生物硫醇类化合物,包括L-半胱氨酸、L-同型半胱氨酸和谷胱甘肽等,在许多生理过程中起着十分重要的作用,因此高选择性、高准确度地识别和定量这类化合物对疾病的预防和诊疗起着重要的作用。对生物硫醇的分析方法有很多种,其中荧光探针法由于其选择性高、抗干扰能力强、准确度高且能够用于细胞或动物体内原位成像而受到了越来越多学者的重视。本篇综述按照与生物硫醇发生反应的结构位点,分别介绍了近些年来几种不同类型的荧光探针,不仅有利于生物硫醇分析方法的科学普及,还可以有效地促进新式荧光探针的结构设计和开发。 Biothiols, including L-cysteine, L-homocysteine, and glutathione, play important roles in many physiological processes. Therefore, the identification and quantification of such compounds with high selectivity and accuracy plays an important role in the prevention and diagnosis of diseases. There are many methods for the analysis of biological thiols, among which the fluorescent probe method has attracted more and more scholars due to its high selectivity, strong anti-interference ability, high accuracy and can be used for in situ imaging of cells or animals. This review summarizes several different types of fluorescent probes for the analysis of biothiols in recent years according to the structural sites that react with biothiols. This review is not only conducive to the scientific popularization of biological thiol analysis methods, but also can effectively promote the structural design and development of novel fluorescent probes.
Biothiols, including L-cysteine, L-homocysteine, and glutathione, play important roles in many physiological processes. Therefore, the identification and quantification of such compounds with high selectivity and accuracy plays an important role in the prevention and diagnosis of diseases. There are many methods for the analysis of biological thiols, among which the fluorescent probe method has attracted more and more scholars due to its high selectivity, strong anti-interference ability, high accuracy and can be used for in situ imaging of cells or animals. This review summarizes several different types of fluorescent probes for the analysis of biothiols in recent years according to the structural sites that react with biothiols. This review is not only conducive to the scientific popularization of biological thiol analysis methods, but also can effectively promote the structural design and development of novel fluorescent probes.
闫鎏鑫,张鹏程,吝丽华,高 翔,高 林,常晓杰,张 杰,周西斌. 用于检测生物硫醇的荧光探针的研究进展 Research Progress of Fluorescent Probes for Detection of Biological Thiols[J]. 生物过程, 2022, 12(02): 54-62. https://doi.org/10.12677/BP.2022.122007
参考文献References
Wood, Z.A., Schröder, E., Robin Harris, J. and Poole, L.B. (2003) Structure, Mechanism and Regulation of Peroxire-doxins. Trends in Biochemical Sciences, 28, 32-40. https://doi.org/10.1016/S0968-0004(02)00003-8
Suzuki, Y., Suda, K., Matsuyama, Y., Era, S. and Soejima, A. (2014) Close Relationship between Redox State of Human Serum Albumin and Serum Cysteine Levels in Non-Diabetic CKD Patients with Various Degrees of Renal Function. Clinical Nephrology, 82, 320-325. https://doi.org/10.5414/CN108040
Pastore, A., Piemonte, F., Locatelli, M., Lo Russo, A., Gaeta, L.M., Tozzi, G. and Federici, G. (2001) Determination of Blood Total, Reduced, and Oxidized Gluta-thione in Pediatric Subjects. Clinical Chemistry, 47, 1467-1469. https://doi.org/10.1093/clinchem/47.8.1467
Chung, T.K., Funk, M.A. and Baker, D.H. (1990) L-2-Oxothiazolidine-4-Carboxylate as a Cysteine Precursor: Efficacy for Growth and Hepatic Glutathione Synthesis in Chicks and Rats. The Journal of Nutrition, 120, 158-165. https://doi.org/10.1093/jn/120.2.158
German, D.C., Bloch, C.A. and Kredich, N.M. (1983) Measurements of S-Adenosylmethionine and L-Homocysteine Metabolism in Cultured Human Lymphoid Cells. Journal of Biological Chemistry, 258, 10997-11003. https://doi.org/10.1016/S0021-9258(17)44376-6
She, M., Wang, Z., Luo, T., Yin, B., Liu, P., Liu, J., Chen, F., Zhang, S. and Li, J. (2018) Fluorescent Probes Guided by a New Practical Performance Regulation Strategy to Monitor Glutathione in Living Systems. Chemical Science, 9, 8065-8070. https://doi.org/10.1039/C8SC03421D
Shahrokhian, S. (2001) Lead Phthalocyanine as a Selective Carrier for Preparation of a Cysteine-Selective Electrode. Analytical Chemistry, 73, 5972-5978. https://doi.org/10.1021/ac010541m
Yang, X., Guo, Y. and Strongin, R.M. (2011) Conjugate Addi-tion/Cyclization Sequence Enables Selective and Simultaneous Fluorescence Detection of Cysteine and Homocysteine. Angewandte Chemie, 123, 10878-10881. https://doi.org/10.1002/ange.201103759
Townsend, D.M., Tew, K.D. and Tapiero, H. (2003) The Importance of Glutathione in Human Disease. Biomedicine & Pharmacotherapy, 57, 145-155. https://doi.org/10.1016/S0753-3322(03)00043-X
Lasierra-Cirujeda, J., Coronel, P., Aza, M. and Gimeno, M. (2013) Beta-Amyloidolysis and Glutathione in Alzheimer’s Disease. Journal of Blood Medicine, 4, 31-38. https://doi.org/10.2147/JBM.S35496
Hansen, D.B. and Joullie, M.M. (2005) The Development of Novel Ninhydrin Analogues. Chemical Society Reviews, 34, 408-417. https://doi.org/10.1039/B315496N
Yamato, S., Nakajima, M., Wakabayashi, H. and Shimada, K. (1992) Specific Detection of Acetyl-Coenzyme A by Reversed-Phase Ion-Pair High-Performance Liquid-Chromatography with an Immobilized Enzyme Reactor. Journal of Chromatography A, 590, 241-245. https://doi.org/10.1016/0021-9673(92)85387-9
Harada, D., Naito, S., Kawauchi, Y., Ishi-kawa, K., Koshitani, O., Hiraoka, I. and Otagiri, M. (2001) Determination of Reduced, Protein-Unbound, and Total Concentrations of N-Acetyl-L-Cysteine and L-Cysteine in Rat Plasma by Postcolumn Ligand Substitution High-Performance Liquid Chromatography. Analytical Biochemistry, 290, 251-259. https://doi.org/10.1006/abio.2000.4980
Parmentier, C., Leroy, P., Wellman, M. and Nicolas, A. (1998) Deter-mination of Cellular Thiols and Glutathione-Related Enzyme Activities: Versatility of High-Performance Liquid Chroma-tography Spectrofluorimetric Detection. Journal of Chromatography B, 719, 37-46. https://doi.org/10.1016/S0378-4347(98)00414-9
Tsunoda, M. and Imai, K. (2005) Analytical Applications of Peroxyoxalate Chemiluminescence. Analytica Chimica Acta, 541, 13-23. https://doi.org/10.1016/j.aca.2004.11.070
McDermott, G.P., Terry, J.M., Conlan, X.A., Barnett, N.W. and Francis, P.S. (2011) Direct Detection of Biologically Significant Thiols and Disulfides with Manganese(IV) Chemilumi-nescence. Analytical Chemistry, 83, 6034-6039. https://doi.org/10.1021/ac2010668
Kusmierek, K., Chwatko, G., Glowacki, R. and Bald, E. (2009) Determina-tion of Endogenous Thiols and Thiol Drugs in Urine by HPLC with Ultraviolet Detection. Journal of Chromatography B, 877, 3300-3308. https://doi.org/10.1016/j.jchromb.2009.03.038
Glowacki, R. and Bald, E. (2009) Determination of N-AcetylCysteine and Main Endogenous Thiols in Human Plasma by HPLC with Ultraviolet Detection in the Form of Their S-Quinolinium Derivatives. Journal of Liquid Chromatography & Related Technologies, 32, 2530-2544. https://doi.org/10.1080/10826070903249666
Norris, R.L. G., Paul, M., George, R., Moore, A., Pinkerton, R., Haywood, A. and Charles, B. (2012) A Stable-Isotope HPLC-MS/MS Method to Simplify Storage of Human Whole Blood Samples for Glutathione Assay. Journal of Chromatography B, 898, 136-140. https://doi.org/10.1016/j.jchromb.2012.04.003
Persichilli, S., Gervasoni, J., Iavarone, F., Zuppi, C. and Zap-pacosta, B. (2010) A Simplified Method for the Determination of total homoCysteine in Plasma by Electrospray Tandem Mass Spectrometry. Journal of Separation Science, 33, 3119-3124. https://doi.org/10.1002/jssc.201000399
Yang, S.H., Wang, X., Li, E.S., Liu, X.Y. and Liu, J. (2022) Wa-ter-Dispersible Chlorophyll-Based Fluorescent Material Derived from Willow Seeds for Sensitive Analysis of Copper Ions and Biothiols in Food and Living Cells. Journal of Photochemistry And Photobiology A: Chemistry, 425, Article ID: 113664. https://doi.org/10.1016/j.jphotochem.2021.113664
Qiao, L.Q., Yang, Y.X., Li, Y.P., Lv, X. and Hao, J.S. (2022) A Fluorescent Probe Capable of Naked Eye Recognition for the Selective Detection of Biothiols. Journal of Pho-tochemistry and Photobiology A: Chemistry, 425, Article ID: 113654. https://doi.org/10.1016/j.jphotochem.2021.113654
Li, X.H., Han, X.F., Wu, W.N., Wang, Y., Fan, Y.C., Zhao, X.L. and Xu, Z.H. (2022) Simple Thiosemicarbazone “Switch” Sensing of Hg2+ and Biothiols in Pure Aqueous Solutions and Application to Imaging in Lysosomes. Journal of Molecular Structure, 1250, Article ID: 131811. https://doi.org/10.1016/j.molstruc.2021.131811
Cifteci, A., Celik, S.E. and Apak, R. (2022) Gold-Nanoparticle Based Turn-On Fluorometric Sensor for Quantification of Sulfhydryl and Disulfide Forms of Biothi-ols: Measurement of Thiol/Disulfide Homeostasis. Analytical Letters, 55, 648-664. https://doi.org/10.1080/00032719.2021.1958830
Zhuo, Y.H., Zhang, Y.Y., Feng, Y.D., Xu, Y.Q., You, Q.H., Zhang, L., Huang, H.B. and Lin, L.L. (2021) A 3,5-dinitropyridin-2yl Substituted Naphthalimide-Based Fluorescent Probe for the Selective Detection of Biothiols and Its Application in Cell-Imaging. RSC Advances, 11, 9290-9295. https://doi.org/10.1039/D1RA00010A
Hong, J.-A., Kim, M.-J., Eo, J. and Lee, J. (2018) A Turn-On Fluo-rescent Probe for Live-Cell Imaging of Biothiols. Bulletin of the Korean Chemical Society, 39, 425-426. https://doi.org/10.1002/bkcs.11429
Jung, H.S., Pradhan, T., Han, J.H., Heo, K.J., Lee, J.H., Kang, C. and Kim, J.S. (2012) Molecular Modulated Cysteine-Selective Fluorescent Probe. Biomaterials, 33, 8495-8502. https://doi.org/10.1016/j.biomaterials.2012.08.009
Kang, J., Huo, F., Chao, J. and Yin, C. (2018) Nitroole-fin-Based Bodipy as a Novel Water-Soluble Ratiometric Fluorescent Probe for Detection of Endogenous Thiols. Spec-trochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 195, 16-20. https://doi.org/10.1016/j.saa.2018.01.052
Wu, X., Shu, H., Zhou, B., Geng, Y., Bao, X. and Zhu, J. (2016) Design and Synthesis of a New Rhodamine B-Based Fluorescent Probe for Selective Detection of Glutathione and Its Application for Live Cell Imaging. Sensors and Actuators B, 237, 431-442. https://doi.org/10.1016/j.snb.2016.06.161
Liang, B., Wang, B., Ma, Q., Xie, C., Li, X. and Wang, S. (2018) A Lysosome-Targetable Turn-On Fluorescent Probe for the Detection of Thiols in Living cells Based on a 1,8-Naphthalimide Derivative. Spectrochimica Acta Part A, 192, 67-74. https://doi.org/10.1016/j.saa.2017.10.044
Liu, X., Tian, H., Yang, L., Su, Y., Guo, M. and Song, X. (2017) An ESIPT-Based Fluorescent Probe for Sensitive and Selective Detection of Cys/Hcy over GSH with a Red Emission and a Large Stokes Shift. Tetrahedron Letters, 58, 3209-3213. https://doi.org/10.1016/j.tetlet.2017.06.082
Wang, F., Feng, C., Lu, L., Xu, Z. and Zhang, W. (2017) A Rati-ometric Fluorescent Probe for Rapid and Sensitive Detection of Biothiols in Fetal Bovine Serum. Talanta, 169, 149-155. https://doi.org/10.1016/j.talanta.2017.03.080
Chen, D., Long, Z., Sun, Y., Luo, Z. and Lou, X. (2019) A Red-Emission Probe for Intracellular Biothiols Imaging with a Large Stokes Shift. Journal of Photochemistry And Pho-tobiology A: Chemistry, 368, 90-96. https://doi.org/10.1016/j.jphotochem.2018.09.030
Liang, F., Jiao, S., Jin, D., Dong, L., Lin, S., Song, D. and Ma, P. (2020) A Novel Near-Infrared Fluorescent Probe for the Dynamic Monitoring of the Concentration of Glutathione in Living Cells. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 224, Article ID: 117403. https://doi.org/10.1016/j.saa.2019.117403
Ren, A., Zhu, D., Zhong, X., Xiong, Y. and Duan, Z. (2019) A Novel Fluorescent Turn-On Probe for Imaging Biothiols Based on SNAr Substitution-Skeletal Rearrangement Strategy. Analytical Methods, 11, 262-267. https://doi.org/10.1039/C8AY02413H
Wang, C., Xia, X., Luo, J. and Qian, Y. (2018) A Novel Near-Infrared Styryl-BODIPY Fluorescent Probe for Discrimination of GSH and Its Application in livIng Cells. Dyes and Pigments, 152, 85-92. https://doi.org/10.1016/j.dyepig.2018.01.034
Xie, J.-Y., Li, C.-Y., Li, Y.-F., Fei, J., Xu, F., Juan, O.-Y. and Liu, J. (2016) Near-Infrared Fluorescent Probe with High Quantum Yield and Its Application in the Selective Detection of Glutathione in Living Cells and Tissues. Analytical Chemistry, 88, 9746-9752. https://doi.org/10.1021/acs.analchem.6b02646
Huang, Z., Wu, C.Y., Li, Y.Q., Zhou, Z.L., Xie, R.H., Pang, X., Xu, H., Li, H.T. and Zhang, Y.Y. (2019) A Fluorescent Probe for the Specific Detection of Cysteine in Human Serum Samples. Analytical Methods, 11, 3280-3285. https://doi.org/10.1039/C9AY00659A
Barve, A., Lowry, M., Escobedo, J.O., Huynh, K.T., Hakuna, L. and Strongin, R.M. (2014) Differences in Heterocycle Basicity Distinguish homoCysteine from Cysteine Using Alde-hyde-Bearing Fluorophores. Chemical Communications, 50, 8219-8222. https://doi.org/10.1039/C4CC03527E
Zhang, H., Xia, X., Zhao, H., Zhang, G.-N., Jiang, D.-Y., Xue, X.-Y. and Zhang, J. (2019) A Near-Infrared Fluorescent Probe Based on SNAr Reaction for H2S/GSH Detection in Living Cells and Zebrafish. Dyes and Pigments, 163, 183-189. https://doi.org/10.1016/j.dyepig.2018.11.050
Zhai, L., Shi, Z., Tu, Y. and Pu, S. (2019) A Dual Emission Fluorescent Probe Enables Simultaneous Detection and Discrimina-tion of Cys/Hcy and GSH and Its Application in Cell Imaging. Dyes and Pigments, 165, 164-171. https://doi.org/10.1016/j.dyepig.2019.02.010
Fujikawa, Y., Terakado, K., Nampo, T., Mori, M. and Inoue, H. (2019) 4-Bromo-1,8-Naphthalimide Derivatives as Fluorogenic Substrates for Live Cell Imaging of Glutathione S-Transferase (GST) Activity. Talanta, 204, 633-640. https://doi.org/10.1016/j.talanta.2019.06.059
Sheng, X., Chen, D., Cao, M., Zhang, Y., Han, X., Chen, X., Liu, S., Chen, H. and Yin, J. (2016) A Near Infrared Cyanine-Based Fluorescent Probe for Highly Selectively Detecting Glu-tathione in Living Cells. Chinese Journal of Chemistry, 34, 594-598. https://doi.org/10.1002/cjoc.201500733
Zhang, Y., Yao, W., Liang, D., Sun, M., Wang, S. and Huang, D. (2018) Selective Detection and Quantification of Tryptophan and Cysteine with Pyrenedione as a Turn-On Fluorescent Probe. Sensors Actuators B: Chem, 259, 768-774. https://doi.org/10.1016/j.snb.2017.12.059
Yang, L., Qu, W.S., Zhang, X., Hang, Y.D. and Hua, J.L. (2015) Constructing a FRET-Based Molecular Chemodosimeter for Cysteine over Homocysteine and Glutathione by Naph-thalimide and Phenazine Derivatives. Analyst, 140, 182-189. https://doi.org/10.1039/C4AN01732C
Yin, C., Tang, Y.F., Li, X.Z., Yang, Z., Li, J., Li, X., Huang, W. and Fan, Q.L. (2018) A Single Composition Architecture-Based Nanoprobe for Ratiometric Photoacoustic Imaging of Glutathione (GSH) in Living Mice. Small, 14, Article ID: 1703400. https://doi.org/10.1002/smll.201703400
Lee, J.H., Lim, C.S., Tian, Y.S., Han, J.H. and Cho, B.R. (2010) A Two-Photon Fluorescent Probe for Thiols in Live Cells and Tissues. Journal of the American Chemical Society, 132, 1216-1217. https://doi.org/10.1021/ja9090676
Wang, R., Chen, L., Liu, P., Zhang, Q. and Wang, Y. (2012) Sensitive Near-Infrared Fluorescent Probes for Thiols Based on Se-N Bond Cleavage: Imaging in Living Cells and Tis-sues. Chemistry, 18, 11343-11349. https://doi.org/10.1002/chem.201200671
Tian, Y., Zhu, B.C., Yang, W., Jing, J. and Zhang, X.L. (2018) A Fluorescent Probe for Differentiating Cys, Hcy and GSH via a Stepwise Interaction. Sensors and Actuators B: Chemical, 262, 345-349. https://doi.org/10.1016/j.snb.2018.01.181
Mei, Y., Li, H., Song, C.Z., Chen, X.G. and Song, Q.H. (2021) An 8-Arylselenium BODIPY Fluorescent Probe for Rapid and Sensitive Discrimination of Biothiols in Living Cells. Chem-ical Communications, 57, 10198-10201. https://doi.org/10.1039/D1CC03912A
Huang, H., Shi, F.P., Li, Y.A., Niu, L., Gao, Y., Shah, S.M. and Su, X.G. (2013) Water-Soluble Conjugated Polymer-Cu(II) System as a Turn-On Fluorescence Probe for Label-Free Detec-tion of Glutathione and Cysteine in Biological Fluids. Sensors and Actuators B: Chemical, 178, 532-540. https://doi.org/10.1016/j.snb.2013.01.003
Yu, X., Wang, K., Cao, D., Liu, Z., Guan, R., Wu, Q., Xu, Y., Sun, Y. and Zhao, X. (2017) A Diethylamino Pyridine Formyl Schiff Base as Selective Recognition Chemosensor for Biolog-ical Thiols. Sensors Actuators B: Chem, 250, 132-138. https://doi.org/10.1016/j.snb.2017.04.147
Wood, Z.A., Schröder, E., Robin Harris, J. and Poole, L.B. (2003) Structure, Mechanism and Regulation of Peroxire-doxins. Trends in Biochemical Sciences, 28, 32-40. https://doi.org/10.1016/S0968-0004(02)00003-8
Suzuki, Y., Suda, K., Matsuyama, Y., Era, S. and Soejima, A. (2014) Close Relationship between Redox State of Human Serum Albumin and Serum Cysteine Levels in Non-Diabetic CKD Patients with Various Degrees of Renal Function. Clinical Nephrology, 82, 320-325. https://doi.org/10.5414/CN108040
Pastore, A., Piemonte, F., Locatelli, M., Lo Russo, A., Gaeta, L.M., Tozzi, G. and Federici, G. (2001) Determination of Blood Total, Reduced, and Oxidized Gluta-thione in Pediatric Subjects. Clinical Chemistry, 47, 1467-1469. https://doi.org/10.1093/clinchem/47.8.1467
Chung, T.K., Funk, M.A. and Baker, D.H. (1990) L-2-Oxothiazolidine-4-Carboxylate as a Cysteine Precursor: Efficacy for Growth and Hepatic Glutathione Synthesis in Chicks and Rats. The Journal of Nutrition, 120, 158-165. https://doi.org/10.1093/jn/120.2.158
German, D.C., Bloch, C.A. and Kredich, N.M. (1983) Measurements of S-Adenosylmethionine and L-Homocysteine Metabolism in Cultured Human Lymphoid Cells. Journal of Biological Chemistry, 258, 10997-11003. https://doi.org/10.1016/S0021-9258(17)44376-6
She, M., Wang, Z., Luo, T., Yin, B., Liu, P., Liu, J., Chen, F., Zhang, S. and Li, J. (2018) Fluorescent Probes Guided by a New Practical Performance Regulation Strategy to Monitor Glutathione in Living Systems. Chemical Science, 9, 8065-8070. https://doi.org/10.1039/C8SC03421D
Shahrokhian, S. (2001) Lead Phthalocyanine as a Selective Carrier for Preparation of a Cysteine-Selective Electrode. Analytical Chemistry, 73, 5972-5978. https://doi.org/10.1021/ac010541m
Yang, X., Guo, Y. and Strongin, R.M. (2011) Conjugate Addi-tion/Cyclization Sequence Enables Selective and Simultaneous Fluorescence Detection of Cysteine and Homocysteine. Angewandte Chemie, 123, 10878-10881. https://doi.org/10.1002/ange.201103759
Townsend, D.M., Tew, K.D. and Tapiero, H. (2003) The Importance of Glutathione in Human Disease. Biomedicine & Pharmacotherapy, 57, 145-155. https://doi.org/10.1016/S0753-3322(03)00043-X
Lasierra-Cirujeda, J., Coronel, P., Aza, M. and Gimeno, M. (2013) Beta-Amyloidolysis and Glutathione in Alzheimer’s Disease. Journal of Blood Medicine, 4, 31-38. https://doi.org/10.2147/JBM.S35496
Hansen, D.B. and Joullie, M.M. (2005) The Development of Novel Ninhydrin Analogues. Chemical Society Reviews, 34, 408-417. https://doi.org/10.1039/B315496N
Yamato, S., Nakajima, M., Wakabayashi, H. and Shimada, K. (1992) Specific Detection of Acetyl-Coenzyme A by Reversed-Phase Ion-Pair High-Performance Liquid-Chromatography with an Immobilized Enzyme Reactor. Journal of Chromatography A, 590, 241-245. https://doi.org/10.1016/0021-9673(92)85387-9
Harada, D., Naito, S., Kawauchi, Y., Ishi-kawa, K., Koshitani, O., Hiraoka, I. and Otagiri, M. (2001) Determination of Reduced, Protein-Unbound, and Total Concentrations of N-Acetyl-L-Cysteine and L-Cysteine in Rat Plasma by Postcolumn Ligand Substitution High-Performance Liquid Chromatography. Analytical Biochemistry, 290, 251-259. https://doi.org/10.1006/abio.2000.4980
Parmentier, C., Leroy, P., Wellman, M. and Nicolas, A. (1998) Deter-mination of Cellular Thiols and Glutathione-Related Enzyme Activities: Versatility of High-Performance Liquid Chroma-tography Spectrofluorimetric Detection. Journal of Chromatography B, 719, 37-46. https://doi.org/10.1016/S0378-4347(98)00414-9
Tsunoda, M. and Imai, K. (2005) Analytical Applications of Peroxyoxalate Chemiluminescence. Analytica Chimica Acta, 541, 13-23. https://doi.org/10.1016/j.aca.2004.11.070
McDermott, G.P., Terry, J.M., Conlan, X.A., Barnett, N.W. and Francis, P.S. (2011) Direct Detection of Biologically Significant Thiols and Disulfides with Manganese(IV) Chemilumi-nescence. Analytical Chemistry, 83, 6034-6039. https://doi.org/10.1021/ac2010668
Kusmierek, K., Chwatko, G., Glowacki, R. and Bald, E. (2009) Determina-tion of Endogenous Thiols and Thiol Drugs in Urine by HPLC with Ultraviolet Detection. Journal of Chromatography B, 877, 3300-3308. https://doi.org/10.1016/j.jchromb.2009.03.038
Glowacki, R. and Bald, E. (2009) Determination of N-AcetylCysteine and Main Endogenous Thiols in Human Plasma by HPLC with Ultraviolet Detection in the Form of Their S-Quinolinium Derivatives. Journal of Liquid Chromatography & Related Technologies, 32, 2530-2544. https://doi.org/10.1080/10826070903249666
Norris, R.L. G., Paul, M., George, R., Moore, A., Pinkerton, R., Haywood, A. and Charles, B. (2012) A Stable-Isotope HPLC-MS/MS Method to Simplify Storage of Human Whole Blood Samples for Glutathione Assay. Journal of Chromatography B, 898, 136-140. https://doi.org/10.1016/j.jchromb.2012.04.003
Persichilli, S., Gervasoni, J., Iavarone, F., Zuppi, C. and Zap-pacosta, B. (2010) A Simplified Method for the Determination of total homoCysteine in Plasma by Electrospray Tandem Mass Spectrometry. Journal of Separation Science, 33, 3119-3124. https://doi.org/10.1002/jssc.201000399
Yang, S.H., Wang, X., Li, E.S., Liu, X.Y. and Liu, J. (2022) Wa-ter-Dispersible Chlorophyll-Based Fluorescent Material Derived from Willow Seeds for Sensitive Analysis of Copper Ions and Biothiols in Food and Living Cells. Journal of Photochemistry And Photobiology A: Chemistry, 425, Article ID: 113664. https://doi.org/10.1016/j.jphotochem.2021.113664
Qiao, L.Q., Yang, Y.X., Li, Y.P., Lv, X. and Hao, J.S. (2022) A Fluorescent Probe Capable of Naked Eye Recognition for the Selective Detection of Biothiols. Journal of Pho-tochemistry and Photobiology A: Chemistry, 425, Article ID: 113654. https://doi.org/10.1016/j.jphotochem.2021.113654
Li, X.H., Han, X.F., Wu, W.N., Wang, Y., Fan, Y.C., Zhao, X.L. and Xu, Z.H. (2022) Simple Thiosemicarbazone “Switch” Sensing of Hg2+ and Biothiols in Pure Aqueous Solutions and Application to Imaging in Lysosomes. Journal of Molecular Structure, 1250, Article ID: 131811. https://doi.org/10.1016/j.molstruc.2021.131811
Cifteci, A., Celik, S.E. and Apak, R. (2022) Gold-Nanoparticle Based Turn-On Fluorometric Sensor for Quantification of Sulfhydryl and Disulfide Forms of Biothi-ols: Measurement of Thiol/Disulfide Homeostasis. Analytical Letters, 55, 648-664. https://doi.org/10.1080/00032719.2021.1958830
Zhuo, Y.H., Zhang, Y.Y., Feng, Y.D., Xu, Y.Q., You, Q.H., Zhang, L., Huang, H.B. and Lin, L.L. (2021) A 3,5-dinitropyridin-2yl Substituted Naphthalimide-Based Fluorescent Probe for the Selective Detection of Biothiols and Its Application in Cell-Imaging. RSC Advances, 11, 9290-9295. https://doi.org/10.1039/D1RA00010A
Hong, J.-A., Kim, M.-J., Eo, J. and Lee, J. (2018) A Turn-On Fluo-rescent Probe for Live-Cell Imaging of Biothiols. Bulletin of the Korean Chemical Society, 39, 425-426. https://doi.org/10.1002/bkcs.11429
Jung, H.S., Pradhan, T., Han, J.H., Heo, K.J., Lee, J.H., Kang, C. and Kim, J.S. (2012) Molecular Modulated Cysteine-Selective Fluorescent Probe. Biomaterials, 33, 8495-8502. https://doi.org/10.1016/j.biomaterials.2012.08.009
Kang, J., Huo, F., Chao, J. and Yin, C. (2018) Nitroole-fin-Based Bodipy as a Novel Water-Soluble Ratiometric Fluorescent Probe for Detection of Endogenous Thiols. Spec-trochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 195, 16-20. https://doi.org/10.1016/j.saa.2018.01.052
Wu, X., Shu, H., Zhou, B., Geng, Y., Bao, X. and Zhu, J. (2016) Design and Synthesis of a New Rhodamine B-Based Fluorescent Probe for Selective Detection of Glutathione and Its Application for Live Cell Imaging. Sensors and Actuators B, 237, 431-442. https://doi.org/10.1016/j.snb.2016.06.161
Liang, B., Wang, B., Ma, Q., Xie, C., Li, X. and Wang, S. (2018) A Lysosome-Targetable Turn-On Fluorescent Probe for the Detection of Thiols in Living cells Based on a 1,8-Naphthalimide Derivative. Spectrochimica Acta Part A, 192, 67-74. https://doi.org/10.1016/j.saa.2017.10.044
Liu, X., Tian, H., Yang, L., Su, Y., Guo, M. and Song, X. (2017) An ESIPT-Based Fluorescent Probe for Sensitive and Selective Detection of Cys/Hcy over GSH with a Red Emission and a Large Stokes Shift. Tetrahedron Letters, 58, 3209-3213. https://doi.org/10.1016/j.tetlet.2017.06.082
Wang, F., Feng, C., Lu, L., Xu, Z. and Zhang, W. (2017) A Rati-ometric Fluorescent Probe for Rapid and Sensitive Detection of Biothiols in Fetal Bovine Serum. Talanta, 169, 149-155. https://doi.org/10.1016/j.talanta.2017.03.080
Chen, D., Long, Z., Sun, Y., Luo, Z. and Lou, X. (2019) A Red-Emission Probe for Intracellular Biothiols Imaging with a Large Stokes Shift. Journal of Photochemistry And Pho-tobiology A: Chemistry, 368, 90-96. https://doi.org/10.1016/j.jphotochem.2018.09.030
Liang, F., Jiao, S., Jin, D., Dong, L., Lin, S., Song, D. and Ma, P. (2020) A Novel Near-Infrared Fluorescent Probe for the Dynamic Monitoring of the Concentration of Glutathione in Living Cells. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 224, Article ID: 117403. https://doi.org/10.1016/j.saa.2019.117403
Ren, A., Zhu, D., Zhong, X., Xiong, Y. and Duan, Z. (2019) A Novel Fluorescent Turn-On Probe for Imaging Biothiols Based on SNAr Substitution-Skeletal Rearrangement Strategy. Analytical Methods, 11, 262-267. https://doi.org/10.1039/C8AY02413H
Wang, C., Xia, X., Luo, J. and Qian, Y. (2018) A Novel Near-Infrared Styryl-BODIPY Fluorescent Probe for Discrimination of GSH and Its Application in livIng Cells. Dyes and Pigments, 152, 85-92. https://doi.org/10.1016/j.dyepig.2018.01.034
Xie, J.-Y., Li, C.-Y., Li, Y.-F., Fei, J., Xu, F., Juan, O.-Y. and Liu, J. (2016) Near-Infrared Fluorescent Probe with High Quantum Yield and Its Application in the Selective Detection of Glutathione in Living Cells and Tissues. Analytical Chemistry, 88, 9746-9752. https://doi.org/10.1021/acs.analchem.6b02646
Huang, Z., Wu, C.Y., Li, Y.Q., Zhou, Z.L., Xie, R.H., Pang, X., Xu, H., Li, H.T. and Zhang, Y.Y. (2019) A Fluorescent Probe for the Specific Detection of Cysteine in Human Serum Samples. Analytical Methods, 11, 3280-3285. https://doi.org/10.1039/C9AY00659A
Barve, A., Lowry, M., Escobedo, J.O., Huynh, K.T., Hakuna, L. and Strongin, R.M. (2014) Differences in Heterocycle Basicity Distinguish homoCysteine from Cysteine Using Alde-hyde-Bearing Fluorophores. Chemical Communications, 50, 8219-8222. https://doi.org/10.1039/C4CC03527E
Zhang, H., Xia, X., Zhao, H., Zhang, G.-N., Jiang, D.-Y., Xue, X.-Y. and Zhang, J. (2019) A Near-Infrared Fluorescent Probe Based on SNAr Reaction for H2S/GSH Detection in Living Cells and Zebrafish. Dyes and Pigments, 163, 183-189. https://doi.org/10.1016/j.dyepig.2018.11.050
Zhai, L., Shi, Z., Tu, Y. and Pu, S. (2019) A Dual Emission Fluorescent Probe Enables Simultaneous Detection and Discrimina-tion of Cys/Hcy and GSH and Its Application in Cell Imaging. Dyes and Pigments, 165, 164-171. https://doi.org/10.1016/j.dyepig.2019.02.010
Fujikawa, Y., Terakado, K., Nampo, T., Mori, M. and Inoue, H. (2019) 4-Bromo-1,8-Naphthalimide Derivatives as Fluorogenic Substrates for Live Cell Imaging of Glutathione S-Transferase (GST) Activity. Talanta, 204, 633-640. https://doi.org/10.1016/j.talanta.2019.06.059
Sheng, X., Chen, D., Cao, M., Zhang, Y., Han, X., Chen, X., Liu, S., Chen, H. and Yin, J. (2016) A Near Infrared Cyanine-Based Fluorescent Probe for Highly Selectively Detecting Glu-tathione in Living Cells. Chinese Journal of Chemistry, 34, 594-598. https://doi.org/10.1002/cjoc.201500733
Zhang, Y., Yao, W., Liang, D., Sun, M., Wang, S. and Huang, D. (2018) Selective Detection and Quantification of Tryptophan and Cysteine with Pyrenedione as a Turn-On Fluorescent Probe. Sensors Actuators B: Chem, 259, 768-774. https://doi.org/10.1016/j.snb.2017.12.059
Yang, L., Qu, W.S., Zhang, X., Hang, Y.D. and Hua, J.L. (2015) Constructing a FRET-Based Molecular Chemodosimeter for Cysteine over Homocysteine and Glutathione by Naph-thalimide and Phenazine Derivatives. Analyst, 140, 182-189. https://doi.org/10.1039/C4AN01732C
Yin, C., Tang, Y.F., Li, X.Z., Yang, Z., Li, J., Li, X., Huang, W. and Fan, Q.L. (2018) A Single Composition Architecture-Based Nanoprobe for Ratiometric Photoacoustic Imaging of Glutathione (GSH) in Living Mice. Small, 14, Article ID: 1703400. https://doi.org/10.1002/smll.201703400
Lee, J.H., Lim, C.S., Tian, Y.S., Han, J.H. and Cho, B.R. (2010) A Two-Photon Fluorescent Probe for Thiols in Live Cells and Tissues. Journal of the American Chemical Society, 132, 1216-1217. https://doi.org/10.1021/ja9090676
Wang, R., Chen, L., Liu, P., Zhang, Q. and Wang, Y. (2012) Sensitive Near-Infrared Fluorescent Probes for Thiols Based on Se-N Bond Cleavage: Imaging in Living Cells and Tis-sues. Chemistry, 18, 11343-11349. https://doi.org/10.1002/chem.201200671
Tian, Y., Zhu, B.C., Yang, W., Jing, J. and Zhang, X.L. (2018) A Fluorescent Probe for Differentiating Cys, Hcy and GSH via a Stepwise Interaction. Sensors and Actuators B: Chemical, 262, 345-349. https://doi.org/10.1016/j.snb.2018.01.181
Mei, Y., Li, H., Song, C.Z., Chen, X.G. and Song, Q.H. (2021) An 8-Arylselenium BODIPY Fluorescent Probe for Rapid and Sensitive Discrimination of Biothiols in Living Cells. Chem-ical Communications, 57, 10198-10201. https://doi.org/10.1039/D1CC03912A
Huang, H., Shi, F.P., Li, Y.A., Niu, L., Gao, Y., Shah, S.M. and Su, X.G. (2013) Water-Soluble Conjugated Polymer-Cu(II) System as a Turn-On Fluorescence Probe for Label-Free Detec-tion of Glutathione and Cysteine in Biological Fluids. Sensors and Actuators B: Chemical, 178, 532-540. https://doi.org/10.1016/j.snb.2013.01.003
Yu, X., Wang, K., Cao, D., Liu, Z., Guan, R., Wu, Q., Xu, Y., Sun, Y. and Zhao, X. (2017) A Diethylamino Pyridine Formyl Schiff Base as Selective Recognition Chemosensor for Biolog-ical Thiols. Sensors Actuators B: Chem, 250, 132-138. https://doi.org/10.1016/j.snb.2017.04.147