光合突变株作为研究微藻光合作用的良好材料,通常利用物理或化学方法诱变育种获得。在莱茵衣藻、小球藻等微藻中运用光合突变体对光合作用机制的研究较多。光合突变株应用广泛,在不同领域中都在发挥作用。本文章通过对光合突变株研究进展进行整合描述,旨在对光合突变株的诱变等方面进行指导。 Photosynthetic mutant strains are used as good materials for studying microalgae photosynthesis and are usually obtained using physical or chemical methods for mutagenesis breeding. Photosynthetic mutants have been widely studied extensively in microalgae such as Chlamydomonas reininensis and Chlorella vulgaris . Photosynthetic mutant strains are widely used and play a role in different domains. This article aims to guide the mutagenesis of photosynthetic mutant strains by integrating the research progress of photosynthetic mutant strains.
Advances in the Induction of Photosynthetic Mutants of Microalgae
Di Wang
School of Life Science, Liaoning Normal University, Dalian Liaoning
Received: Feb. 27th, 2022; accepted: Mar. 15th, 2022; published: Mar. 22nd, 2022
ABSTRACT
Photosynthetic mutant strains are used as good materials for studying microalgae photosynthesis and are usually obtained using physical or chemical methods for mutagenesis breeding. Photosynthetic mutants have been widely studied extensively in microalgae such as Chlamydomonas reininensis and Chlorella vulgaris. Photosynthetic mutant strains are widely used and play a role in different domains. This article aims to guide the mutagenesis of photosynthetic mutant strains by integrating the research progress of photosynthetic mutant strains.
王 迪. 微藻光合突变体诱导的研究进展 Advances in the Induction of Photosynthetic Mutants of Microalgae[J]. 生物过程, 2022, 12(01): 26-31. https://doi.org/10.12677/BP.2022.121004
参考文献References
蒋霞敏, 翟兴文, 王丽, 陆开形. 雨生红球藻对紫外辐射的生理适应及超微结构变化[J]. 水产学报, 2003, 27(2): 105-112.
庄惠如, 王明兹, 陈必链, 郑梅清, 赖萍, 吴松刚. 雨生红球藻对紫外光处理的响应及高产藻株的选育[J]. 福建师范大学学报(自然科学版), 2001, 17(3): 76-80.
Tjahjono, A.E., Kakizono, T., Hayama, Y., Nishio, N. and Nagai, S. (1994) Isolation of Resistant Mutants against Carotenoid Biosynthesis Inhibitors for a Green Alga Haematococcus pluvialis, and Their Hybrid Formation by Protoplast Fusion for Breeding of Higher Astaxanthin Producers. Journal of Fermentation and Bioengineering, 74, 352-357. https://doi.org/10.1016/0922-338X(94)90003-5
Sun, Y., Liu, J. and Zhang, X. (2008) Strain H2-419-4 of Haematococcus pluvialis Induced by Ethyl Methanesulphonate and Ultraviolet Radiation. Chinese Journal of Oceanology & Limnology, 26, 152-156. https://doi.org/10.1007/s00343-008-0152-y
Kamath, B.S., Vidhyavathi, R., Sarada, R. and Ravishankar, G.A. (2008) Enhancement of Carotenoids by Mutation and Stress Induced Carotenogenic Genes in Haematococcus pluvialis Mutants. Bioresource Technology, 99, 8667-8673. https://doi.org/10.1016/j.biortech.2008.04.013
Germano, M., Yakushevska, A.E. and Keegstra, W. (2002) Supramolecular Organization of Photosystem I and Light-Harvesting Complex I in Chlamydomonas reinhardtii. FEBS Letters, 525, 121-125. https://doi.org/10.1016/S0014-5793(02)03100-9
Kargul, J., Nield, J. and Barber, J. (2003) Three-Dimensional Reconstruction of a Light-Harvesting Complex I-Photosystem I (LHCI-PSI) Supercomplex from the Green Alga Chla-mydomonas reinhardtii: Insights into Light Harvesting for PSI. Journal of Biological Chemistry, 278, 16135-16141. https://doi.org/10.1074/jbc.M300262200
Stauber, E.J., Fink, A. and Markert, C. (2003) Proteomics of Chla-mydomonas reinhardtii Light-Harvesting Proteins. Eukaryotic Cell, 2, 978. https://doi.org/10.1128/EC.2.5.978-994.2003
Takahashi, Y., Yasui, T., Stauber, E.J., et al. (2004) Comparison of the Subunit Compositions of the PSI-LHCI Supercomplex and the LHCI in the Green Alga Chlamydomonas rein-hardtii. Biochemistry, 43, 7816-7823. https://doi.org/10.1021/bi035988z
Alboresi, A., Caffarri, S. and Nogue, F. (2008) In Silico and Biochemical Analysis of Physcomitrella patens Photosynthetic Antenna: Identification of Subunits Which Evolved upon Land Adap-tation. PLoS ONE, 3, e2033. https://doi.org/10.1371/journal.pone.0002033
Mozzo, M., Mantelli, M. and Passarini, F. (2010) Functional Analysis of Photosystem I Light-Harvesting Complexes (Lhca) Gene Products of Chlamydomonas reinhardtii. Bio-chimica et Biophysica Acta, 1797, 212-221. https://doi.org/10.1016/j.bbabio.2009.10.005
Drop, B., Webberbirungi, M. and Fusetti, F. (2011) Photosystem I of Chlamydomonas reinhardtii Contains Nine Light-Harvesting Complexes (Lhca) Located on One Side of the Core. Journal of Biological Chemistry, 286, 44878-44887. https://doi.org/10.1074/jbc.M111.301101
Melkozernov, A.N., Su, H. and Webber, A.N. (2004) Excitation Energy Transfer in Thylakoid Membranes from Chlamydomonas reinhardtii Lacking Chlorophyll b and with Mutant Photosystem I. Photosynthesis Research, 56, 197-207. https://doi.org/10.1023/A:1006016631150
Allen, J.F. and Forsberg, J. (2001) Molecular Recognition in Thylakoid Structure and Function. Trends in Plant Science, 6, 317-326. https://doi.org/10.1016/S1360-1385(01)02010-6
Peng, L., Shimizu, H. and Shikanai, T. (2008) The Chloro-plast NAD(P)H Dehydrogenase Complex Interacts with Photosystem I in Arabidopsis. Journal of Biological Chemistry, 283, 34873-34879. https://doi.org/10.1074/jbc.M803207200
Majeran, W., Zybailov, B. and Ytterberg, A.J. (2008) Consequences of C4 Differentiation for Chloroplast Membrane Proteomes in Maize Mesophyll and Bundle Sheath Cells. Molecular & Cellular Proteomics, 7, 1609-1638. https://doi.org/10.1074/mcp.M800016-MCP200
Nandha, B., Finazzi, G. and Joliot, P. (2007) The Role of PGR5 in the Redox Poising of Photosynthetic Electron Transport. Biochimica Et Biophysica Acta, 1767, 1252-1259. https://doi.org/10.1016/j.bbabio.2007.07.007
Tikkanen, M., Grieco, M. and Kangasjarvi, S. (2010) Thylakoid Protein Phosphorylation in Higher Plant Chloroplasts Optimizes Electron Transfer under Fluctuating Light1[C][OA]. Plant Physiology, 152, 723-735. https://doi.org/10.1104/pp.109.150250
Chekounova, E., Voronetskaya, V. and Papenbrock, J. (2001) Charac-terization of Chlamydomonas Mutants Defective in the H Subunit of Mg-Chelatase. Molecular Genetics & Genomics, 266, 363-373. https://doi.org/10.1007/s004380100574
Semenova, G.A., Chekunova, E.M. and Ladygi, V.G. (2015) Light-Dependent Synthesis of Cell Membranes in the Chlamydomonas reinhardtii Mutant Brc-1. Cell & Tissue Biology, 9, 415-421. https://doi.org/10.1134/S1990519X15050107
Johnson, E. and Anastasios, M. (2004) Functional Characteri-zation of Chlamydomonas reinhardtii with Alterations in the atpE Gene. Photosynthesis Research, 82, 131-140. https://doi.org/10.1007/s11120-004-6567-1
Clinton, S.K. (2010) Lycopene: Chemistry, Biology, and Implica-tions for Human Health and Disease. Nutrition Reviews, 56, 35-51. https://doi.org/10.1111/j.1753-4887.1998.tb01691.x
Orosa, M., Franqueira, D. and Cid, A. (2001) Carotenoid Accumulation in Haematococcus pluvialis in Mixotrophic Growth. Biotechnology Letters, 23, 373-378. https://doi.org/10.1023/A:1005624005229
才金玲, 欧阳泽瑞, 陈国兴, 潘光华, 王广策. 光照强度对雨生红球藻细胞生长和虾青素积累的影响[J]. 食品科技, 2013, 38(1): 17-20+25.
Kotay, S.M. and Das, D. (2008) Biohydrogen as a Renewable Energy Resource—Prospects and Potentials. International Journal of Hydrogen Energy, 33, 258-263. https://doi.org/10.1016/j.ijhydene.2007.07.031
Bicakova, O. and Straka, P. (2012) Production of Hydrogen from Renewable Resources. International Journal of Hydrogen Energy, 37, 11563-11578. https://doi.org/10.1016/j.ijhydene.2012.05.047
Aziz, M., Oda, T., Mitani, T., Uetsuji, A. and Kashiwagi, T. (2016) Integrated Hydrogen Production and Power Generation from Microalgae. International Journal of Hydrogen En-ergy, 41, 104-112. https://doi.org/10.1016/j.ijhydene.2015.10.115
Wahid, M.A. and Hosseini, S.E. (2016) Hydrogen Production from Renewable and Sustainable Energy Resources: Promising Green Energy Carrier for Clean Development. Renewable & Sustainable Energy Reviews, 57, 850-866. https://doi.org/10.1016/j.rser.2015.12.112
Srirangan, K., Pyne, M.E. and Chou, C.P. (2011) Biochemical and Genetic Engineering Strategies to Enhance Hydrogen Production in Photosynthetic Algae and Cyanobacteria. Biore-source Technology, 102, 8589-8604. https://doi.org/10.1016/j.biortech.2011.03.087
Wei, L., Yi, J., Wang, L., Huang, T., Gao, F. and Wang, Q. (2017) Light Intensity Is Important for Hydrogen Production in NaHSO3-Treated Chlamydomonas reinhardtii. Plant & Cell Physiology, 58, 451-457. https://doi.org/10.1093/pcp/pcw216
Leung, D., Wu, R. and Leung, R.K.H. (2010) A Review on Biodiesel Production Using Catalyzed Transesterification. Applied Energy, 87, 1083-1095. https://doi.org/10.1016/j.apenergy.2009.10.006
侯兴国, 方琰, 白欢, 胡莎莎, 卿人韦, 兰利琼. 过表达甘油激酶三角褐指藻藻株富集油脂的研究[J]. 四川大学学报(自然科学版), 2020, 57(6): 1209-1216.