称设定点并传输到主控制层,利用主控制层将每个DER的输出状态 y i 同步到它们的参考状态 y r e f 。
5. 通信约束下微电网的稳定性分析
目前的文献主要基于Lyapunov稳定性理论,通过建立合适的Lyapunov-Krasovskii泛函,得到泛函的无穷小生成算子。利用一些不等式方法将泛函的无穷小生成算子整理成线性矩阵不等式(LMI, linear matrix inequality)的形式,从而借助LMI工具箱求解的便利性,得到系统的稳定性准则 [
44
]。
冯宜伟,刘顺民. 通信约束下微电网的二级控制及其稳定性综述Summary of the Secondary Control and Stability of Microgrid under Communication Constraints[J]. 智能电网, 2022, 12(04): 130-140. https://doi.org/10.12677/SG.2022.124014
参考文献References
肖兰兰. 中国能源安全与绿色“一带一路”建设[J]. 阅江学刊, 2020, 12(5): 36-44+121.
Dileep, G. (2020) A Survey on Smart Grid Technologies and Applications. Renewable Energy, 146, 2589-2625. https://doi.org/10.1016/j.renene.2019.08.092
Zhou, Q., Shahidehpour, M., Paaso, A., et al. (2020) Distributed Control and Communication Strategies in Networked Microgrids. IEEE Communications Surveys & Tutorials, 22, 2586-2633. https://doi.org/10.1109/COMST.2020.3023963
Lai, J. and Lu, X. (2021) Communication Constraints for Distributed Secondary Control of Heterogenous Microgrids: A Brief Survey. 2021 IEEE/IAS 57th Industrial and Commercial Power Systems Technical Conference (I&CPS), Las Vegas, 27-30 April 2021, 1-9. https://doi.org/10.1109/ICPS51807.2021.9416597
Lai, J., Lu, X. and Yu, X. (2019) Stochastic Distributed Frequency and Load Sharing Control for Microgrids with Communication Delays. IEEE Systems Journal, 13, 4269-4280. https://doi.org/10.1109/JSYST.2019.2901711
Lai, J., Zhou, H., Lu, X., et al. (2016) Droop-Based Distributed Cooperative Control for Microgrids with Time-Varying Delays. IEEE Transactions on Smart Grid, 7, 1775-1789. https://doi.org/10.1109/TSG.2016.2557813
Dehkordi, N.M., Bagha Ee, H.R., Sadati, N., et al. (2019) Distributed Noise-Resilient Secondary Voltage and Frequency Control for Islanded Microgrids. IEEE Transactions on Smart Grid, 10, 3780-3790. https://doi.org/10.1109/TSG.2018.2834951
Agha Ee, F., Dehkordi, N.M., Bayati, N., et al. (2021) Delay and General Multiplicative Noise-Resilient Secondary Frequency and Voltage Control for an Autonomous Microgrid. IEEE 12th Annual Power Eloectronics, Drive Systems and Technologies (PEDSTC 2021), Tabriz, 2-4 February 2021, 1-6. https://doi.org/10.1109/PEDSTC52094.2021.9405834
Marzal, S., Salas, R., GonzáLez-Medina, R., et al. (2018) Current challenges and Future Trends in the Field of Communication Architectures for Microgrids. Renewable & Sustainable Energy Reviews, 82, 3610-3622. https://doi.org/10.1016/j.rser.2017.10.101
Meng, W., Wang, X. and Liu, S. (2016) Distributed Load Sharing of an Inverter-Based Microgrid with Reduced Communication. IEEE Transactions on Smart Grid, 9, 1354-1364. https://doi.org/10.1109/TSG.2016.2587685
Chen, G., Li, Z. and Zhao, Z. (2019) Event-Triggered Optimal Active Power Control in Islanded Microgrid with Variable Demand and Time-Varying Communication Topology. IEEE Transactions on Smart Grid, 10, 4015-4025. https://doi.org/10.1109/TSG.2018.2848282
Ortiz, L., González, J.W., Gutierrez, L.B., et al. (2020) A Review on Control and Fault-Tolerant Control Systems of AC/DC Microgrids. Heliyon, 6, e04799. https://doi.org/10.1016/j.heliyon.2020.e04799
Karkar, H.M. and Trivedi, I.N. (2020) Primary and Secondary Droop Control Method for Islanded Microgrid with Voltage Regulation and Current Sharing. Gujarat Technological University, Ahmedabad. https://doi.org/10.1007/978-981-15-0226-2_6
Meje, K.C., Bokopane, L. and Kusakana, K. (2020) Microgrids Control Strategies: A Survey of Available Literature. 2020 International Conference on Smart Grid and Clean Energy Technologies (ICSGCE), Kuching, 4-7 October 2020, 167-173. https://doi.org/10.1109/ICSGCE49177.2020.9275651
Dou, C., Li, Y., Yue, D., et al. (2020) A Distributed Cooperative Control Method Based on Network Topology Optimization in Microgrid Cluster. IET Renewable Power Generation, 14, 939-947. https://doi.org/10.1049/iet-rpg.2019.0450
Shrivastava, S. and Subudhi, B. (2020) Comprehensive Review on Hierarchical Control of Cyber-Physical Microgrid System. IET Generation Transmission & Distribution, 14, 6397-6416. https://doi.org/10.1049/iet-gtd.2020.0971
Ko, B.S., Lee, G.Y., Choi, K.Y., et al. (2020) Flexible Control Structure for Enhancement of Scalability in DC Microgrids. IEEE Systems Journal, 14, 4591-4601. https://doi.org/10.1109/JSYST.2019.2963707
Dehaghani, M.N., Taher, S.A. and Arani, Z.D. (2021) An Efficient Power Sharing Approach in Islanded Hybrid AC/DC Microgrid Based on Cooperative Secondary Control. International Transactions on Electrical Energy Systems, 31, e12897. https://doi.org/10.1002/2050-7038.12897
Abhishek, A., Ranjan, A., Devassy, S., et al. (2020) Review of Hierarchical Control Strategies for DC Microgrid. IET Renewable Power Generation, 14, 1631-1640. https://doi.org/10.1049/iet-rpg.2019.1136
Ashfaq, S. and Zhang, D. (2020) Voltage and Frequency Regulation of Islanded Microgrid with Multiple Conventional Generators. Australasian Universities Power Engineering Conference, Hobart, 29 November-2 December 2020, 1-6.
Lai, J., Zhou, H., Lu, X., et al. (2016) Droop-Based Distributed Cooperative Control for Microgrids with Time-Varying Delays. IEEE Transactions on Smart Grid, 7, 1775-1789. https://doi.org/10.1109/TSG.2016.2557813
Tavassoli, B., Fereidunian, A. and Savaghebi, M. (2020) Communication System Effects on the Secondary Control Performance in Microgrids. IET Renewable Power Generation, 14, 2047-2057. https://doi.org/10.1049/iet-rpg.2019.1170
Schiffer, J., Drfler, F. and Fridman, E. (2016) Robustness of Distributed Averaging Control in Power Systems: Time Delays & Dynamic Communication Topology. Automatica, 80, 261-271. https://doi.org/10.1016/j.automatica.2017.02.040
Lai, J., Lu, X., Yu, X., et al. (2019) Distributed Voltage Regulation for Cyber-Physical Microgrids with Coupling Delays and Slow Switching Topologies. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 50, 100-110. https://doi.org/10.1109/TSMC.2019.2924612
Nguyen, D.H. and Khazaei, J. (2017) Multi-Agent Time-Delayed Fast Consensus Design for Distributed Battery Energy Storage Systems. IEEE Transactions on Sustainable Energy, 9, 1397-1406. https://doi.org/10.1109/TSTE.2017.2785311
Yan, H.C., et al. (2019) A Novel Sliding Mode Estimation for Microgrid Control with Communication Time Delays. IEEE Transactions on Smart Grid, 10, 1509-1520. https://doi.org/10.1109/TSG.2017.2771493
Xie, Y. and Lin, Z. (2019) Distributed Event-Triggered Secondary Voltage Control for Microgrids with Time Delay. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 49, 1582-1591. https://doi.org/10.1109/TSMC.2019.2912914
Vafamand, N., Khooban, M.H., Dragičević, T., et al. (2019) Networked Fuzzy Predictive Control of Power Buffers for Dynamic Stabilization of DC Microgrids. IEEE Transactions on Industrial Electronics, 66, 1356-1362. https://doi.org/10.1109/TIE.2018.2826485
Sahoo, S. and Blaabjerg, F. (2021) A Model-Free Predictive Controller for Networked Microgrids with Random Communication Delays. 2021 IEEE Applied Power Electronics Conference and Exposition (APEC), Phoenix, 14-17 June 2021, 2667-2672. https://doi.org/10.1109/APEC42165.2021.9487438
Yang, C., Yao, W., Fang, J., et al. (2019) Dynamic Event-Triggered Robust Secondary Frequency Control for Islanded AC Microgrid. Applied Energy, 242, 821-836. https://doi.org/10.1016/j.apenergy.2019.03.139
Han, Y., Yang, M., Yang, P., et al. (2019) Reduced-Order Model for Dynamic Stability Analysis of Single-Phase Islanded Microgrid with BPF-Based Droop Control Scheme. IEEE Access, 7, 157859-157872. https://doi.org/10.1109/ACCESS.2019.2950069
Alavi, S.A., Mehran, K. and Yang, H. (2020) Optimal Observer Synthesis for Microgrids with Adaptive Send-on-Delta Sampling over IoT Communication Networks. IEEE Transactions on Industrial Electronics, 68, 11318-11327. https://doi.org/10.1109/TIE.2020.3034853
Saleh, M., Esa, Y. and Mohamed, A. (2018) Communication-Based Control for DC Microgrids. IEEE Transactions on Smart Grid, 10, 2180-2195. https://doi.org/10.1109/TSG.2018.2791361
Cai, C., Tao, Y., Liu, H., et al. (2018) Multiple Scenarios Microgrid Equivalent Modeling Based on the Uncertainty of Distributed Generations. 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2), Beijing, 20-22 October 2018, 1-6. https://doi.org/10.1109/EI2.2018.8582071
Raeispour, M., Atrianfar, H., Baghaee, H.R., et al. (2020) Robust Distributed Disturbance-Resilient H∞-Based Control of Off-Grid Microgrids with Uncertain Communications. IEEE Systems Journal, 15, 2895-2905. https://doi.org/10.1109/JSYST.2020.3001243
Lee, B.H. and Jin, A.Y. (2015) A Study on Optimal Operation of Microgrids Considering the Uncertainty of Renewable Generation and Load by Use of Duration Curves. Power & Energy Society General Meeting, Denver, 26-30 July 2015, 1-5.
Liu, G.P. (2010) Predictive Controller Design of Networked Systems with Communication Delays and Data Loss. IEEE Transactions on Circuits & Systems II Express Briefs, 57, 481-485. https://doi.org/10.1109/TCSII.2010.2048377
Shahidehpour, M., Shi, M., Chen, X., et al. (2020) Optimal Consensus-Based Event-Triggered Control Strategy for Resilient DC Microgrids. IEEE Transactions on Power Systems, 36, 1807-1818. https://doi.org/10.1109/TPWRS.2020.3026256
Pullaguram, D., Mishra, S. and Senroy, N. (2018) Event-Triggered Communication Based Distributed Control Scheme for DC Microgrid. IEEE Transactions on Power Systems, 33, 5583-5593. https://doi.org/10.1109/TPWRS.2018.2799618
Lai, J., Lu, X., Yu, X., et al. (2018) Distributed Multi-DER Cooperative Control for Master-Slave-Organized Microgrid Networks with Limited Communication Bandwidth. IEEE Transactions on Industrial Informatics, 15, 3443-3456. https://doi.org/10.1109/TII.2018.2876358
Sun, X., Li, T. and Xing, L. (2020) Research on the Influence of Microgrid to Distribution Network Protection and Improvement Measures. 2020 IEEE Sustainable Power and Energy Conference (iSPEC), Chengdu, 23-25 November 2020, 2243-2248. https://doi.org/10.1109/iSPEC50848.2020.9351093
Lu, X.Q., et al. (2017) Distributed Secondary Voltage and Frequency Control for Islanded Microgrids with Uncertain Communication Links. IEEE Transactions on Industrial Informatics, 13, 448-460. https://doi.org/10.1109/TII.2016.2603844
Liu, J., Li, J., Song, H., et al. (2020) Nonlinear Secondary Voltage Control of Islanded Microgrid via Distributed Consistency. IEEE Transactions on Energy Conversion, 35, 1964-1972. https://doi.org/10.1109/TEC.2020.2998897
Zhang, Y., Xie, L. and Ding, Q. (2017) Interactive Control of Coupled Microgrids for Guaranteed System-Wide Small Signal Stability. IEEE Transactions on Smart Grid, 7, 1088-1096. https://doi.org/10.1109/TSG.2015.2495233
Yao, W., Yu, W. and Yan, X. (2020) Communication Time-Delay Stability Margin Analysis of the Islanded Microgrid under Distributed Secondary Control. IEEE PES General Meeting, Montreal, 2-6 August 2020, 1-5. https://doi.org/10.1109/PESGM41954.2020.9281487
Dong, M., Li, L., Nie, Y., et al. (2019) Stability Analysis of a Novel Distributed Secondary Control Considering Communication Delay in DC Microgrids. IEEE Transactions on Smart Grid, 10, 6690-6700. https://doi.org/10.1109/TSG.2019.2910190
Wu, X., Xu, Y., He, J., et al. (2019) Delay-Dependent Small-Signal Stability Analysis and Compensation Method for Distributed Secondary Control of Microgrids. IEEE Access, 7, 170919-170935. https://doi.org/10.1109/ACCESS.2019.2955090
Nie, Y., Dong, M., Yuan, W., et al. (2017) Delay-Dependent Stability Analysis of DC Microgrid with Distributed Control Considering Communication Delay. Chinese Automation Congress, Jinan, 20-22 October 2017, 7646-7651. https://doi.org/10.1109/CAC.2017.8244162
Zhao, G., Hua, C. and Guan, X. (2020) Reset Observer-Based Zeno-Free Dynamic Event-Triggered Control Approach to Consensus of Multiagent Systems with Disturbances. IEEE Transactions on Cybernetics, 52, 2329-2339. https://doi.org/10.1109/TCYB.2020.3003330
Anand, S., Dev, A., Sarkar, M.K., et al. (2021) Non-Fragile Approach for Frequency Regulation in Power System with Event-Triggered Control and Communication Delays. IEEE Transactions on Industry Applications, 57, 2187-2201. https://doi.org/10.1109/TIA.2021.3062774