为了明确贵州省植物园和黔南州惠水县的墨红月季上叶斑病的病原菌种类,采集月季叶斑病的病样,采用单孢分离法和致病性测定,结合依据形态学结合ITS、 GADPH 、 ACT 、 CHS -1等多基因序列分析,确定其病原菌分类地位;在此基础上,通过平板稀释和平板对峙法,结合生理生化实验和16 S rRNA 和 gyrA 多基因序列分析,筛选和鉴定对月季炭疽病有拮抗作用的拮抗细菌;结合菌丝生长速率法筛月季叶斑病选防治效果较好的化学药剂;选用商品化微生物制剂绿康威、12%腈菌·三唑酮EC + 65%代森锌、64%杀毒矾及生防菌GUHS97进行田间防效实验。结果表明:1) 黑斑病病原菌为蔷薇盘二孢( Marssinina rosae ),炭疽病病原菌博宁炭疽菌( Colletotrichum boninense );2) 筛选到1株叶际有益芽胞杆菌GUHS97,鉴定该菌为解淀粉芽胞杆菌( Bacillus amyloliquefaciens );3) 通过室内药剂筛选,3%中生菌素WP、10% 苯醚甲环唑WDG、25%吡唑醚菌酯SC和10%精甲·咯菌腈SC抑制效果最好,EC50值分别为0.8440 mg∙L−1、1.3854 mg∙L−1、1.8667 mg∙L−1和3.5945 mg∙L−1,其次为8%宁南霉素AS和25%溴菌腈EC,EC50值分别为18.9624 mg∙L−1和25.4813 mg∙L−1;将25%吡唑醚菌酯SC和25%溴菌腈EC以1:7、1:8、和1:10比例复配,对月季炭疽病菌具有更强的抑制作用,表现出明显的增效作用;通过田间小区实验表明,GUHS97对黑斑病的相对防效为59.12%,防病效果良好且明显优于化学药剂。以上研究结果为食用月季叶部病害的识别和生物、化学防治提供科学依据。 In order to identify the pathogenic species of edible roses leaf spot diseases in Guizhou Botanical Garden and Huishui County, Guizhou Province, China, the samples of leaf spot diseases were collected. By using single spore isolation method and pathogenicity determination, combined with morphological analysis combined with ITS, GADPH , ACT , CHS -1 gens, the taxonomic status of its pathogenic bacteria was determined. On this basis, through plate dilution and plate confrontation method, combined with physiological and biochemical experiments and 16 S rRNA and gyrA gens, screening and identification of antagonistic bacteria on edible rose, then combined with the mycelial growth rate method to screen the chemical agents with better control effect on rose leaf spot, commercial microbial preparation Lvkangwei, Myclobutanil 12% EC + Dithane 65% WP, Oxadixyl mancozeb 64% WP and GUHS97 were used for field control effect experiments. The results showed that: 1) The pathogen causing leaf black spot was confirmed to be Marssinina rosae , and the pathogen causing anthracnose was confirmed to be Colletotrichum boninense ; 2) In this study, a strain GUHS97 was screened from the healthy rose leaves in the heavily infected field and was identified as Bacillus amyloliquefaciens ; 3) Indoor toxicity test showed that 9 fungicides had a certain inhibitory effect on C. boninense . The inhibition effects of zhongshengmycin 3% WP, difenoconazole 10% WDG, pyraclostrobin 25% SC and metalaxyl∙fludioxonil 62.5% SC were higher with the EC50values of 0.8440 mg∙L−1、1.3854 mg∙L−1、1.8667 mg∙L−1and 3.5945 mg∙L−1, respectively, followed by ningnanmycin 8% AS and bromothalonil 25% EC, with the EC50values of 18.9624 mg∙L−1and 25.4813 mg∙L−1, respectively. Pyraclostrobin 25% SC and bromothalonil 25% EC at the mixture ratio of 1:7, 1:8 and 1:10 showed obvious synergistic effect; 4) Furthermore, GUHS97 exhibited 59.12% control over leaf spot in field experiments and was more effective than other treatments including fungicide application. Overall, these results provide a scientific basis for the identification of edible rose leaf diseases and their control.
为了明确贵州省植物园和黔南州惠水县的墨红月季上叶斑病的病原菌种类,采集月季叶斑病的病样,采用单孢分离法和致病性测定,结合依据形态学结合ITS、GADPH、ACT、CHS-1等多基因序列分析,确定其病原菌分类地位;在此基础上,通过平板稀释和平板对峙法,结合生理生化实验和16S rRNA和gyrA多基因序列分析,筛选和鉴定对月季炭疽病有拮抗作用的拮抗细菌;结合菌丝生长速率法筛月季叶斑病选防治效果较好的化学药剂;选用商品化微生物制剂绿康威、12%腈菌·三唑酮EC + 65%代森锌、64%杀毒矾及生防菌GUHS97进行田间防效实验。结果表明:1) 黑斑病病原菌为蔷薇盘二孢(Marssinina rosae),炭疽病病原菌博宁炭疽菌(Colletotrichum boninense);2) 筛选到1株叶际有益芽胞杆菌GUHS97,鉴定该菌为解淀粉芽胞杆菌(Bacillus amyloliquefaciens);3) 通过室内药剂筛选,3%中生菌素WP、10% 苯醚甲环唑WDG、25%吡唑醚菌酯SC和10%精甲·咯菌腈SC抑制效果最好,EC50值分别为0.8440 mg∙L−1、1.3854 mg∙L−1、1.8667 mg∙L−1和3.5945 mg∙L−1,其次为8%宁南霉素AS和25%溴菌腈EC,EC50值分别为18.9624 mg∙L−1和25.4813 mg∙L−1;将25%吡唑醚菌酯SC和25%溴菌腈EC以1:7、1:8、和1:10比例复配,对月季炭疽病菌具有更强的抑制作用,表现出明显的增效作用;通过田间小区实验表明,GUHS97对黑斑病的相对防效为59.12%,防病效果良好且明显优于化学药剂。以上研究结果为食用月季叶部病害的识别和生物、化学防治提供科学依据。
食用玫瑰,黑斑病,炭疽病,生物防治,田间防治,药剂筛选
Weidi Mo1, Wanpeng Dong2, Hai Sun3, Zhicheng Zhou1, Xi Fang1, Zhongjiu Xiao4, Lijuan Peng5, Haixia Ding1,6*
1College of Agriculture, Guizhou University, Guiyang Guizhou
2Guizhou Botanical Garden, Guiyang Guizhou
3Beijing Plant Protection Station, Beijing
4College of Resources and Environment, Zunyi Normal University, Zunyi Guizhou
5College of Tobacco Science, Guizhou University, Guiyang Guizhou
6Guizhou Academy of Agricultural Sciences, Guiyang Guizhou
Received: Mar. 23rd, 2022; accepted: Jun. 2nd, 2022; published: Jun. 10th, 2022
In order to identify the pathogenic species of edible roses leaf spot diseases in Guizhou Botanical Garden and Huishui County, Guizhou Province, China, the samples of leaf spot diseases were collected. By using single spore isolation method and pathogenicity determination, combined with morphological analysis combined with ITS, GADPH, ACT, CHS-1 gens, the taxonomic status of its pathogenic bacteria was determined. On this basis, through plate dilution and plate confrontation method, combined with physiological and biochemical experiments and 16S rRNA and gyrA gens, screening and identification of antagonistic bacteria on edible rose, then combined with the mycelial growth rate method to screen the chemical agents with better control effect on rose leaf spot, commercial microbial preparation Lvkangwei, Myclobutanil 12% EC + Dithane 65% WP, Oxadixyl mancozeb 64% WP and GUHS97 were used for field control effect experiments. The results showed that: 1) The pathogen causing leaf black spot was confirmed to be Marssinina rosae, and the pathogen causing anthracnose was confirmed to be Colletotrichum boninense; 2) In this study, a strain GUHS97 was screened from the healthy rose leaves in the heavily infected field and was identified as Bacillus amyloliquefaciens; 3) Indoor toxicity test showed that 9 fungicides had a certain inhibitory effect on C. boninense. The inhibition effects of zhongshengmycin 3% WP, difenoconazole 10% WDG, pyraclostrobin 25% SC and metalaxyl∙fludioxonil 62.5% SC were higher with the EC50values of 0.8440 mg∙L−1、1.3854 mg∙L−1、1.8667 mg∙L−1and 3.5945 mg∙L−1, respectively, followed by ningnanmycin 8% AS and bromothalonil 25% EC, with the EC50values of 18.9624 mg∙L−1and 25.4813 mg∙L−1, respectively. Pyraclostrobin 25% SC and bromothalonil 25% EC at the mixture ratio of 1:7, 1:8 and 1:10 showed obvious synergistic effect; 4) Furthermore, GUHS97 exhibited 59.12% control over leaf spot in field experiments and was more effective than other treatments including fungicide application. Overall, these results provide a scientific basis for the identification of edible rose leaf diseases and their control.
Keywords:Edible Roses, Leaf Black Spot, Anthracnose, Biological Control, Field Control, Fungicide Screening
Copyright © 2022 by author(s) and beplay安卓登录
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/
蔷薇科蔷薇属的蔷薇(Rosa sp.)、玫瑰(Rosa rugasa)、月季(Rosa chinensis)及其杂交种,因具有较高的食用、药用、日化价值统称为食用玫瑰(edible roses),在世界各地广泛种植,市场潜力巨大 [
本研究在贵州省植物园(26˚37'N, 106˚43'E)和黔南州惠水县(26˚11'N, 106˚40'E)的墨红月季上发现疑似黑斑病和炭疽病的2种叶斑病病害叶片,疑似黑斑病病害发生非常严重(发病率40%~100%),疑似炭疽病病害发生较轻(发病率3%~5%)。但迄今为止,有关墨红月季黑斑病的病原学和生物防治情况报道极少,炭疽病的内容更未见报道。因此本研究对收集到的墨红月季2种叶斑病病原进行分离和致病性测定,依据病原菌形态学,结合ITS、GADPH、ACT、CHS-1等多基因序列构建系统发育树对比分析,确定病原菌种类;收集发病严重地块的健康叶片,筛选叶际有益芽胞杆菌,依据形态学、生理生化特征及16S rRNA、gyrA等多基因序列构建系统发育树,确定有益菌种类;通过室内和田间测定有益菌株、生物药剂及化学杀菌剂对病害的防治情况,以期为食用月季叶部病害的识别和生物、化学防治提供科学依据。
1) 供试病样2019年9月在贵阳市植物园(26˚37'N, 106˚43'E)和贵州省黔南布依族苗族自治州惠水县好花红镇月季基地(26˚11'N, 106˚40'E),采集具有黑斑病和炭疽病典型症状的墨红月季叶片,带回实验室。
2) 供试药剂64%杀毒矾(8%噁霜灵 + 56%代森锰锌) WP (先正达(苏州)作物保护有限公司);12%腈菌·三唑酮(2%腈菌唑 + 10%三唑酮) EC (山东玥鸣生物科技有限公司);65%代森锌(成都科利隆生化有限公司) WP;200亿/g内生芽孢杆菌(绿康威,中农绿康(北京)生物技术有限公司)。
3) 培养基PDA和LB培养基分别用于真菌和芽胞杆菌的培养 [
1) 病原菌分离:采用单孢分离法 [
2) 病原菌形态学观察:将分离到的菌株接种于PDA [
3) 致病性测定:采用刺伤接种法 [
4) 病原菌分子鉴定:采用Biomiga真菌DNA提取试剂盒提取供试菌株DNA,选择ITS、GADPH、ACT、CHS-1基因引物(表1)进行PCR扩增 [
基因 | 基因全名 | 引物 | 序列(5’–3’) | 条带大小(bp) | 文献 |
---|---|---|---|---|---|
ITS | Internal transcribed spacer | ITS4 | TCCTCCGCTTATTGATATGC | 615 bp | Damm et al., 2012 |
ITS5 | GGAAGTAAAAGTCGTAACAAGG | Moriwaki et al., 2003 | |||
GAPDH | Glyceraldehyde-3 -phosphate dehydrogenase | GDF | GCCGTCAACGACCCCTTCATTGA | 308 bp | |
GDR | GGGTGGAGTCGTACTTGAGCATGT | ||||
ACT | Actin | ACT-512F | ATGTGCAAGGCCGGTTTCGC | 316 bp | |
ACT-783R | TACGAGTCCTTCTGGCCCAT | ||||
CHS-1 | Chitin synthase | CHS-79F | TGGGGCAAGGATGCTTGGAAGAAG | 229 bp | |
CHS-354R | TGGAAGAACCATCTGTGAGAGTTG | ||||
16S rRNA | 16S ribosomal RNA | 16S 27F | AGAGTTTGATCCTGGCTCAG | 1500 bp | Lane, 1991 |
16S 1492R | GGTTACCTTGTTACGACTT | ||||
gyrA | partial gyrase gene | gyrA 5P | CAGTCAGGAAATGCGTACGTCCTT | 1000 bp | Chun et al., 2000 |
gyrA 3P | CAAGGTAATGCTCCAGGCATTGCT |
表1. 实验所需要的引物
种名 | 菌株号 | 基因登录号 |
---|---|---|
ITS | ||
Ascochyta medicaginicola | 32DEC | MW723648 |
Colletotrichum boninense | CBS 123755 | JQ005153 |
C. boninense | CBS 123756 | JQ005154 |
Diplocarpon coronariae | Vtech6 | MW364856 |
D. coronariae | Vtech7 | MW364857 |
D. mali | -- | AB609188 |
D. mali | -- | AB609189 |
D. earlianum | CBS 16232 | MH855259 |
D. mespili | KACC 42361 | EF600984 |
D. mespili | KACC 42436 | EF600985 |
Marssonina balsamiferae | 1419 | MN315242 |
M. balsamiferae | 1421 | MN315243 |
M. panattoniana | Lett11 | MK252097 |
M. panattoniana | CBS 16325 | MH854831 |
M. rosae | CFCC 6814 | KP099199 |
M. rosae | RM071209004 | FJ493247 |
M. rosae | YJHB 1109 | MW804670 |
Sphaceloma rosarum | CBS 21233 | KX887283 |
S. rosarum | CBS 21333 | KX887284 |
表2. 月季黑斑病构建系统发育树的基因序列
种名 | 菌株号 | 基因登录号 | |||
---|---|---|---|---|---|
ITS | GAPDH | ACT | CHS-1 | ||
Colletotrichum beeveri | CBS 128527T | JQ005171 | JQ005258 | JQ005519 | JQ005345 |
C. boninense | CBS 123755T | JQ005153 | JQ005240 | JQ005501 | JQ005327 |
C. brasiliense | CBS 128501T | JQ005235 | JQ005322 | JQ005583 | JQ005409 |
C. brassicola | CBS 101059T | JQ005172 | JQ005259 | JQ005520 | JQ005346 |
C. citricola | SXC151T | KC293576 | KC293736 | KC293616 | KC293792 |
C. cymbidiicola | IMI 347923T | JQ005166 | JQ005253 | JQ005514 | JQ005340 |
C. dacrycarpi | CBS 130241T | JQ005236 | JQ005323 | JQ005584 | JQ005410 |
C. hippeastri | CBS 125376T | JQ005231 | JQ005318 | JQ005579 | JQ005405 |
C. oncidii | CBS 129828T | JQ005169 | JQ005256 | JQ005517 | JQ005343 |
C. parsonsiae | CBS 128525T | JQ005233 | JQ005320 | JQ005581 | JQ005407 |
C. petchii | CBS 378.94T | JQ005223 | JQ005310 | JQ005571 | JQ005397 |
C. torulosum | CBS 128544T | JQ005164 | JQ005251 | JQ005512 | JQ005338 |
C. watphraense | MFLU 14-0123 | MF448523 | MH049479 | MH376384 | -- |
C. gloeosporioides | CBS 112999 | JQ005152 | JQ005239 | JQ005500 | JQ005326 |
C. boninense | CBS 112115 | JQ005160 | JQ005247 | JQ005508 | JQ005334 |
C. boninense | CBS 128549 | JQ005156 | JQ005243 | JQ005504 | JQ005330 |
C. boninense | CBS 123756 | JQ005154 | JQ005241 | JQ005502 | JQ005328 |
C. boninense | GZUMH01 | MT845879 | MT861006 | MT861007 | MT861008 |
表3. 月季炭疽病构建系统发育树的基因序列
5) 叶际芽胞杆菌的分离 采用稀释平板法 [
6) 生防芽胞杆菌的筛选 在室内通过平板对峙法 [
抑菌率(%) = [(对照组菌落直径 − 处理组菌落直径)/处理组菌落直径] × 100%。
7) 生防芽胞杆菌形态观察和生理生化特性检测:将分离到的菌株于37℃、200 rpm过夜摇培,离心收集菌体,用无菌水清洗3次,再用无菌水重悬并稀释至浓度108CFU/mL,在LB平板上滴加5 μL菌液,37℃恒温培养12 h后,观察记录菌落特征。根据《常见细菌系统鉴定手册》 [
8) 生防芽胞杆菌分子鉴定:采用Biomiga细菌基因组DNA提取试剂盒提取生防芽胞杆菌的基因组DNA,再用16S rRNA和gyrA引物 [
种名 | 菌株号 | 基因登录号 | |
---|---|---|---|
16S rRNA | gyrA | ||
Bacillus subtilis | 168 | AL009126 | AL009126 |
B. subtilis | NCIB 3610 | CP020102 | CP020102 |
B. safensis | KCTC 12796BP | NZ_CP018197 | NZ_CP018197 |
B. safensis | FO-36b | NZ_CP010405 | NZ_CP010405 |
B. cereus | ATCC 14579 | CP034551 | CP034551 |
B. cereus | CMCC P0021 | NZ_CP011151 | NZ_CP011151 |
B. megaterium | NRCB001 | MN128363 | MN662261 |
B. megaterium | BP17 | KM376218 | JX514095 |
B. atrophaeus | 3EC7C5 | EU304976 | EF026698 |
B. atrophaeus | NRS-213 | NR_116190 | EU138654 |
B. amyloliquefaciens | NRS-213 | AB918710 | NZ_CP053376 |
B. amyloliquefaciens | GUHS97 | OK560079 | OK663022 |
Geobacillus thermoleovorans | ARTRW1 | CP042251 | CP042251 |
表4. 芽胞杆菌病构建系统发育树的基因序列
9) 室内杀菌剂敏感性测定:单剂毒力测定:采用菌丝生长速率法 [
杀菌剂 | 有效成分含量(μg∙mL−1) | 文献 | ||||
---|---|---|---|---|---|---|
Difenoconazole 10% WDG | 0.94 | 1.88 | 3.75 | 7.5 | 15 | Syngenta Nantong Crop Protection Co., Ltd. |
Pyraclostrobin 25% SC | 5 | 10 | 20 | 40 | 80 | Jiangsu Tuoqiu Agriculture Chemical Co., Ltd. |
Dithianon 22.7% SC | 9.44 | 18.86 | 37.75 | 75.5 | 115 | Jiangxi Heyi Chemical Co., Ltd. |
Bromothalonil 25% EC | 3.75 | 7.5 | 15 | 30 | 60 | Jiangsu Tuoqiu Agriculture Chemical Co., Ltd. |
Phenazine-1-carboxylic acid 1% SC | 3.91 × 10−6 | 1.56 × 10−5 | 6.25 × 10−4 | 2.50 × 10−3 | 0.01 | Shanghai Nongle Biology Co., Ltd. |
Ningnanmycin 8% AS | 3.91 × 10−6 | 1.56 × 10−5 | 6.25 × 10−4 | 2.50 × 10−3 | 0.01 | Deqiang Biology Co., Ltd. |
Zhongshengmycin 3% WP | 0.61 × 10−1 | 2.44 × 10−1 | 9.77 × 10−1 | 3.91 | 15.63 | Shenzhen Noposion Agrochemicals Co., Ltd. |
Metalaxyl·fludioxonil 62.5% SC | 1.22 × 10−3 | 4.88 × 10−3 | 1.95 × 10−3 | 7.81 × 10−3 | 31.25 × 10−2 | Syngenta Nantong Crop Protection Co., Ltd. |
Allylisothiocyanate 20% SL | 0.4 | 0.8 | 1.6 | 3.2 | 6.4 | Beijing Yagenong Biology Pharmacy Co., Ltd. |
表5. 实验中使用的9种杀菌剂
10) 田间小区试验:于2020年7~10月贵州省黔南布依族苗族自治州惠水县好花红镇月季基地(26˚11'N, 106˚40'E),选用一年生墨红月季进行田间小区试验。试验共设4个处理(其中药剂处理采用当地田间常用药剂),1个清水对照。处理1:64%杀毒矾(8%噁霜灵 + 56%代森锰锌) WP (先正达(苏州)作物保护有限公司) 600倍液;处理2:12%腈菌·三唑酮(2%腈菌唑 + 10%三唑酮) EC (山东玥鸣生物科技有限公司) 5000倍液 + 65%代森锌(成都科利隆生化有限公司) WP 2000倍液;处理3:商品化生防制剂(绿康威,中农绿康(北京)生物技术有限公司) 200亿/g 50倍液;处理4:芽胞杆菌(B. amyloliquefaciens GUHS97) 108CFU/mL。每处理3次重复,共12个小区,每小区60株。第1次在修剪后喷施,确保叶片正面和背面都喷施到,之后每隔7~10天再处理1次,共施用3次。田间观察到空白对照发病后进行调查,以株为单位分级,在晴天中午以后调查。计算病害的发病率和病情指数,使用Excel和DPS软件进行数据统计分析。
月季叶斑病病害严重度分级:0级:全株未感病;1级:病斑面积占整片叶面积1/10以下;2级:病斑面积占整片叶面积的1/10~1/4;3级:病斑面积占整片叶面积的1/4~1/2;4级:病斑面积占整片叶面积的1/2~3/4;5级:病斑面积占整片叶面积的3/4以上,病叶脱落严重,植株死亡。
发 病 率 = ( 发 病 株 数 / 调 查 总 株 数 ) × 100 % ;
病 情 指 数 = ∑ ( 各 级 病 株 或 叶 数 × 该 病 级 值 ) / ( 调 查 总 株 或 叶 数 × 最 高 级 值 ) × 100 ;
相 对 防 效 = ( 对 照 区 病 情 指 数 − 处 理 区 病 情 指 数 ) / 对 照 区 病 情 指 数 × 100 % 。
黑斑病主要危害墨红月季的叶片,发病部位初期为褐色小斑点,外圈有黄晕,外缘交界明显;后期病斑扩展为黑褐色、近圆形或不规则形,病斑上散生黑色小点,边缘呈放射状,严重时病斑连接成片,导致叶片大量脱落,植株死亡(图1(A)~(C))。
炭疽病主要危害墨红月季的叶片,发病部位褐色斑点,外缘交界明显,病斑中心灰白色,有深褐色小点,随后病斑扩展为近圆形或不规则形(图2(A))。
黑斑病病原菌YJHB1109形态如图1(D)~(J)所示,在PDA培养基上28℃光照培养25 d,菌落直径约1.0 cm,生长非常慢,气生菌丝白色薄绒状,菌落生长后期呈深灰色;分生孢子盘呈分枝状,上着生大量分生孢子;分生孢子纺锤型,双胞,隔膜缢缩不明显,大小为13.9~29.0 μm × 4.9~13.8 μm。根据以上形态学特征,初步鉴定黑斑病的病原菌为蔷薇盘二孢(Marssonina rosae) [
炭疽病病原菌GZUMH01形态如图2(C)~(F)所示,菌落呈灰色薄绒状,后期菌落中产生深棕色近圆形的产孢结构;分生孢子数量丰富,近椭圆形,无分隔,大小约13.7~18.8 μm × 4.3~6.8 µm;分生孢子萌发可形成附着孢。根据以上形态学特征,结合初步鉴定炭疽病的病原菌为炭疽菌(Colletotrichum sp.) [
图1. 月季黑斑症状及病原菌YJHB1109形态特征。(A)~(C):月季黑斑症状;(D):分生孢子梗和分生孢子;(F):分生孢子;(G),(H):菌落在25天后PDA正反面;(I),(J):菌落在45天后PDA正反面。比例尺:(D) − (E) = 10 µm
鉴定:基于供试菌株的ITS基因序列构建系统发育树。菌株YJHB1109 ITS基因序列已提交GenBank数据库,序列号见表2。如图3所示,供试菌株YJHB1109与菌株M. rosae RM071209004和CFCC 6814聚集于一支,且支持率达100%,能与其它种明显区分开。因此,结合菌株形态学特征,将病原菌鉴定为蔷薇盘二孢M. rosae。
图2. 月季炭疽病症状、病原菌GZUMH01形态特征及致病性实验。(A):月季炭疽病症状;(B):分生孢子体;(C),(D):菌落在PDA上的正反面;(E):分生孢子;(F):附着孢和分生孢子;(G),(H):致病性试验。比例尺:(D) − (E) = 10 µm
炭疽病病原菌鉴定:基于供试菌株的ITS、GADPH、CHS-1和ACT基因序列构建多基因联合系统发育树。菌株GZUMH01 ITS、GADPH、CHS-1和ACT基因序列已提交GenBank数据库,序列号见表3。如图4所示,供试菌株GZUMH01与菌株C. boninense CBS 112115聚集于一支,且支持率达100%,能与其它种明显区分开。因此,结合菌株形态学特征,将病原菌鉴定为博宁炭疽菌C. boninense。
从贵州省贵阳市墨红月季种植地块采集健康植株叶片,分离得到137株芽胞杆菌,用于进一步筛选对黑斑病菌和炭疽病菌拮抗效果优秀的菌株,因黑斑病菌生长速度极慢,本研究在室内只进行炭疽病菌的拮抗筛选。通过平板对峙法筛选拮抗炭疽病菌效果明显的生防芽胞杆菌,得到5株抑菌能力最强的菌株,如图5和表6所示,对炭疽病菌的抑制率均为70.27%以上,其中菌株GUHS97对C. boninense的拮抗效果最好,将其作为后续实验研究菌株。
菌株GUHS97的生理生化特性见表7,菌株GUHS97为G+,杆状,能够利用鼠李糖和甘露醇,产生过氧化氢酶、硝酸还原酶和亚硝酸还原酶,V-P反应阳性,甲基红染色阳性等。通过对16S rRNA和gyrA基因序列BLAST分析后,选取模式菌株作为参比菌株,构建了菌株GUHS97的系统发育树。菌株GUHS97 16S rRNA与gyrA基因序列已提交GenBank数据库,序列号见表4。如图6所示,菌株GUHS97同解淀粉芽胞杆菌(B. amyloliquefaciens) WF02聚到一支,且支持率达100%,能与其它种明显区分开。综合形态学、生理生化特征和分子生物学分析,将菌株GUHS97鉴定为解淀粉芽胞杆菌(B. amyloliquefaciens)。
图3. 菌株YHJB1109基于ITS基因的系统发育树
图4. 菌株GZUMH01基于ITS,GADPH,CHS-1和ACT基因的系统发育树
表5. 芽孢杆菌对月季炭疽病的拮抗效果。注:((A)~(E):菌株 GUHS97、 GUHS113、GUHS120、GUHS117 和 GUHS5;(F):CK (月季炭疽病原菌)
Strains | Inhibition rate/(%) |
---|---|
GUHS97 | 77.85 ± 0.05a |
GUHS113 | 72.46 ± 0.06a |
GUHS120 | 71.26 ± 0.13c |
GUHS117 | 70.86 ± 0.26b |
GUHS5 | 70.27 ± 0.15c |
表6. 芽孢杆菌对月季炭疽病的拮抗活性实验
Note: The data are means ± SDs. The different lowercase letters in the same column indicate significant differences at the P < 0.05, respectively, using Duncan’s new multiple range test.
Characteristics | GUHS97 |
---|---|
Gram stain | + |
Voges proskauer tests | + |
Methyl red tests | + |
Citrate | + |
Hydrogen Peroxide | + |
Starch hydrolysis | + |
Nitrite reductase | + |
Nitrite reductase (NO-forming) | − |
Alpha-L-rhamnose | + |
Mannitol | + |
表7. 菌株GUHS97的生理生化特性实验
Note: “+” is positive, “−” is negative.
图6. 菌株YHJB1109基于16S rRNA和gyrA基因的系统发育树
因黑斑病菌生长速度极慢,本研究在室内只进行炭疽病菌的杀菌剂敏感性测定。试验结果表明,供试的9种杀菌剂对月季炭疽病菌(C. boninense)均有不同程度的抑制作用,其中,3%中生菌素WP、10%苯醚甲环唑WDG、25%吡唑醚菌酯SC和10%精甲·咯菌腈SC抑制效果最好,EC50值分别为0.8440 mg∙L−1、1.3854 mg∙L−1、1.8667 mg∙L−1和3.5945 mg∙L−1;其次为8%宁南霉素AS和25%溴菌腈EC,EC50值分别为18.9624 mg∙L−1和25.4813 mg∙L−1(见图7、表8)。由于25%吡唑醚菌酯SC和25%溴菌腈EC对炭疽菌抑制效果较好,且两种药剂作用机制不同,由表9可见,将这两种药剂以不同比例进行复配,其毒效比大于1,说明两种药剂混配有一定的增效或者相加作用。当25%吡唑醚菌酯SC和25%溴菌腈EC配比组合为1:7、1:8、和1:10时,由表10可见,EC50均比较小,且明显小于单剂的EC50,说明以这3种配比组合进行混配对月季炭疽病菌具有更强的抑制作用,3种配比组合的共毒系数分别为218.0606、217.9975和248.7639,表现出明显的增效作用,其中1:7效果最佳(见图8、表9、表10)。
对月季叶斑病的田间小区试验表明,GUHS97处理后相对防效为59.12%,和商品化微生物制剂绿康威的63.89%效果相当,明显高于实际生产中常用的12%腈菌·三唑酮EC + 65%代森锌WP的30.09%和64%杀毒矾WP的19.88%,防治效果良好(见表11)。
图7. 吡唑醚菌酯和溴菌腈对月季炭疽病菌的室内毒性试验
图8. 吡唑醚菌酯和溴菌腈对月季疽炭疽病菌的共毒性比图
杀菌剂 | 毒性回归方程 | 相关系数 | EC50值(mg∙L−1) |
---|---|---|---|
25%吡唑醚菌酯 | Y = 0.4161x + 4.8872 | 0.9887 | 1.8667 |
22.7%二氰蒽醌 | Y = 0.3780x + 4.9946 | 0.9684 | 103.3143 |
25%溴菌腈 | Y = 1.0601x + 5.6295 | 0.9697 | 25.4813 |
10%苯醚甲环唑 | Y = 1.6375x + 8.0431 | 0.9947 | 1.3854 |
1%申嗪霉素 | Y = 0.2123x + 4.3902 | 0.9497 | 745.2285 |
8%宁南霉素 | Y = 0.7724x + 6.3320 | 0.9961 | 18.9624 |
62.5%精甲霜灵 | Y = 0.7276x + 5.3234 | 0.9702 | 3.5945 |
20%异硫青酸烯丙酯 | Y = 0.1601x + 4.3607 | 0.9953 | 9830.3102 |
3%中生菌素 | Y = 1.6969x + 5.1250 | 0.9809 | 0.844 |
表8. 9种杀菌剂对月季炭疽病菌的室内毒性试验
体积比(VA:VB) | 实际抑菌率(%) | 预期抑菌率(%) | 毒性比 |
---|---|---|---|
1:0 | 76.56 | 50 | 1.53 |
1:01 | 82.48 | 61.74 | 1.21 |
1:02 | 86.49 | 63.39 | 1.32 |
1:03 | 99.99 | 65.03 | 1.56 |
1:04 | 85.22 | 66.68 | 1.34 |
1:05 | 88.14 | 68.33 | 1.4 |
1:06 | 99.99 | 69.98 | 1.6 |
1:07 | 99.99 | 71.62 | 1.61 |
1:08 | 99.99 | 73.27 | 1.61 |
1:09 | 86.41 | 74.92 | 1.4 |
1:10 | 86.26 | 61.59 | 1.4 |
0:1 | 60.09 | 50 | 1.2 |
表9. 吡唑醚菌酯和溴菌晴对月季疽炭疽病菌的毒性比
Note: VA:VB represents the volume ratio of pyraclostrobin and bromothalonil.
体积比(VA:VB) | 毒性回归方程 | 相关系数 | EC50值(mg∙L−1) | 共毒系数 | 共毒效果 |
---|---|---|---|---|---|
1:1 | Y = 0.2475 × x + 5.2443 | 0.9809 | 0.103 | 48.89164 | antagonism |
1:2 | Y = 0.0472 × x + 5.1266 | 0.9694 | 0.4053 | 72.84297 | additive effect |
1:3 | Y = 0.7358 × x + 5.8051 | 0.8762 | 0.0805 | 97.65353 | additive effect |
1:4 | Y = 0.3295 × x + 5.0566 | 0.9689 | 0.6733 | 119.2654 | additive effect |
1:5 | Y = 0.3356 × x + 5.0448 | 0.9227 | 0.7354 | 141.8125 | additive effect |
1:6 | Y = 0.7051 × x + 5.7091 | 0.8328 | 0.0987 | 170.3214 | synergism |
1:7 | Y = 0.6823 × x + 5.6057 | 0.7902 | 0.1295 | 218.0606 | synergism |
1:8 | Y = 0.7560 × x + 5.6617 | 0.8641 | 0.1333 | 217.9975 | synergism |
1:9 | Y = 0.3785 × x + 4.9248 | 0.9649 | 1.5806 | 215.2897 | synergism |
1:10 | Y = 0.2775 × x + 5.0190 | 0.9809 | 0.8542 | 248.7639 | synergism |
表10. 吡唑醚菌酯和溴菌晴对月季疽炭疽病菌的共毒性比
Note: VA:VB represents the volume ratio of pyraclostrobin and bromothalonil.
处理 | 发病率(%) | 病情指数 | 防治效果(%) |
---|---|---|---|
CK | 98.54 ± 1.30a | 12.02 ± 0.77a | - |
64%杀毒矾 | 81.37 ± 0.38b | 9.61 ± 0.21b | 19.88 ± 3.64c(C) |
12%腈菌·三唑酮 + 65%代森锌 | 78.34 ± 1.67b | 8.41 ± 0.76c | 30.09 ± 3.39b(B) |
绿康威 | 49.34 ± 0.93d | 4.33 ± 0.16d | 63.89 ± 2.46a(A) |
GUHS97 | 66.72 ± 1.16c | 4.90 ± 0.17d | 59.12 ± 3.19a(A) |
表11. 田间对食用玫瑰叶斑病的防治效果
Note: The data are means ± SDs. The different lowercase and uppercase letters in the same column indicate significant differences at the P < 0.05 and P < 0.1 levels, respectively, using Duncan’s new multiple range test.
叶斑病是食用玫瑰叶部主要真菌病害之一,其病原种类较为少。研究表明Sphaerotheca pannosa、Pestalotiopsis clavispora、Phytophthora nagaii、Botrytis cinerea [
目前,人们对有机和无机蔬菜的要求越来越高,以及对可持续杀菌剂的使用控制,旨在降低环境和人类健康风险,因此需要生态友好的替代品。在过去的几十年里,科学家们做出了许多努力来寻找替代工具,特别关注拮抗微生物,如芽孢杆菌属 [
目前,对月季叶斑病的防治以化学药剂防治为主,但防治效果并不理想。因此,本研究收集生产上常用的化学和生物药剂,通过室内药剂筛选发现,3%中生菌素WP、10%苯醚甲环唑WDG、25%吡唑醚菌酯SC和10%精甲·咯菌腈SC抑制效果最好,EC50值分别为0.8440 mg∙L−1、1.3854 mg∙L−1、1.8667 mg∙L−1和3.5945 mg∙L−1,其次为8%宁南霉素AS和25%溴菌腈EC,EC50值分别为18.9624 mg∙L−1和25.4813 mg∙L−1;将25%吡唑醚菌酯SC和25%溴菌腈EC以1:7、1:8、和1:10比例复配,对月季炭疽病菌具有更强的抑制作用,表现出明显的增效作用。生产中常用吡唑醚菌酯防治炭疽病病害,吡唑醚菌酯属于呼吸抑制剂,作用靶标单一,极易产生抗药性,吡唑醚菌酯可通过复配有效降低病菌对其产生抗药性。而溴菌腈为一种低毒、广谱的新颖化合物类杀菌剂,能够与病原微生物细胞中的亲核基团紧密结合,导致细胞代谢紊乱 [
以上研究结果为食用月季叶部病害的识别和生物、化学防治提供科学依据。
本研究通过分离纯化、致病性测定、形态学鉴定及多基因序列联合构建系统发育树等技术手段,将贵州省植物园和黔南州惠水县的墨红月季上叶斑病的病原菌分别鉴定为黑斑病病原菌为蔷薇盘二孢(M. rosae)和炭疽病病原菌博宁炭疽菌(C. boninense),并筛选到1株叶际有益解淀粉芽胞杆菌(Bacillus amyloliquefaciens) GUHS97,室内试验表明GUHS97对月季炭疽病菌的抑菌效果可达77.85%,田间小区实验表明,GUHS97对叶斑病的相对防效为59.12%,防病效果良好且明显优于化学药剂;同时可选用3%中生菌素WP、10%苯醚甲环唑WDG、25%吡唑醚菌酯SC、10%精甲·咯菌腈SC,或25%吡唑醚菌酯SC和25%溴菌腈EC复配,进一步开展田间防治试验。
中国博士后科学基金面上项目(2020M683658XB);贵州省教育厅青年科技人才成长项目(黔教合KY字[
莫维弟,董万鹏,孙 海,周志成,方 茜,肖仲久,彭丽娟,丁海霞. 贵州省食用玫瑰叶斑病病原菌鉴定及其防治 Pathogens Identification and Control of Edible Roses Leaf Spot Diseases in Guizhou[J]. 生物过程, 2022, 12(02): 63-80. https://doi.org/10.12677/BP.2022.122008
https://doi.org/10.1094/PDIS-01-14-0036-PDN
https://doi.org/10.1094/PDIS-08-13-0810-PDN
https://doi.org/10.1016/j.foodchem.2020.127940
https://doi.org/10.1111/1751-7915.13043
https://doi.org/10.3389/fmicb.2018.02491
https://doi.org/10.1016/j.myc.2012.07.006
https://doi.org/10.1007/S10267-002-0079-7
https://doi.org/10.3114/sim0002
https://doi.org/10.1023/A:1026555830014
https://doi.org/10.1007/s10327-014-0519-1
https://doi.org/10.1111/tpj.14871
https://doi.org/10.3114/sim0014
https://doi.org/10.13926/j.cnki.apps.000748, 2022-03-22.