目的:研究山豆根(Sophora tonkinensis Gagnep)治疗哮喘的物质基础和作用机制。方法:首先对山豆根进行液相色谱–质谱联用分析,获得山豆根的化学成分,随后通过数据库TCMIP,获得山豆根成分所能预测的靶点。在CTD数据库中,查找出与哮喘相关靶点,通过韦恩图对山豆根化学成分的靶点与其哮喘相关靶点进行结合,得出二者相互交叉的部分,即为交集靶点。采用Cytoscape v3.8.0软件构建“成分–靶点–疾病”的网络关系,采用DAVID数据库对交集靶点进行KEGG通路分析。最后对交集靶点进一步分析,获得山豆根治疗哮喘的核心靶点。结果:获得127个交集靶点与12个山豆根治疗哮喘的活性成分,筛选出31条KEGG信号通路,进一步挑选出核心靶点7个。结论:本文对山豆根具有多成分、多靶点、多通路等特点的哮喘治疗方法进行了研究和分析,为今后哮喘的治疗提供了理论依据。 Objective: To study the material basis and mechanism of Sophora tonkinensis Gagnep in the treat-ment of asthma. Methods: Firstly, the chemical constituents of Sophora tonkinensis Gagnep were analyzed by liquid chromatography-mass spectrometry, and then the predicted targets of Sophora tonkinensis Gagnep were obtained by TCMIP database. In the CTD database, find out the asthma related targets, combine the targets of chemical components of Sophora tonkinensis Gagnep and its asthma related targets through Wayne diagram, and get the intersection part of the two. Those were the intersection targets. Cytoscape v3.8.0 software was used to construct the network relationship of “component-target-disease”, and DAVID database was used to analyze the KEGG pathway of the intersection targets. Finally, the intersection targets were further analyzed to obtain the core target of Sophora tonkinensis Gagnep in the treatment of asthma. Results: One hundred and twenty-seven intersecting targets and twelve active components of Sophora tonkinensis Gagnep were obtained, thirty-one KEGG signal pathways were screened, and seven core targets were further selected. Conclusion: This paper studied and analyzed the treatment of asthma with the characteris-tics of multi-components, multi-targets and multi-pathways, which provided a theoretical basis for the future treatment of asthma.
目的:研究山豆根(Sophora tonkinensis Gagnep)治疗哮喘的物质基础和作用机制。方法:首先对山豆根进行液相色谱–质谱联用分析,获得山豆根的化学成分,随后通过数据库TCMIP,获得山豆根成分所能预测的靶点。在CTD数据库中,查找出与哮喘相关靶点,通过韦恩图对山豆根化学成分的靶点与其哮喘相关靶点进行结合,得出二者相互交叉的部分,即为交集靶点。采用Cytoscape v3.8.0软件构建“成分–靶点–疾病”的网络关系,采用DAVID数据库对交集靶点进行KEGG通路分析。最后对交集靶点进一步分析,获得山豆根治疗哮喘的核心靶点。结果:获得127个交集靶点与12个山豆根治疗哮喘的活性成分,筛选出31条KEGG信号通路,进一步挑选出核心靶点7个。结论:本文对山豆根具有多成分、多靶点、多通路等特点的哮喘治疗方法进行了研究和分析,为今后哮喘的治疗提供了理论依据。
生物化学网络,山豆根,哮喘,物质基础,作用机制,靶点
Yafeng He, Hongmei Li, Mingxing Wei, Wenya Tang, Shuainan Zhang, Xuzhao Li*
Guizhou University of Traditional Chinese Medicine, Guiyang Guizhou
Received: Jul. 15th, 2022; accepted: Aug. 9th, 2022; published: Aug. 15th, 2022
Objective: To study the material basis and mechanism of Sophora tonkinensis Gagnep in the treatment of asthma. Methods: Firstly, the chemical constituents of Sophora tonkinensis Gagnep were analyzed by liquid chromatography-mass spectrometry, and then the predicted targets of Sophora tonkinensis Gagnep were obtained by TCMIP database. In the CTD database, find out the asthma related targets, combine the targets of chemical components of Sophora tonkinensis Gagnep and its asthma related targets through Wayne diagram, and get the intersection part of the two. Those were the intersection targets. Cytoscape v3.8.0 software was used to construct the network relationship of “component-target-disease”, and DAVID database was used to analyze the KEGG pathway of the intersection targets. Finally, the intersection targets were further analyzed to obtain the core target of Sophora tonkinensis Gagnep in the treatment of asthma. Results: One hundred and twenty-seven intersecting targets and twelve active components of Sophora tonkinensis Gagnep were obtained, thirty-one KEGG signal pathways were screened, and seven core targets were further selected. Conclusion: This paper studied and analyzed the treatment of asthma with the characteristics of multi-components, multi-targets and multi-pathways, which provided a theoretical basis for the future treatment of asthma.
Keywords:Biochemical Network, Sophora tonkinensis Gagnep, Asthma, Material Basis, Mechanism of Action, Target
Copyright © 2022 by author(s) and beplay安卓登录
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/
根据流行病学的调查,发现哮喘的患病概率具有普遍增加的趋势 [
山豆根是豆科越南槐(Sophora tonkinensis Gagnep)的干燥根和根茎,产地以广西、贵州为主。其药性苦寒,归肺经、胃经,中药本草中多记载了其功效为清热解毒、消肿利咽,临床常用于肺热咳嗽、火毒蕴结等症。通过对其临床应用与现代研究表明 [
山豆根药材由济仁堂中药饮片厂(中国贵阳,批号:20180101)提供。其凭证样本为(GUTCM-VS-2019 002)保存于贵州中医药大学药学院。甲酸、乙腈、甲醇均购自国药集团化学试剂有限公司。
RE-5203型旋转蒸发仪,上海亚荣生化仪器有限公司;DRHH-2型数显恒温水浴锅,上海双捷实验设备有限公司;800A微型粉碎机,鹤壁市永心电子科技公司;BK-F010T型冻干机,山东博科科学仪器有限公司;5427R型离心机,艾本德中国有限公司;ExionLCTM AC型超高液相色谱仪,美国AB SCIEX公司;TripleTOF 5600型高分辨质谱仪,美国AB SCIEX公司;ACQUITY UPLC BEH C18色谱柱,美国Milford Waters公司。
山豆根药材通过粉碎过筛加入十倍体积的蒸馏水回流提取2 h,将回流提取的液体再用滤纸过滤一次。对药渣再加入十倍体积的蒸馏水继续回流提取两次,同样每次2 h,并过滤。最后合并三次滤液,通过旋蒸仪对提取液进行浓缩,再制成冻干粉末至恒重,得到山豆根提取物,用于实验。
采用SCIEX-ExionLCTM AC液相色谱(LC)系统和SCIEX 5600+Q-TOF质谱仪(MS)分析山豆根水提取物的色谱曲线。色谱分离在ACQUITY UPLC BEH C18色谱柱上进行,柱温为40℃,流速为0.4 mL/min。水溶剂系统以0.1%的甲酸水溶液(流动相A)-0.1%乙腈(流动相B)进行梯度洗脱。洗脱程序为:5%~14%的流动相B,0~3分钟;14%流动相B,3~3.5分钟;14%~28%流动相B,3.5~5分钟;28%流动相B,5~6.5分钟;28%~60%流动相B,6.5~12分钟;60%流动相B,12~13.5分钟;60%~100%流动相B,13.5~18分钟;100%流动相B,18~25分钟。进样体积为5.0µL。
质谱分析检测条件:采用电喷雾离子源,离子扫描方式是正、负离子全扫描模式,MS (m/z)扫描范围为100~1200。MS/MS (m/z)扫描范围为50~1200。源参数设置如下:扫描类型TOF;源温度550℃;去集电位:90 v;雾化气压:150 psi;辅助气压:250 psi;气帘气压:35 psi;喷雾电压:正离子模式:5500 V、负离子模式:−4500 V,碰撞能差:在MS模式下为10 V,在MSMS模式为35 V/−35 V。
基于NIST和METLIN的MS/MS集成数据库,采用QI软件(2.4版,Waters,MA,USA)对山豆根的水溶液提取物进行成分鉴定。
通过液相色谱–质谱联用仪(LC-MS/MS)分析山豆根的主要有效成分,并进行山豆根的相关文献分析,将山豆根的化学成分代入TCMIP数据库(http://www.tcmip.cn/TCMIP/index.php/Home/Index/index)中,选择Candidate Target Genes这一栏,即为成分所能预测的靶点。根据成分靶点可能性,筛选0.9以上的靶点进行汇总。在CTD数据库(http://ctdbase.org/)获得哮喘相关靶点。采用韦恩图(Venny2.1.0)将山豆根化学成分的靶点与其哮喘有关的靶点相结合,得出二者相互交叉的部分,即为交集靶点。最后采用Cytoscape v3.8.0软件建立“成分–靶点–疾病”之间的关系。
把交集靶点代入DAVID数据库(https://david.ncifcrf.gov),选择研究对象为人类(Homo sapiens),对KEGG通路进行分析,将错误发现率(FDR)值设为小于0.05。
把交集靶点代入String数据库(https://string-db.org/),并建立PPI网络图。
从交集靶点分析筛选得出干预这些靶点的山豆根治疗哮喘的有效成分,将交集靶点代入String数据库,获得蛋白相互关系的网络,把该网络导入软件Cytoscape v3.8.0,通过Degree值进行筛选,选择Degree值排名前7的靶点进行汇总,即为核心靶点。
山豆根的原植物(图1)经贵州中医药大学药学院李煦照副教授鉴定,为豆科越南槐(Sophora tonkinensis Gagnep)的干燥根和根茎。通过LC-MS/MS获得山豆根成分147个,其中包括黄酮类33个,生物碱类26个,有机酸类21个,苯丙素类12个,萜类8个,糖苷类7个,木脂素类6个,香豆素类4个,氨基酸类4个,糖类3个,酚类2个,甾体类1个,醌类1个,其他类19个。随后用TCMIP数据库获得山豆根的成分所能干预的靶点。以可能性取0.9以上靶点进行汇总,删除重复项后,获得山豆根成分所能预测的靶点139个。从CTD中得到哮喘有关的靶点。最后利用Venny2.1.0取山豆根的成分靶点和哮喘的有关靶点之间相互交叉的部分,获得交集靶点127个(图2)。采用Cytoscape v3.8.0软件对“成分–靶点–疾病”的网络进行构建(图3)。从交集靶点分析筛选得出干预这些靶点的山豆根治疗哮喘的有效成分12个,得出蛋白与蛋白之间相互作用的核心靶点7个(表1)。
图1. 山豆根的原植物
图2. 山豆根干预哮喘的靶点Venny图
图3. 山豆根干预哮喘的“成分–靶点–疾病”的网络
编号 | 名称 | Degree值 |
---|---|---|
1 | NOS3 | 36 |
2 | SRC | 34 |
3 | CS | 28 |
4 | SOD1 | 28 |
5 | IDH1 | 28 |
6 | PTGS2 | 28 |
7 | NOS2 | 26 |
表1. 山豆根干预哮喘的核心靶点
通过DAVID数据库对交集靶点进行分析,根据FDR < 0.05,得出31条KEGG信号通路。如图4所示,交集靶点在31条通路上富集。
图4. 山豆根干预哮喘靶点的KEGG富集通路分析
把交集靶点导入String数据库中,做出PPI网络,该关系图由294条边,127个节点所组成(图5)。
图5. 山豆根干预哮喘靶点的PPI网络
本文应用生物化学网络,对山豆根治疗哮喘的作用机制和物质基础进行了探究。呼出的一氧化氮(FENO)是气道炎症的生物标志物,FENO的上调表明气道具有炎症,气道炎症会引起哮喘的发生,诱导型NOS(NOS2)和内皮细胞NOS(NOS3)是NO合酶(NOS)的两种亚型 [
T淋巴细胞与气道炎症有关,而气道炎症会引起哮喘的发生。CD4+ T细胞属于T淋巴细胞中的一种。CD4+ T细胞活性增强不仅会介导多种炎性细胞因子的释放还能促进STAT6的水平上调。而STAT6的上调会恶化哮喘的严重程度 [
综上所述,本研究通过生物化学网络对山豆根治疗哮喘的物质基础和作用机制进行探讨和研究,发现山豆根对哮喘的治疗呈现多成分、多靶点、多通路的特点,这为后续山豆根在临床上的应用提供了理论依据。
国家自然科学基金项目(8196140426)。
何雅风,李红美,魏明星,唐文雅,张帅男,李煦照. 基于生物化学网络探讨山豆根干预哮喘的作用机制及物质基础Study on the Mechanism and Material Basis of Sophora tonkinensis Gagnep on Asthma Based on Biochemical Network[J]. 药物化学, 2022, 10(03): 265-274. https://doi.org/10.12677/HJMCe.2022.103027
https://doi.org/10.1016/j.jep.2017.05.012
https://doi.org/10.1136/jmedgenet-2011-100584
https://doi.org/10.1164/rccm.200212-1491BC
https://doi.org/10.3892/etm.2021.11095
https://doi.org/10.1016/j.intimp.2019.105871
https://doi.org/10.21037/jtd.2017.01.05
https://doi.org/10.1038/s41388-017-0077-z
https://doi.org/10.1111/j.1398-9995.2007.01400.x
https://doi.org/10.1164/ajrccm.161.2.9811063
https://doi.org/10.1039/D0FO01598A
https://doi.org/10.3390/toxins12090557
https://doi.org/10.1080/13102818.2007.10817436
https://doi.org/10.1016/j.pupt.2015.07.002
https://doi.org/10.1016/j.ejphar.2008.02.096
https://doi.org/10.3390/jcm6120112
https://doi.org/10.1111/j.1365-2222.2010.03630.x
https://doi.org/10.1016/j.intimp.2011.02.001
https://doi.org/10.3390/molecules19033570
https://doi.org/10.3389/fphar.2013.00046
https://doi.org/10.1016/j.bbr.2016.03.030
https://doi.org/10.1016/S0021-8707(42)90298-3