目的:本研究采用网络药理学的方法探讨灵芝治疗哮喘的可能作用机制。方法:通过检索TCMSP数据库筛选灵芝的活性成分,在GeneCards数据库中查找哮喘的相关靶点,取交集基因进行蛋白互作分析,GO生物富集及KEGG富集分析。结果:得出灵芝活性成分14个,灵芝与哮喘的潜在相交靶标24个,主要有NR3C2、PGR、NCOA2等;基于DAVID数据库,GO功能分析与KEGG通路富集分析结果表明,灵芝参与的主要信号通路有adenylate cyclase-inhibiting G-protein coupled acetylcholine receptor signaling pathway、response to estradiol和G-protein coupled acetylcholine receptor signaling pathway等。结论:灵芝可能是通过调控Apoptosis-multiple species、Hepatitis B、Cholinergic synapse和Human immunodeficiency virus 1 infection等信号通路上的CASP9,JUN,CASP8和CASP3等基因发挥治疗哮喘的作用。 Objective: To explore the possible mechanism of Ganoderma in the treatment of asthma. Methods: The active components of Ganoderma were screened by searching the tcmsp database, and the related targets of asthma were found in the genecards database. The intersection genes were taken for protein interaction analysis, go bioaccumulation, and KEGG enrichment analysis. Results: There were 14 active ingredients in Ganoderma and 24 potential cross targets between Ganoderma and asthma, mainly NR3C2, PGR, NCOA2, etc; Based on David database, go function analysis and KEGG pathway enrichment analysis results show that the main signal pathways involved by Ganoderma include adenylate cycle inhibiting G-protein coupled acetylcholine receiver signaling pathway, response to estradiol, G-protein coupled acetylcholine receiver signaling pathway, etc. Conclusion: Ganoderma lucidum may play a role in the treatment of asthma by regulating CASP9, Jun, CASP8, and CASP3 genes on the signal pathways of apoptosis-multiple species, hepatitis B, cholinergic synapse, and human immunodeficiency virus 1 infection.
目的:本研究采用网络药理学的方法探讨灵芝治疗哮喘的可能作用机制。方法:通过检索TCMSP数据库筛选灵芝的活性成分,在GeneCards数据库中查找哮喘的相关靶点,取交集基因进行蛋白互作分析,GO生物富集及KEGG富集分析。结果:得出灵芝活性成分14个,灵芝与哮喘的潜在相交靶标24个,主要有NR3C2、PGR、NCOA2等;基于DAVID数据库,GO功能分析与KEGG通路富集分析结果表明,灵芝参与的主要信号通路有adenylate cyclase-inhibiting G-protein coupled acetylcholine receptor signaling pathway、response to estradiol和G-protein coupled acetylcholine receptor signaling pathway等。结论:灵芝可能是通过调控Apoptosis-multiple species、Hepatitis B、Cholinergic synapse和Human immunodeficiency virus 1 infection等信号通路上的CASP9,JUN,CASP8和CASP3等基因发挥治疗哮喘的作用。
网络药理,灵芝,哮喘,机制
Chenghao Luo, Lingli Yang, Rongying Gong, Changyan Wu, Jiandong Liang*
School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang Guizhou
Received: Jun. 4th, 2022; accepted: Jul. 2nd, 2022; published: Jul. 7th, 2022
Objective: To explore the possible mechanism of Ganoderma in the treatment of asthma. Methods: The active components of Ganoderma were screened by searching the tcmsp database, and the related targets of asthma were found in the genecards database. The intersection genes were taken for protein interaction analysis, go bioaccumulation, and KEGG enrichment analysis. Results: There were 14 active ingredients in Ganoderma and 24 potential cross targets between Ganoderma and asthma, mainly NR3C2, PGR, NCOA2, etc; Based on David database, go function analysis and KEGG pathway enrichment analysis results show that the main signal pathways involved by Ganoderma include adenylate cycle inhibiting G-protein coupled acetylcholine receiver signaling pathway, response to estradiol, G-protein coupled acetylcholine receiver signaling pathway, etc. Conclusion: Ganoderma lucidum may play a role in the treatment of asthma by regulating CASP9, Jun, CASP8, and CASP3 genes on the signal pathways of apoptosis-multiple species, hepatitis B, cholinergic synapse, and human immunodeficiency virus 1 infection.
Keywords:Network Pharmacology, Ganoderma, Asthma, Mechanism
Copyright © 2022 by author(s) and beplay安卓登录
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/
哮喘是一种由于下呼吸道慢性炎症引起的常见疾病 [
灵芝Ganoderma为担子菌纲,多孔菌科真菌赤芝Ganoderma lucidum (Leyss. Ex Fr.) Karst或紫芝G. sinense Zhao,Xuet Zhang的干燥子实体 [
通过TCMSP数据库 [
进入GeneCards数据库 [
为了明确灵芝对治疗哮喘靶点之间的相互作用,将筛选出的靶点导入String [
将疾病–药物共有靶点导入DAVID数据库(https://david.ncifcrf.gov/)中进行GO生物过程富集分析和KEGG信号通路分析,结果以气泡图的形式进行展示。
通过检索TCMSP数据库,以OB ≥ 30、DL ≥ 0.18为筛选条件,共得到灵芝化学成分242个,共得到具有靶点的活性成分14个,分别为:methyl (4R)-4-[(5R,10S,13R,14R,17R)-4,4,10,13,14-pentamethyl-3,7,11,15-tetraoxo-2,5,6,12,16,17-hexahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoate (MOL011129)、campesta-7,22E-dien-3beta-ol(MOL011137)、5alpha-Lanosta-7,9(11),24-triene-15alpha,26-dihydroxy-3-one (MOL011140)、ergosta-4,6,8(14),22-tetraene-3-one (MOL011159)、ergosta-7,9(11),22-trien-3β,5α,6α-triol (MOL011168)、ganoderal B (MOL011171)等,潜在靶点43个,具体见表1。43个靶点去重后共有28个潜在靶点。
MOL ID | Chemical Component | 靶点数 |
---|---|---|
MOL011129 | methyl (4R)-4-[(5R,10S,13R,14R,17R)-4,4,10,13,14-pentamethyl-3,7,11,15-tetraoxo-2, 5,6,12,16,17-hexahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoate | 1 |
MOL011137 | campesta-7,22E-dien-3beta-ol | 3 |
MOL011140 | 5alpha-Lanosta-7,9(11),24-triene-15alpha,26-dihydroxy-3-one | 1 |
MOL011159 | ergosta-4,6,8(14),22-tetraene-3-one | 1 |
MOL011168 | ergosta-7,9(11),22-trien-3β,5α,6α-triol | 1 |
MOL011171 | ganoderal B | 2 |
MOL011256 | ganolucidic acid E | 1 |
MOL011267 | Lucialdehyde B | 1 |
MOL011270 | (4R)-4-[(5R,7S,10S,13R,14R,17R)-7-hydroxy-3,11,15-triketo-4,4,10,13,14-pentamethyl-1,2,5,6,7,12,16,17-octahydrocyclopenta[a]phenanthren-17-yl]valeric acid | 1 |
MOL011287 | lucidone A | 2 |
MOL011309 | methyl (4R)-4-[(5R,7S,10S,13R,14R,15S,17R)-7,15-dihydroxy-4,4,10,13, 14-pentamethyl-3,11-dioxo-2,5,6,7,12,15,16,17-octahydro-1H- cyclopenta[a]phenanthren-17-yl]pentanoate | 1 |
MOL000279 | Cerevisterol | 1 |
MOL000282 | ergosta-7,22E-dien-3beta-ol | 1 |
MOL000358 | beta-sitosterol | 26 |
表1. 灵芝活性成分及靶标数
在GeneCards数据库中以“asthma”为关键词检索,得到与哮喘相关靶基因共7,472个,采用Venny2.1对灵芝相关靶点及哮喘的靶点进行维恩图绘制,见图1,得到灵芝与哮喘共有靶点24个,这些靶点包括NR3C2、PGR、NCOA2、NCOA1、PTGS1和PTGS2等。
图1. 灵芝活性成分靶点与哮喘交集靶点
用String数据库构建关键靶点之间的相互作用图,将灵芝治疗哮喘的共有靶点导入String中,得到蛋白互作网络图(如图2所示),其中number of nodes = 24、number of edges = 49、average node degree = 4.08、avg. local clustering coefficient = 0.578、expected number of edges = 10。将结果导入Cytoscape 3.9.0获取 PPI网络中拓扑参数,采用Cytoscape 3.9.0选项中“Network Analyzer”对共有靶点的Degree、Betweenness centrality和Closeness centrality分析,结果发现JUN (Degree = 10)、PTGS2 (Degree = 8)、CASP3 (Degree = 8)和PGR (Degree = 7)等综合排名较前,如图3所示,说明这些靶点在灵芝治疗哮喘中发挥着重要作用。
为了进一步探讨灵芝治疗哮喘的多重作用机制,将24个共有靶点导入David中进行GO富集分析,共得到GO生物学富集结果108条。其中前3位的富集过程包括adenylate cyclase-inhibiting G-protein coupled acetylcholine receptor signaling pathway、response to estradiol和G-protein coupled acetylcholine
图2. 蛋白互作网络图
图3. 前五靶点蛋白互作图
receptor signaling pathway。将前20条富集以气泡图的形式展示,其中圆圈的大小表示相关靶点在通路富集的多少,圆圈的颜色越深代表靶点的富集程度,如图4所示,这表明了灵芝可能是通过调节这些生物过程而发挥治疗哮喘的作用。
图4. GO生物学功能富集结果气泡图
将24个共有靶点映射到David数据库中进行KEGG通路富集分析,将物种定义为“人类”,共得到信号通路61条。通过筛选灵芝KEGG富集结果显著性较强的前20条信号通路进行展示,这些通路与灵芝治疗哮喘的作用机制密切相关,如图5所示。其中前5条通路包括Apoptosis-multiple species、Hepatitis B、Cholinergic synapse、Human immunodeficiency virus 1 infection和Lipid and atherosclerosis等,这些通路大多与CASP9,JUN,CASP8和CASP3等有关。
为了更清晰的展现有效成分、核心靶点与通路之间的关系。利用Cytoscape 3.9.0软件将灵芝中的成分、共有靶点进行网络进行可视化分析,如图6所示,通过网络药理学构建出灵芝治疗哮喘的交互网络,筛选出相应的交互蛋白,其中蓝色代表灵芝和哮喘的共有靶点,绿色代表化学成分,共有14个,橙色代表药物,通过构建药物–成分–靶点网络图,可更直观更清晰的看出各成分对应的靶点调控。
图5. KEGG富集结果气泡图
图6. 化学成分–靶点–疾病网络图
中医药近来因其疗效及独特的魅力而受到广泛关注。同时,中药存在的主要障碍,包括药物成分和治疗机制的模糊。随着虚拟筛选技术的发展,越来越多的中药化合物被研究以发现潜在的活性成分和作用机制。网络药理学建立了强大而全面的数据库,以了解中医与疾病网络之间的关系。在本次研究中,构建灵芝治疗哮喘的作用机制提供了理论基础和技术支撑,同时也明确了药效物质和实现中药功效的解释 [
灵芝目前被作为药食两用的药材 [
排名前三的关键靶点中的JUN (转录因子AP-1)、PTGS2 (前列腺素G/H合成酶2)、CASP3 (半胱氨酸蛋白酶3)参与了糖哮喘的发生发展,大量研究表明PTGS2基因的遗传变异与过敏性哮喘之间存在关联, PTGS2受促有丝分裂刺激和促炎刺激高度诱导,参与炎症反应的调节。在哮喘患者的呼吸道上皮和粘膜下层观察到PTGS2的表达增加 [
综上所述,通过对灵芝治疗哮喘的网络药理学研究,初步明确灵芝治疗哮喘活性成分、关键靶点,生物过程及作用机制,可为下一步的实验验证提供参考。
贵州省高层次创新型人才项目(千层次2014);贵州省科技创新人才团队(黔科合平台人才[
罗成浩,杨灵丽,龚荣英,吴昌燕,梁建东. 基于网络药理学探讨灵芝治疗哮喘的作用机制Study on the Mechanism of Ganoderma in Treating Asthma Based on Network Pharmacology[J]. 药物资讯, 2022, 11(04): 284-292. https://doi.org/10.12677/PI.2022.114037
https://doi.org/10.1016/S0140-6736(17)33311-1
https://doi.org/10.1111/all.15054
https://doi.org/10.1093/nutrit/nuaa005
https://doi.org/10.1016/j.jaci.2012.12.681
https://doi.org/10.1186/1758-2946-6-13
https://doi.org/10.1093/database/baq020
https://doi.org/10.1093/nar/gku1003
https://doi.org/10.3892/etm.2018.6023
https://doi.org/10.1016/j.compbiolchem.2020.107402
https://doi.org/10.1016/j.resp.2022.103843
https://doi.org/10.3109/1547691X.2015.1017061
https://doi.org/10.1134/S0006297915110012