新生肽在内质网中的折叠效率对于其在毕赤酵母中的高效表达是至关重要的。在内质网质量控制机制作用下,只有正确折叠的蛋白才能通过内质网通道进入随后的分泌途径,而折叠错误和折叠缓慢的多肽则被剔除出内质网,通过ERAD途径被降解。过表达外源蛋白可能造成内质网内聚集大量的未折叠蛋白,超越内质网的加工能力,从而限制其高水平表达。本文综述了通过共表达分子伴侣或UPR转录因子Hac1p促进外源蛋白表达的研究进展,以期为毕赤酵母蛋白高效表达技术的发展提供借鉴。 The efficiency of ER in folding nascent peptides is very important to increased expression of secretory proteins in Pichia pastoris. Under the machinery of quality control, only correctly folded proteins can enter the subsequent secretion pathway through the ER channel, while wrongly or slowly folded peptides will be removed from ER and degraded through ERAD pathway. Over expression of heterologous proteins may lead to the accumulation of large quantities of unfolded peptides, thus exceeding the processing capacity of ER and inhibiting high-level expression of target proteins. This paper reviews the research progress of co-expression of molecular chaperones or UPR transcription factor Hac1p to promote the secretion of heterologous proteins, providing references for the development of techniques for efficient protein expression in Pichia pastoris .
毕赤酵母,内质网胁迫,分子伴侣,非折叠蛋白响应, Pichia pastoris
ER Stress
Chaperones
The Unfolded Protein Response
摘要
Research Progress on the Strategy of Improving Protein Folding Efficiency in Endoplasmic Reticulum for Enhancing Heterologous Protein Expression Levels in Pichia pastoris
Minghai Han*, Weixian Wang, Guofei Zhu, Xiaoyan Ma
College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang Guizhou
The efficiency of ER in folding nascent peptides is very important to increased expression of secretory proteins in Pichia pastoris. Under the machinery of quality control, only correctly folded proteins can enter the subsequent secretion pathway through the ER channel, while wrongly or slowly folded peptides will be removed from ER and degraded through ERAD pathway. Over expression of heterologous proteins may lead to the accumulation of large quantities of unfolded peptides, thus exceeding the processing capacity of ER and inhibiting high-level expression of target proteins. This paper reviews the research progress of co-expression of molecular chaperones or UPR transcription factor Hac1p to promote the secretion of heterologous proteins, providing references for the development of techniques for efficient protein expression in Pichia pastoris.
Keywords:Pichia pastoris, ER Stress, Chaperones, The Unfolded Protein Response
韩铭海,王未鲜,朱国飞,马小彦. 基于提高蛋白在内质网中折叠效率的策略促进外源蛋白在毕赤酵母中表达水平的研究进展 Research Progress on the Strategy of Improving Protein Folding Efficiency in Endoplasmic Reticulum for Enhancing Heterologous Protein Expression Levels in Pichia pastoris[J]. 生物过程, 2022, 12(02): 81-88. https://doi.org/10.12677/BP.2022.122009
参考文献References
Karbalaei, M., Rezaee, S.A. and Farsiani, H. (2020) Pichia pastoris: A Highly Successful Expression System for Opti-mal Synthesis of Heterologous Proteins. Journal of Cellular Physiology, 235, 5867-5881. https://doi.org/10.1002/jcp.29583
Baghban, R., Farajnia, S., Rajabibazl, M., et al. (2019) Yeast Expression Systems: Overview and Recent Advances. Molecular Biotechnology, 61, 365-384. https://doi.org/10.1007/s12033-019-00164-8
De Schutter, K., Lin, Y.C., Tiels, P., et al. (2009) Genome Se-quence of the Recombinant Protein Production Host Pichia pastoris. Nature Biotechnology, 27, 561-566. https://doi.org/10.1038/nbt.1544
Puxbaum, V., Mattanovich, D. and Gasser, B. (2015) Quo Vadis? The Chal-lenges of Recombinant Protein Folding and Secretion in Pichia pastoris. Applied Microbiology and Biotechnology, 99, 2925-2938. https://doi.org/10.1007/s00253-015-6470-z
Yu, P., Zhu, Q., Chen, K., et al. (2015) Improving the Secretory Production of the Heterologous Protein in Pichia pastoris by Focusing on Protein Folding. Applied Biochemistry and Bi-otechnology, 175, 535-548. https://doi.org/10.1007/s12010-014-1292-5
Araki, K. and Nagata, K. (2012) Protein Folding and Quality Control in the ER. Cold Spring Harbor Perspectives in Biology, 4, a015438. https://doi.org/10.1101/cshperspect.a015438
Read, A. and Schröder, M. (2021) The Unfolded Protein Re-sponse: An Overview. Biology, 10, Article No. 384. https://doi.org/10.3390/biology10050384
Snapp, E.L. (2012) Unfolded Protein Responses with or without Unfolded Proteins? Cells, 1, 926-950. https://doi.org/10.3390/cells1040926
Damasceno, L.M., Pla, I., Chang, H.J., et al. (2004) An Optimized Fer-mentation Process for High-Level Production of a Single-Chain Fv Antibody Fragment in Pichia pastoris. Protein Ex-pression and Purification, 37, 18-26. https://doi.org/10.1016/j.pep.2004.03.019
Elena, C., Ravasi, P., Cerminati, S., et al. (2016) Pichia pastoris Engineering for the Production of a Modified Phospholipase C. Process Biochemistry, 51, 1935-1944. https://doi.org/10.1016/j.procbio.2016.08.022
Yu, Y., Liu, Z., Chen, M., et al. (2020) Enhancing the Expres-sion of Recombinant κ-Carrageenase in Pichia pastoris Using Dual Promoters, Co-Expressing Chaperones and Tran-scription Factors. Biocatalysis and Biotransformation, 38, 104-113. https://doi.org/10.1080/10242422.2019.1655001
Shen, Q., Wu, M., Wang, H.B., et al. (2012) The Effect of Gene Copy Number and Co-Expression of Chaperone on Production of Albumin Fusion Proteins in Pichia pastoris. Ap-plied Microbiology and Biotechnology, 96, 763-772. https://doi.org/10.1007/s00253-012-4337-0
Sha, C., Yu, X.W., Lin, N.X., et al. (2013) Enhancement of Li-pase r27RCL Production in Pichia pastoris by Regulating Gene Dosage and Co-Expression with Chaperone Protein Di-sulfide Isomerase. Enzyme and Microbial Technology, 53, 438-443. https://doi.org/10.1016/j.enzmictec.2013.09.009
Wang, L., Hu, T., Jiang, Z., et al. (2021) Efficient Production of a Novel Alkaline Cold-Active Phospholipase C from Aspergillus Oryzaeby Molecular Chaperon Co-Expression for Crude Oil Degumming. Food Chemistry, 350, Article ID: 129212. https://doi.org/10.1016/j.foodchem.2021.129212
He, H., Wu, S., Mei, M., et al. (2020) A Combinational Strategy for Effective Heterologous Production of Functional Human Lysozyme in Pichia Pastoris. Frontiers in Bioen-gineering and Biotechnology, 8, Article No. 118. https://doi.org/10.3389/fbioe.2020.00118
Li, J., Cai, J., Ma, M., et al. (2021) Preparation of a Bombyx mori Acetylcholinesterase Enzyme Reagent through Chaperone Protein Disulfide Isomerase Co-Expression Strategy in Pichia pastoris for Detection of Pesticides. Enzyme and Microbial Technology, 144, Article ID: 109741. https://doi.org/10.1016/j.enzmictec.2020.109741
Navone, L., Vogl, T., Luangthongkam, P., et al. (2021) Di-sulfide Bond Engineering of AppA Phytase for Increased Thermostability Requires Co-Expression of Protein Disulfide Isomerase in Pichia pastoris. Biotechnology for Biofuels and Bioproducts, 14, 80. https://doi.org/10.1186/s13068-021-01936-8
Yang, J., Lu, Z., Chen, J., et al. (2016) Effect of Cooperation of Chaperones and Gene Dosage on the Expression of Porcine PGLYRP-1 in Pichia pastoris. Applied Microbiology and Biotechnology, 100, 5453-5465. https://doi.org/10.1007/s00253-016-7372-4
Huang, J., Zhao, Q., Chen, L., et al. (2020) Improved Production of Recombinant Rhizomucor miehei Lipase by Coexpressing Protein Folding Chaperones in Pichia pastoris, Which Triggered ER Stress. Bioengineered, 11, 375-385. https://doi.org/10.1080/21655979.2020.1738127
Guan, B., Chen, F., Su, S., et al. (2016) Effects of Co-Overexpression of Secretion Helper Factors on the Secretion of a HSA Fusion Protein (IL2-HSA) in Pichia pastoris. Yeast, 33, 587-600. https://doi.org/10.1002/yea.3183
Lan, D., Qu, M., Yang, B., et al. (2016) Enhancing Pro-duction of Lipase MAS1 from Marine Streptomyces sp. Strain in Pichia pastoris by Chaperones Co-Expression. Elec-tronic Journal of Biotechnology, 22, 62-67. https://doi.org/10.1016/j.ejbt.2016.06.003
Duan, G., Ding, L., Wei, D., et al. (2019) Screening Endogenous Signal Peptides and Protein Folding Factors to Promote the Secretory Expression of Heterologous Proteins in Pichia pastoris. Journal of Biotechnology, 306, 193-202. https://doi.org/10.1016/j.jbiotec.2019.06.297
Sallada, N.D., Harkins, L.E. and Berger, B.W. (2019) Effect of Gene Copy Number and Chaperone Coexpression on Recombinant Hydrophobin HFBI Biosurfactant Production in Pichia pastoris. Biotechnology and Bioengineering, 116, 2029-2040. https://doi.org/10.1002/bit.26982
Samuel, P., Prasanna Vadhana, A.K., Kamatchi, R., et al. (2013) Effect of Molecular Chaperones on the Expression of Candida antarctica Lipase B in Pichia pastoris. Microbiological Research, 168, 615-620. https://doi.org/10.1016/j.micres.2013.06.007
Gasser, B., Sauer, M., Maurer, M., et al. (2007) Transcriptom-ics-Based Identification of Novel Factors Enhancing Heterologous Protein Secretion in Yeasts. Applied and Environ-mental Microbiology, 73, 6499-6507. https://doi.org/10.1128/AEM.01196-07
Summpunn, P., Jomrit, J. and Panbangred, W. (2018) Improvement of Extracellular Bacterial Protein Production in Pichia pastoris by Co-Expression of Endoplasmic Reticulum Residing GroEL-GroES. Journal of Bioscience and Bioengineering, 125, 268-274. https://doi.org/10.1016/j.jbiosc.2017.09.007
Huo, X., Liu, Y., Wang, X., et al. (2007) Co-Expression of Hu-man Protein Disulfide Isomerase (hPDI) Enhances Secretion of Bovine Follicle-stimulating Hormone (bFSH) in Pichia pastoris. Protein Expression and Purification, 54, 234-239. https://doi.org/10.1016/j.pep.2007.03.016
Zhang, Z., Zhang, X., Hao, H., et al. (2020) Co-Expression of Pseudomonas alcaligenes Lipase and Its Specific Foldase in Pichia pastoris by a Dual Expression Cassette Strategy. Protein Expression and Purification, 175, Article ID: 105721. https://doi.org/10.1016/j.pep.2020.105721
Guerfal, M., Ryckaert, S., Jacobs, P.P., et al. (2010) The HAC1 Gene from Pichia pastoris: Characterization and Effect of Its Overexpression on the Production of Secreted, Surface Displayed and Membrane Proteins. Microbial Cell Factories, 9, Article No. 49. https://doi.org/10.1186/1475-2859-9-49
Fauzee, Y., Taniguchi, N., Ishiwata-Kimata, Y., et al. (2020) The Unfolded Protein Response in Pichia pastoris without External Stressing Stimuli. FEMS Yeast Research, 20, foaa053. https://doi.org/10.1093/femsyr/foaa053
Whyteside, G., Nor, R.M., Alcocer, M.J., et al. (2011) Activation of the Unfolded Protein Response in Pichia pastoris Requires Splicing of a HAC1 mRNA Intron and Retention of the C-Terminal Tail of Hac1p. FEBS Letters, 585, 1037-1041. https://doi.org/10.1016/j.febslet.2011.02.036
Han, M., Wang, W., Gong, X., et al. (2021) Increased Expression of Recombinant Chitosanase by Co-Expression of Hac1p in the Yeast Pichia pastoris. Protein and Peptide Letters, 28, 1434-1441. https://doi.org/10.2174/0929866528666211105111155
Han, M., Wang, W., Zhou, J., et al. (2020) Activation of the Unfolded Protein Response via Co-Expression of the HAC1i Gene Enhances Expression of Recombinant Elastase in Pichia pastoris. Biotechnology and Bioprocess Engineering, 25, 302-307. https://doi.org/10.1007/s12257-019-0381-2
Wang, Y., Luo, X., Zhao, Y., et al. (2021) Integrated Strategies for Enhancing the Expression of the AqCoA Chitosanase in Pichia pastoris by Combined Optimization of Molecular Chaperones Combinations and Copy Numbers via a Novel Plasmid pMC-GAP. Applied Biochemistry and Biotechnology, 193, 4035-4051. https://doi.org/10.1007/s12010-021-03668-9
De Waele, S., Vandenberghe, I., Laukens, B., et al. (2018) Op-timized Expression of the Starmerella bombicola Lactone Esterase in Pichia pastoris through Temperature Adaptation, Codon-Optimization and Co-Expression with HAC1. Protein Expression and Purification, 143, 62-70. https://doi.org/10.1016/j.pep.2017.10.016
Gasser, B., Maurer, M., Gach, J., et al. (2006) Engineering of Pichia pastoris for Improved Production of Antibody Fragments. Biotechnology and Bioengineering, 94, 353-361. https://doi.org/10.1002/bit.20851
Krainer, F.W., Gerstmann, M.A., Darnhofer, B., et al. (2016) Biotechnolog-ical Advances towards an Enhanced Peroxidase Production in Pichia pastoris. Journal of Biotechnology, 233, 181-189. https://doi.org/10.1016/j.jbiotec.2016.07.012
Lin, X.Q., Liang, S.L., Han, S.Y., et al. (2013) Quantitative iTRAQ LC-MS/MS Proteomics Reveals the Cellular Response to Heterologous Protein Overexpression and the Regula-tion of HAC1 in Pichia pastoris. Journal of Proteomics, 2013, 91, 58-72. https://doi.org/10.1016/j.jprot.2013.06.031
Huang, M., Gao, Y., Zhou, X., et al.(2017) Regulating Unfolded Protein Response Activator HAC1p for Production of Thermostable Raw-Starch Hydrolyzing α-Amylase in Pichia pas-toris. Bioprocess and Biosystems Engineering, 40, 341-350. https://doi.org/10.1007/s00449-016-1701-y
Bankefa, O.E., Wang, M., Zhu, T., et al. (2018) Hac1p Homo-logues from Higher Eukaryotes Can Improve the Secretion of Heterologous Proteins in the Yeast Pichia pastoris. Bio-technology Letters, 40, 1149-1156. https://doi.org/10.1007/s10529-018-2571-y
Kruse, K.B., Brodsky, J.L. and McCracken, A.A. (2006) Au-tophagy: An ER Protein Quality Control Process. Autophagy, 2, 135-137. https://doi.org/10.4161/auto.2.2.2388
Liu, J., Han, Q., Cheng, Q., et al. (2020) Efficient Expression of Human Lysozyme through the Increased Gene Dosage and Co-Expression of Transcription Factor Hac1p in Pichia pastoris. Current Microbiology, 77, 846-854. https://doi.org/10.1007/s00284-019-01872-9
Liu, X., Wu, D., Wu, J., et al. (2013) Optimization of the Pro-duction of Aspergillus niger α-Glucosidase Expressed in Pichia pastoris. World Journal of Microbiology & Biotechnol-ogy, 29, 533-540. https://doi.org/10.1007/s11274-012-1207-y
Whyteside, G., Alcocer, M.J., Kumita, J.R., et al. (2011) Na-tive-State Stability Determines the Extent of Degradation Relative to Secretion of Protein Variants from Pichia pastoris. PLOS ONE, 6, e22692. https://doi.org/10.1371/journal.pone.0022692