AAM Advances in Applied Mathematics 2324-7991 Scientific Research Publishing 10.12677/AAM.2022.117494 AAM-53746 AAM20220700000_76633030.pdf 数学与物理 弱链对角占优M-矩阵逆的无穷范数新上界估计 New Upper Bound Estimates of the Infinite Norm for the Inverse of Weakly Chain Diagonally Dominant M-Matrices 慧君 2 1 宏敏 2 1 吉首大学,数学与统计学院,湖南 吉首 null 01 07 2022 11 07 4683 4689 © Copyright 2014 by authors and Scientific Research Publishing Inc. 2014 This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/

根据弱链对角占优M-矩阵A的逆矩阵元素,定义新的参数,结合不等式放缩技巧,给出 的新上界估计式。理论分析和数值例子说明,新估计式改进了现有文献的有关结果。 According to the inverse matrix elements of weakly chain diagonally dominant M-matrix A, the new parameters are defined and the inequality scaling technique is used to obtain . Theoretical analysis and numerical examples show that the new estimate improves the relevant results in the existing literature.

弱链对角占优M-矩阵,逆矩阵,无穷范数的上界, Weak Chain Diagonally Dominant Matrices Inverse Matrices Upper Bound on an Infinite Norm
摘要

根据弱链对角占优M-矩阵A的逆矩阵元素,定义新的参数,结合不等式放缩技巧,给出 ‖ A − 1 ‖ ∞ 的新上界估计式。理论分析和数值例子说明,新估计式改进了现有文献的有关结果。

关键词

弱链对角占优M-矩阵,逆矩阵,无穷范数的上界

New Upper Bound Estimates of the Infinite Norm for the Inverse of Weakly Chain Diagonally Dominant M-Matrices<sup> </sup>

Huijun Li, Hongmin Mo*

College of Mathematics and Statistics, Jishou University, Jishou Hunan

Received: Jun. 15th, 2022; accepted: Jul. 12th, 2022; published: Jul. 19th, 2022

ABSTRACT

According to the inverse matrix elements of weakly chain diagonally dominant M-matrix A, the new parameters are defined and the inequality scaling technique is used to obtain ‖ A − 1 ‖ ∞ . Theoretical analysis and numerical examples show that the new estimate improves the relevant results in the existing literature.

Keywords:Weak Chain Diagonally Dominant Matrices, Inverse Matrices, Upper Bound on an Infinite Norm

Copyright © 2022 by author(s) and beplay安卓登录

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

弱链对角占优矩阵在现代经济学、网络、信息论和算法设计等领域都有着广泛的应用。从1974年开始,众多学者对弱链对角占优M-矩阵的逆矩阵的无穷范数的上界估计进行了广泛研究,得到了一些不同的估计结果并将其进行了应用(见文献 [ 1 ] - [ 8 ])。本文将通过定义关于弱链对角占优M-矩阵A的元素的新参数,同时结合 A − 1 的元素,从新的角度给出弱链对角占优M-矩阵 ‖ A − 1 ‖ ∞ 的新上界估计式,并验证结果的有效性。

C n × n ( R n × n ) 表示n阶复(实)矩阵集,设 A = ( a i j ) ∈ C n × n , N = { 1 , 2 , ⋯ , n } ,为方便叙述给出下列符号:

R i = ∑ k ≠ i | a i k |   ,

d i = R i | a i i | ,

r i j = | a i j | | a i i | − ∑ k ≠ i , j | a i k | j ≠ i ,

s i j = | a i j | + ∑ k ≠ i , j | a i k | r k j | a i i | j ≠ i ,

v i j = | a i j | + ∑ k ≠ i , j | a i k | s k j | a i i | j ≠ i ,

v i = max j ≠ i { v j i } ,

m k i = { | a k i | | a k k | − ∑ j = i + 1 , j ≠ k n | a k j | s j i | a k i | ≠ 0 , 0 | a k i | = 0.

m i = { max i + 1 ≤ k ≤ n { m k i } 1 ≤ i ≤ n − 1 , 0 i = n .

定义1 [ 1 ] 设 A = ( a i j ) ∈ R n × n ,若 ∀ i ∈ N ,有 d i ≤ 1 , J ( A ) = { i ∈ N | d i < 1 } ≠ ϕ ,且 ∀ i ∈ N , i ∉ J ( A ) ,有 a i i 1 a i 1 i 2 ⋯ a i r i k ≠ 0 ,( i ≠ i 1 , i 1 ≠ i 2 , ⋯ , i r ≠ i k ), 0 ≤ r ≤ k − 1 , i k ∈ J ( A ) ,则称A为弱链对角占优矩阵。

定义2 [ 1 ] 设 A = ( a i j ) ∈ Z n = { A = ( a i j ) ∈ R n × n | a i j ≤ 0 , i , j ∈ N , i ≠ j } ,若 A − 1 ≥ 0 ,则称A为M-矩阵;若 ∀ i ∈ N ,有 a i i > 0 ,则称A为L-矩阵。弱链对角占优L-矩阵为M-矩阵。

定义3 [ 1 ] 设 A = ( a i j ) ∈ R n × n ,A为弱链对角占优矩阵,若 A = ( a i j ) ∈ Z n , A − 1 ≥ 0 ,则称A为弱链对角占优矩阵M-矩阵。

引理1 [ 1 ] 设A为n阶弱链对角占优M-矩阵,则 A ( k , n ) ( k = 1 , 2 , ⋯ , n − 1 ) 为弱链对角占优M-矩阵。

引理2 [ 1 ] 若 A = ( a i j ) ∈ R n × n 为弱链对角占优M-矩阵, B = A ( 2 , n ) ∈ R ( n − 1 ) × ( n − 1 ) , A − 1 = ( α i j ) , B − 1 = ( β i j ) ,则

α 11 = 1 Δ ,

α i 1 = 1 Δ ∑ k = 2 n β i k ( − a k 1 ) ,

α 1 j = 1 Δ ∑ k = 2 n β k j ( − a 1 k ) ,

α i j = β i j + α 1 j ∑ k = 2 n β i k ( − a k 1 ) ,

Δ = a 11 − ∑ k = 2 n a 1 k ( ∑ k = 2 n β k i a i 1 ) > 0.

引理3 [ 1 ] 若 A = ( a i j ) ∈ R n × n 为弱链对角占优M-矩阵, A − 1 = ( α i j ) ,则 ∀ i , j ∈ N , i ≠ j ,有

| α i j | ≤ d i | α j j | ≤ | α j j | .

引理4 [ 2 ] 若 A = ( a i j ) ∈ R n × n 为弱链对角占优M-矩阵,且 J ( A ) = { i 1 , i 2 , ⋯ , i k } ,那么存在一个N的置换 { i 1 , i 2 , ⋯ , i n } ,使得对所有的 j ∈ N ,有

g i = | a i j i j | − ∑ l = j + 1 n | a i j i l | > 0.

引理5 若 A = ( a i j ) ∈ R n × n 为弱链对角占优M-矩阵, n ≥ 2 , A − 1 = ( α i j ) ,满足 u 1 < 1 ,则

α 11 ≤ 1 a 11 ( 1 − m 1 d 1 ) .

证明

因A为M-矩阵,则 A − 1 ≥ 0 ,设 A m = x ,其中 m = ( 1 , m 1 , ⋯ , m 1 ) T , x = ( x 1 , x 2 , ⋯ , x n ) T ,因为 0 ≤ m 1 ≤ 1 , u 1 = ∑ k = 2 n | a 1 k | / | a 11 | < 1 ,则

x 1 = a 11 + ∑ k = 2 n a 1 k m 1 = | a 11 | − ∑ k = 2 n | a 1 k | m 1 ≥ | a 11 | − ∑ k = 2 n | a 1 k | > 0 ,

对 ∀ i ∈ N , 2 ≤ i ≤ n ,有

∑ k = 2 n a i k = | a i i | − ∑ k ∈ N , k ≠ 1 , i | a i k | ≥ | a i i | − ∑ k ∈ N , k ≠ i | a i k | ≥ 0.

当 a i 1 = 0 时, x i = ∑ k = 2 n a i k m 1 ≥ 0 ;当 a i 1 ≠ 0 时, x i = a i 1 + ∑ k = 2 n a i k m 1 ≥ a i 1 + ( ∑ k = 2 n a i k ) m i 1 = 0 ,即

x 1 > 0 , x i ≥ 0 ( i = 2 , ⋯ , n ) .

再由 A − 1 x = m , A − 1 ≥ 0 ,有

α 11 ≤ 1 x 1 = 1 a 11 + m 1 ∑ k = 2 n a 1 k = 1 a 11 ( 1 − m 1 d 1 ) .

引理6 设 A = ( a i j ) ∈ R n × n 为弱链对角占优M-矩阵,且 A − 1 = ( α i j ) ,对 ∀ i , j ∈ N , i ≠ j ,有

| α i j | ≤ | a i j | + ∑ k ≠ i , j | a i k | s k j | a i i | | α j j | ≤ v j | α j j | ≤ | α j j | .

证明

根据引理3,设

s j i ( ε , 1 ) = { | a i j | + ∑ k ≠ i , j | a i k | r k j + ε | a i i | i ∈ J ( A ) , 1 i ∈ N , i ∉ J ( A ) .

其中 ε > 0 足够小,使得 0 < s j i ( ε , 1 ) ≤ 1 ( i , j ∈ N , i ≠ j ) 。

S j ( ε , 1 ) = d i a g ( s j 1 ( ε , 1 ) , ⋯ , s j j − 1 ( ε , 1 ) , 1 , s j j + 1 ( ε , 1 ) , ⋯ , s j n ( ε , 1 ) ) , j ∈ N .

显然,当 S j ( ε , 1 ) = d i a g ( 1 , 1 , ⋯ , 1 ) = I 时, A S j ( ε , 1 ) 是弱链对角占优矩阵,且当 S j ( ε , 1 ) ≠ I 时, A S j ( ε , 1 ) 是严格对角占优矩阵,所以, A S j ( ε , 1 ) 一定是一个弱链对角占优矩阵,从而

| α i j | s j i ( ε , 1 ) ≤ | a i j | + ∑ k ≠ i , j | a i k | s k j ( ε , 1 ) | a i i | s j i ( ε , 1 ) | α j j | , i ≠ j

也就是

| α i j | ≤ | a i j | + ∑ k ≠ i , j | a i k | s k j ( ε , 1 ) | a i i | | α j j | , i ≠ j

当 ε → 0 时,得

| α i j | ≤ | a i j | + ∑ k ≠ i , j | a i k | s k j | a i i | | α j j | ≤ v j | α j j | ≤ | α j j | , i ≠ j .

2. 主要结果

1974年,P N Shivakumar在文献 [ 1 ] 中给出弱链对角占优M-矩阵A的 ‖ A − 1 ‖ ∞ 的上界:

‖ A − 1 ‖ ∞ ≤ ∑ i = 1 n [ a i i ∏ j = 1 i − 1 ( 1 − u j ) ] − 1 . (1)

2012年,潘淑珍在文献 [ 3 ] 中给出优于文献 [ 1 ] 的弱链对角占优M-矩阵A的 ‖ A − 1 ‖ ∞ 的上界估计式:

‖ A − 1 ‖ ∞ ≤ 1 | a 11 | ( 1 − u 1 t 1 ) + ∑ i = 2 n [ 1 | a i i | ( 1 − u i t i ) ∏ j = 1 i − 1 ( 1 + u j 1 − u j t j ) ]     . (2)

其中

t i = { max i + 1 ≤ k ≤ n { t k i } 1 ≤ i ≤ n − 1 , 0 i = n . 0 ≤ t i ≤ 1 , ∀ i ∈ N

t k i = { | a k i | | a k k | − ∑ j = i + 1 , j ≠ k n | a k j | | a k i | ≠ 0 , 0 | a k i | = 0. ∀ k ∈ N , i + 1 ≤ k ≤ n , 1 ≤ i ≤ ( n − 1 )

本文继续给出弱链对角占优M-矩阵A的 ‖ A − 1 ‖ ∞ 的新上界估计式。

2.1. 定理1

设 A = ( a i j ) ∈ R n × n 为弱链对角占优M-矩阵, n ≥ 2 , A − 1 = ( α i j ) , B = A ( 2 , n ) , B − 1 = ( β i j ) ,满足 u 1 < 1 ,则

‖ A − 1 ‖ ∞ ≤ max { 1 a 11 ( 1 − m 1 d 1 ) + d 1 ‖ B − 1 ‖ ∞ 1 − m 1 d 1 , v 1 a 11 ( 1 − m 1 d 1 ) + ( v 1 d 1 1 − m 1 d 1 + 1 ) ‖ B − 1 ‖ ∞ } .

证明

记 r i = ∑ j = 1 n α i j , M A = ‖ A − 1 ‖ ∞ , M B = ‖ B − 1 ‖ ∞ ,即 M A = max i ∈ N { r i } , M B = max 2 ≤ i ≤ n { ∑ j = 2 n β i j } ,由引理2和引理5可得

r 1 = α 11 + ∑ j = 2 n α 1 j = 1 Δ + 1 Δ ∑ k = 2 n ( − a 1 k ) ∑ j = 2 n β k j ≤ 1 Δ + 1 Δ ∑ k = 2 n ( − a 1 k ) M B = 1 Δ + 1 Δ a 11 d 1 M B ≤ 1 a 11 ( 1 − m 1 d 1 ) + d 1 1 − m 1 d 1 M B , (3)

对 2 ≤ i ≤ n ,由引理3知,

α i 1 ≤ α 11 ,

对 2 ≤ j ≤ n ,由引理6知,

α i j = β i j + α 1 j ∑ k = 2 n β i k ( − a k 1 ) ≤ β i j + α 1 j v 1 ,

r i = α i 1 + ∑ j = 2 n α i j ≤ v 1 α 11 + ∑ j = 2 n ( β i j + α 1 j v 1 ) = r 1 v 1 + M B ≤ v 1 ( 1 a 11 ( 1 − m 1 d 1 ) + d 1 M B 1 − m 1 d 1 ) + M B = v 1 a 11 ( 1 − m 1 d 1 ) + ( v 1 d 1 1 − m 1 d 1 + 1 ) M B , (4)

由(3)式和(4)式可得

M A = max { r 1 , r i : 2 ≤ i ≤ n } ≤ max { 1 a 11 ( 1 − m 1 d 1 ) + d 1 ‖ B − 1 ‖ ∞ 1 − m 1 d 1 , v 1 a 11 ( 1 − m 1 d 1 ) + ( v 1 d 1 1 − m 1 d 1 + 1 ) ‖ B − 1 ‖ ∞ } .

2.2. 定理2

设 A = ( a i j ) ∈ R n × n 为弱链对角占优M-矩阵,且对 ∀ k ∈ N ,有 u k < 1 ,则

M A ≤ max { 1 a 11 ( 1 − m 1 u 1 ) + ∑ i = 2 n [ 1 a i i ( 1 − m i u i ) ∏ j = 1 i − 1 ( u j 1 − m j u j ) ] , v 1 a 11 ( 1 − m 1 u 1 ) + ∑ i = 2 n [ v i a i i ( 1 − m i u i ) ∏ j = 1 i − 1 ( v j u j 1 − m j u j + 1 ) ] } . (5)

证明

设A为弱链对角占优M-矩阵,对 ∀ k ∈ N , 1 ≤ k ≤ n − 1 , A ( k , n ) 为弱链对角占优M-矩阵,由定理1关于k对 A ( k , n ) 做数学归纳法可得。

设 A = ( a i j ) ∈ R n × n 为弱链对角占优M-矩阵,且对 ∀ k ∈ N ,满足 u k < 1 ,由 v i , m i , t i 表达式可知 0 ≤ v i ≤ 1 , 0 ≤ m i ≤ t i ≤ 1 ,那么(5)式中 ‖ A − 1 ‖ ∞ 的上界小于等于(2)式中的上界,即

max { 1 a 11 ( 1 − m 1 u 1 ) + ∑ i = 2 n [ 1 a i i ( 1 − m i u i ) ∏ j = 1 i − 1 ( u j 1 − m j u j ) ] ,     v 1 a 11 ( 1 − m 1 u 1 ) + ∑ i = 2 n [ v i a i i ( 1 − m i u i ) ∏ j = 1 i − 1 ( v j u j 1 − m j u j + 1 ) ] } ≤ 1 | a 11 | ( 1 − u 1 t 1 ) + ∑ i = 2 n [ 1 | a i i | ( 1 − u i t i ) ∏ j = 1 i − 1 ( 1 + u j 1 − u j t j ) ] .

3. 数值算例

例1设

A = ( 4 − 1 − 1 − 2 5 − 3 − 1 − 2 4 ) .

J = { 1 , 3 } ,易得到A为弱链对角占优M-矩阵, ‖ A − 1 ‖ ∞ = 1.100 。

应用(1)式得

‖ A − 1 ‖ ∞ ≤ 2.7500 ;

应用(2)式得

‖ A − 1 ‖ ∞ ≤ 1.500 ;

应用定理2得

‖ A − 1 ‖ ∞ ≤ 1.1503.

例2 设

A = ( 4 − 2 − 1 − 1 3 − 2 − 1 0 2 ) .

易得到A为弱链对角占优M-矩阵, ‖ A − 1 ‖ ∞ = 1.54 。

应用(1)式得

‖ A − 1 ‖ ∞ ≤ 11 ;

应用(2)式得

‖ A − 1 ‖ ∞ ≤ 5.6667 ;

应用定理2得

‖ A − 1 ‖ ∞ ≤ 1.996.

4. 结论

理论证明本文所得弱链对角占优M-矩阵逆矩阵无穷范数的新上界估计式优于文献 [ 1 ] [ 3 ] 中的结果,数值算例亦说明了本文所得新上界估计式的有效性和可行性。

致谢

感谢莫宏敏老师对本篇论文的悉心指导和帮助。

基金项目

吉首大学研究生科研项目(JDY21012)。

文章引用

李慧君,莫宏敏. 弱链对角占优M-矩阵逆的无穷范数新上界估计New Upper Bound Estimates of the Infinite Norm for the Inverse of Weakly Chain Diagonally Dominant M-Matrices[J]. 应用数学进展, 2022, 11(07): 4683-4689. https://doi.org/10.12677/AAM.2022.117494

参考文献 References Shivakumar, P.N., Wiliams, J.J., Ye, Q., et al. (1996) On Two-Sided Bounds Related to Weakly Diagonally Dominant M-Matrices with Application to Digital Circuit Dynamics. SIAM Journal on Matrix Analysis and Applications, 17, 298-312.
https://doi.org/10.1137/S0895479894276370
Huang, T.Z. and Zhu, Y. (2010) Estimation of for Weakly Chained Diagonally Dominant M-Matrices. Linear Algebra and Its Applications, 432, 670-677.
https://doi.org/10.1016/j.laa.2009.09.012
潘淑珍, 陈神灿. 弱链对角占优矩阵 的上界估计[J]. 福州大学学报(自然科学版), 2012, 40(3): 281-284. 李艳艳, 蒋建新. 弱链对角占优矩阵的 的新界[J]. 云南民族大学学报(自然科学版), 2014, 23(4): 259-261. 赵仁庆, 刘鹏. 弱链对角占优M-矩阵的逆矩阵的无穷大范数的上界估计[J]. 楚雄师范学院学报, 2014, 29(3): 5-10. 蒋建新, 李艳艳. 弱链对角占优矩阵的逆矩阵无穷范数的新上界[J]. 咸阳师范学院学报, 2016, 31(2): 53-55. Sang, C. and Chen, Z. (2021) A New Error Bound for Linear Complementarity Problems of Weakly Chained Diagonally Dominant B-Matrices. Linear and Multilinear Al-gebra, 69, 1909-1921.
https://doi.org/10.1080/03081087.2019.1649995
Zhao, R., Zheng, B. and Liang, M. (2020) A New Error Bound for Linear Complementarity Problems with Weakly Chained Diagonally Dominant B-Matrices. Applied Mathe-matics and Computation, 367, Article ID: 124788.
https://doi.org/10.1016/j.amc.2019.124788
Baidu
map