血清素,又称5-羟色胺(5-hydroxytryptamine, 5-HT),是一种高度保守的生物胺,主要在胃肠道和中枢神经系统中高表达,可以结合7种不同受体家族的受体,参与机体众多的生理及病理过程。研究表明,血清素是能量摄入与消耗的主要调节剂,外周血清素通过上调脂质合成促进能量有效储存,进而诱发胰岛素抵抗、血脂异常、肝脂肪变性、凝血病和高血压等肥胖症的不利代谢后果,而中枢血清素可抑制食欲并通过驱动交感神经增加棕色脂肪组织的能量消耗。因此,5-HT在肥胖疾病中的作用备受关注。本文结合最新的研究进展对5-HT在脂质代谢中的作用进行简要归纳。 Serotonin, also known as 5-hydroxytryptamine (5-HT), is a highly conserved biogenic amine that is highly expressed in the gastrointestinal tract and central nervous system. It participates in numerous physiological and pathological processes by binding to seven different receptor families. Serotonin has been shown it is the main regulator of energy intake and consumption. Peripheral serotonin promotes effective energy storage by up-regulating lipid synthesis, inducing adverse metabolic consequences, such as obesity, insulin resistance, dyslipidemia, hepatic steatosis, coagulopathy and hypertension. Central serotonin suppresses appetite and increases energy expenditure by increasing sympathetic drive to brown adipose tissue. Therefore, the role of 5-HT in obesity has attracted much attention. In this review, we highlight the most recent advances for the roles of 5-HT in lipid metabolism.
血清素,脂质代谢,肥胖,能量稳态, Serotonin
Lipid Metabolism
Obesity
Energy Balance
摘要
Research Progresses for 5-Hydroxytryptamine in Lipid Metabolism
Yuting Wu, Cheng Sun*
NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong Jiangsu
Received: Feb. 15th, 2022; accepted: Mar. 12th, 2022; published: Mar. 22nd, 2022
ABSTRACT
Serotonin, also known as 5-hydroxytryptamine (5-HT), is a highly conserved biogenic amine that is highly expressed in the gastrointestinal tract and central nervous system. It participates in numerous physiological and pathological processes by binding to seven different receptor families. Serotonin has been shown it is the main regulator of energy intake and consumption. Peripheral serotonin promotes effective energy storage by up-regulating lipid synthesis, inducing adverse metabolic consequences, such as obesity, insulin resistance, dyslipidemia, hepatic steatosis, coagulopathy and hypertension. Central serotonin suppresses appetite and increases energy expenditure by increasing sympathetic drive to brown adipose tissue. Therefore, the role of 5-HT in obesity has attracted much attention. In this review, we highlight the most recent advances for the roles of 5-HT in lipid metabolism.
Keywords:Serotonin, Lipid Metabolism, Obesity, Energy Balance
吴钰婷,孙 诚. 5-羟色胺在脂质代谢中的研究进展 Research Progresses for 5-Hydroxytryptamine in Lipid Metabolism[J]. 生物过程, 2022, 12(01): 1-9. https://doi.org/10.12677/BP.2022.121001
参考文献References
Rapport, M.M., Green, A.A. and Page, I.H. (1948) Serum Vasoconstrictor, Serotonin; Isolation and Characterization. The Journal of Biological Chemistry, 176, 1243-1251. https://doi.org/10.1016/S0021-9258(18)57137-4
Ber-ger, M., Gray, J.A. and Roth, B.L. (2009) The Expanded Biology of Serotonin. Annual Review of Medicine, 60, 355-366. https://doi.org/10.1146/annurev.med.60.042307.110802
Khan, W.I. and Ghia, J.E. (2010) Gut Hormones: Emerging Role in Immune Activation and Inflammation. Clinical and Experimental Immunology, 161, 19-27. https://doi.org/10.1111/j.1365-2249.2010.04150.x
Walther, D.J., Peter, J.U., Bashammakh, S., et al. (2003) Synthesis of Serotonin by a Second Tryptophan Hydroxylase Isoform. Science, 299, 76. https://doi.org/10.1126/science.1078197
Zhang, X., Beaulieu, J.M., Sotnikova, T.D., et al. (2004) Tryptophan Hydroxylase-2 Controls Brain Serotonin Synthesis. Science, 305, 217. https://doi.org/10.1126/science.1097540
Côté, F., Thévenot, E., Fligny, C., et al. (2003) Disruption of the Nonneuronal tph1 Gene Demonstrates the Importance of Peripheral Serotonin in Cardiac Function. Proceedings of the National Academy of Sciences of the United States of America, 100, 13525-13530. https://doi.org/10.1073/pnas.2233056100
Yabut, J.M., Crane, J.D., Green, A.E., et al. (2019) Emerging Roles for Serotonin in Regulating Metabolism: New Implications for an Ancient Molecule. Endocrine Reviews, 40, 1092-1107. https://doi.org/10.1210/er.2018-00283
Fitzpatrick, P.F. (1999) Tetrahydropterin-Dependent Amino Acid Hydroxylases. Annual Review of Biochemistry, 68, 355-381. https://doi.org/10.1146/annurev.biochem.68.1.355
Walther, D.J., Peter, J.U., Winter, S., et al. (2003) Seroto-nylation of Small GTPases Is a Signal Transduction Pathway that Triggers Platelet Alpha-Granule Release. Cell, 115, 851-862. https://doi.org/10.1016/S0092-8674(03)01014-6
Nichols, D.E. and Nichols, C.D. (2008) Serotonin Receptors. Chemical Reviews, 108, 1614-1641. https://doi.org/10.1021/cr078224o
King, M.V., Marsden, C.A. and Fone, K.C. (2008) A Role for the 5-HT(1A), 5-HT4 and 5-HT6 Receptors in Learning and Memory. Trends in Pharmacological Sciences, 29, 482-492. https://doi.org/10.1016/j.tips.2008.07.001
Eglen, R.M., Wong, E.H., Dumuis, A., et al. (1995) Central 5-HT4 Receptors. Trends in Pharmacological Sciences, 16, 391-398. https://doi.org/10.1016/S0165-6147(00)89081-1
Cortes-Altamirano, J.L., Olmos-Hernandez, A., Jaime, H.B., et al. (2018) Review: 5-HT1, 5-HT2, 5-HT3 and 5-HT7 Receptors and Their Role in the Modulation of Pain Response in the Central Nervous System. Current Neuropharmacology, 16, 210-221. https://doi.org/10.2174/1570159X15666170911121027
Sah, V.P., Seasholtz, T.M., Sagi, S.A., et al. (2000) The Role of Rho in G Protein-Coupled Receptor Signal Transduction. Annual Review of Pharmacology and Toxicology, 40, 459-489. https://doi.org/10.1146/annurev.pharmtox.40.1.459
Barnes, N.M., Hales, T.G., Lummis, S.C., et al. (2009) The 5-HT3 Receptor—The Relationship between Structure and Function. Neuropharmacology, 56, 273-284. https://doi.org/10.1016/j.neuropharm.2008.08.003
Machu, T.K. (2011) Therapeutics of 5-HT3 Receptor An-tagonists: Current Uses and Future Directions. Pharmacology & Therapeutics, 130, 338-347. https://doi.org/10.1016/j.pharmthera.2011.02.003
Evans, R.M., Barish, G.D. and Wang, Y.X. (2004) PPARs and the Complex Journey to Obesity. Nature Medicine, 10, 355-361. https://doi.org/10.1038/nm1025
Lehrke, M. and LAZAR, M.A. (2005) The Many Faces of PPARgamma. Cell, 123, 993-999. https://doi.org/10.1016/j.cell.2005.11.026
Mckenna, N.J., Cooney, A.J., Demayo, F.J., et al. (2009) Mini-review: Evolution of NURSA, the Nuclear Receptor Signaling Atlas. Molecular Endocrinology, 23, 740-746. https://doi.org/10.1210/me.2009-0135
Odegaard, J.I., Ricardo-Gonzalez, R.R., Goforth, M.H., et al. (2007) Macrophage-Specific PPARgamma Controls Alternative Activation and Improves Insulin Resistance. Nature, 447, 1116-1120. https://doi.org/10.1038/nature05894
Walczak, R. and Tontonoz, P. (2002) PPARadigms and PPARadoxes: Expanding roles for PPARgamma in the Control of Lipid Metabolism. Journal of Lipid Research, 43, 177-186. https://doi.org/10.1016/S0022-2275(20)30159-0
Hirai, H., Tanaka, K., Takano, S., et al. (2002) Cutting Edge: Agonistic Effect of Indomethacin on a Prostaglandin D2 Receptor, CRTH2. Journal of Immunology, 168, 981-985. https://doi.org/10.4049/jimmunol.168.3.981
Waku, T., Shiraki, T., Oyama, T., et al. (2010) The Nu-clear Receptor PPARγ Individually Responds to Serotonin- and Fatty Acid-Metabolites. The EMBO Journal, 29, 3395-3407. https://doi.org/10.1038/emboj.2010.197
Skurk, T., Alberti-Huber, C., Herder, C., et al. (2007) Relationship between Adipocyte Size and Adipokine Expression and Secretion. The Journal of Clinical Endocrinology and Metabolism, 92, 1023-1033. https://doi.org/10.1210/jc.2006-1055
Benrick, A., Chanclón, B., Micallef, P., et al. (2017) Adiponectin Pro-tects against Development of Metabolic Disturbances in a PCOS Mouse Model. Proceedings of the National Academy of Sciences of the United States of America, 114, E7187-E7196. https://doi.org/10.1073/pnas.1708854114
Ro-sene, D. and Spiegelman, B.M. (2014) What We Talk about When We Talk about Fat. Cell, 156, 20-44. https://doi.org/10.1016/j.cell.2013.12.012
Zhao, G.N., Tian, Z.W., Tian, T., et al. (2021) TMBIM1 is an In-hibitor of Adipogenesis and Its Depletion Promotes Adipocyte Hyperplasia and Improves Obesity-Related Metabolic Disease. Cell Metabolism, 33, 1640-1654.E8. https://doi.org/10.1016/j.cmet.2021.05.014
Foti, M., Porcheron, G., Fournier, M., et al. (2007) The Neck of Caveolae Is a Distinct Plasma Membrane Subdomain that Concentrates Insulin Receptors in 3T3-L1 Adipocytes. Pro-ceedings of the National Academy of Sciences of the United States of America, 104, 1242-1247. https://doi.org/10.1073/pnas.0610523104
Reed, B.C., Kaufmann, S.H., Mackall, J.C., et al. (1977) Altera-tions in Insulin Binding Accompanying Differentiation of 3T3-L1 Preadipocytes. Proceedings of the National Academy of Sciences of the United States of America, 74, 4876-4880. https://doi.org/10.1073/pnas.74.11.4876
KOHLER, H.P. and GRANT, P.J. (2000) Plasminogen-Activator Inhibitor type 1 and Coronary Artery Disease. The New England Journal of Medicine, 342, 1792-1801. https://doi.org/10.1056/NEJM200006153422406
Eriksson, P., Reynisdottir, S., Lönnqvist, F., et al. (1998) Adipose Tissue Secretion of Plasminogen Activator Inhibitor-1 in Non-Obese and Obese Individuals. Diabetologia, 41, 65-71. https://doi.org/10.1007/s001250050868
Yamauchi, T., Kamon, J., Ito, Y., et al. (2003) Cloning of Adiponectin Receptors that Mediate Antidiabetic Metabolic Effects. Nature, 423, 762-769. https://doi.org/10.1038/nature01705
Uchida-Kitajima, S., Yamauchi, T., Takashina, Y., et al. (2008) 5-Hydroxytryptamine 2A Receptor Signaling Cascade Modulates Adiponectin and Plasminogen Activator Inhibitor 1 Expression in Adipose Tissue. FEBS Letters, 582, 3037-3044. https://doi.org/10.1016/j.febslet.2008.07.044
Kinoshita, M., Ono, K., Horie, T., et al. (2010) Regulation of Adipocyte Differentiation by Activation of Serotonin (5-HT) Receptors 5-HT2AR and 5-HT2CR and Involvement of MicroRNA-448-Mediated Repression of KLF5. Molecular Endocrinology, 24, 1978-1987. https://doi.org/10.1210/me.2010-0054
Kim, S.P., Ha, J.M., Yun, S.J., et al. (2010) Transcriptional Activation of Peroxisome Proliferator-Activated Receptor-Gamma Requires Activation of Both Protein Kinase A and Akt during Adipocyte Differentiation. Biochemical and Biophysical Research Communications, 399, 55-59. https://doi.org/10.1016/j.bbrc.2010.07.038
Yun, J., Jin, H., Cao, Y., et al. (2018) RNA-Seq Analysis Reveals a Positive Role of HTR2A in Adipogenesis in Yan Yellow Cattle. International Journal of Molecular Sciences, 19, Arti-cle No. 1760. https://doi.org/10.3390/ijms19061760
Peng, X.D., Xu, P.Z., Chen, M.L., et al. (2003) Dwarfism, Impaired Skin Development, Skeletal Muscle Atrophy, Delayed Bone Development, and Impeded Adipogenesis in Mice Lacking Akt1 and Akt2. Genes & Development, 17, 1352-1365. https://doi.org/10.1101/gad.1089403
Mota de Sá, P., Richard, A.J., Hang, H., et al. (2017) Transcriptional Regulation of Adipogenesis. Comprehensive Physiology, 7, 635-674. https://doi.org/10.1002/cphy.c160022
Yang, M., Sun, J., Zhang, T., et al. (2008) Deficiency and In-hibition of Cathepsin K Reduce Body Weight Gain and Increase Glucose Metabolism in Mice. Arteriosclerosis, Throm-bosis, and Vascular Biology, 28, 2202-2208. https://doi.org/10.1161/ATVBAHA.108.172320
Söhle, J., Machuy, N., Smailbegovic, E., et al. (2012) Iden-tification of New Genes Involved in Human Adipogenesis and Fat Storage. PLoS ONE, 7, e31193. https://doi.org/10.1371/journal.pone.0031193
Lin, Y., Bao, B., Yin, H., et al. (2019) Peripheral Cathepsin L Inhibition Induces Fat Loss in C. Elegans and Mice through Promoting Central Serotonin Synthesis. BMC Biology, 17, Article No. 93. https://doi.org/10.1186/s12915-019-0719-4
Cannon, B. and Nedergaard, J. (2004) Brown Adipose Tissue: Function and Physiological Significance. Physiological Reviews, 84, 277-359. https://doi.org/10.1152/physrev.00015.2003
Kajimura, S., Seale, P. and Spiegelman, B.M. (2010) Transcrip-tional Control of Brown Fat Development. Cell Metabolism, 11, 257-262. https://doi.org/10.1016/j.cmet.2010.03.005
Bargut, T.C., Aguila, M.B. and Mandarim-DE-Lacerda, C.A. (2016) Brown Adipose Tissue: Updates in Cellular and Molecular Biology. Tissue & Cell, 48, 452-460. https://doi.org/10.1016/j.tice.2016.08.001
Harms, M. and Seale, P. (2013) Brown and Beige Fat: Develop-ment, Function and Therapeutic Potential. Nature Medicine, 19, 1252-1263. https://doi.org/10.1038/nm.3361
Kajimura, S. and Saito, M. (2014) A New Era in Brown Adipose Tissue Bi-ology: Molecular Control of Brown Fat Development and Energy Homeostasis. Annual Review of Physiology, 76, 225-249. https://doi.org/10.1146/annurev-physiol-021113-170252
Oh, C.M., Park, S. and Kim, H. (2016) Serotonin as a New Therapeutic Target for Diabetes Mellitus and Obesity. Diabetes & Metabolism Journal, 40, 89-98. https://doi.org/10.4093/dmj.2016.40.2.89
Jeong, J.H., Lee, D.K., Blouet, C., et al. (2015) Cholinergic Neu-rons in the Dorsomedial Hypothalamus Regulate Mouse Brown Adipose Tissue Metabolism. Molecular Metabolism, 4, 483-492. https://doi.org/10.1016/j.molmet.2015.03.006
Mcglashon, J.M., Gorecki, M.C., Kozlowski, A.E., et al. (2015) Central Serotonergic Neurons Activate and Recruit Thermogenic Brown and Beige Fat and Regulate Glucose and Lipid Homeostasis. Cell Metabolism, 21, 692-705. https://doi.org/10.1016/j.cmet.2015.04.008
Montanari, T., Pošćić, N. and Colitti, M. (2017) Factors Involved in White-to-Brown Adipose Tissue Conversion and in Thermogenesis: A Review. Obesity Reviews: An Official Journal of the International Association for the Study of Obesity, 18, 495-513. https://doi.org/10.1111/obr.12520
Ni-soli, E. and Carruba, M.O. (2000) An Assessment of the Safety and Efficacy of Sibutramine, an Anti-Obesity Drug with a Novel Mechanism of Action. Obesity Reviews: An Official Journal of the International Association for the Study of Obesity, 1, 127-139. https://doi.org/10.1046/j.1467-789x.2000.00020.x
Li, M.F. and Cheung, B.M. (2011) Rise and Fall of Anti-Obesity Drugs. World Journal of Diabetes, 2, 19-23. https://doi.org/10.4239/wjd.v2.i2.19
Da Silva, A.I., Braz, G.R., Pedroza, A.A., et al. (2015) Fluoxetine In-duces Lean Phenotype in Rat by Increasing the Brown/White Adipose Tissue Ratio and UCP1 Expression. Journal of Bioenergetics and Biomembranes, 47, 309-318. https://doi.org/10.1007/s10863-015-9617-9
Crane, J.D., Palanivel, R., Mottillo, E.P., et al. (2015) Inhibiting Peripheral Serotonin Synthesis Reduces Obesity and Metabolic Dysfunction by Promoting Brown Adipose Tissue Thermogenesis. Nature Medicine, 21, 166-172. https://doi.org/10.1038/nm.3766
Wu, J., Boström, P., Sparks, L.M., et al. (2012) Beige Adipocytes Are a Distinct Type of Thermogenic Fat Cell in Mouse and Human. Cell, 150, 366-376. https://doi.org/10.1016/j.cell.2012.05.016
Garcia, R.A., Roemmich, J.N. and Claycombe, K.J. (2016) Evalua-tion of Markers of Beige Adipocytes in White Adipose Tissue of the Mouse. Nutrition & Metabolism, 13, Article No. 24. https://doi.org/10.1186/s12986-016-0081-2
Steinberg, G.R. (2018) Cellular Energy Sensing and Metabo-lism-Implications for Treating Diabetes: The 2017 Outstanding Scientific Achievement Award Lecture. Diabetes, 67, 169-179. https://doi.org/10.2337/dbi17-0039
Nakamura, K. and Morrison, S.F. (2011) Central Efferent Pathways for Cold-Defensive and Febrile Shivering. The Journal of Physiology, 589, 3641-3658. https://doi.org/10.1113/jphysiol.2011.210047
Nakamura, K., Matsumura, K., Hübschle, T., et al. (2004) Iden-tification of Sympathetic Premotor Neurons in Medullary Raphe Regions Mediating Fever and Other Thermoregulatory Functions. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 24, 5370-5380. https://doi.org/10.1523/JNEUROSCI.1219-04.2004
O’Neil, P.M., Smith, S.R., Weissman, N.J., et al. (2012) Randomized Placebo-Controlled Clinical Trial of Lorcaserin for Weight Loss in Type 2 Diabetes Mellitus: The BLOOM-DM Study. Obesity, 20, 1426-1436. https://doi.org/10.1038/oby.2012.66
Krashes, M.J., Koda, S., Ye, C., et al. (2011) Rapid, Reversible Activa-tion of AgRP Neurons Drives Feeding Behavior in Mice. The Journal of Clinical Investigation, 121, 1424-1428. https://doi.org/10.1172/JCI46229
Small, C.J., Liu, Y.L., Stanley, S.A., et al. (2003) Chronic CNS Admin-istration of Agouti-Related Protein (Agrp) Reduces Energy Expenditure. International Journal of Obesity and Related Metabolic Disorders: Journal of the International Association for the Study of Obesity, 27, 530-533. https://doi.org/10.1038/sj.ijo.0802253
Ruan, H.B., Dietrich, M.O., Liu, Z.W., et al. (2014) O-GlcNAc Trans-ferase Enables AgRP Neurons to Suppress Browning of White Fat. Cell, 159, 306-317. https://doi.org/10.1016/j.cell.2014.09.010
Burke, L.K., Darwish, T., Cavanaugh, A.R., et al. (2017) mTORC1 in AGRP Neurons Integrates Exteroceptive and Interoceptive Food-Related Cues in the Modulation of Adaptive Energy Expenditure in Mice. eLife, 6, e22848.
Deng, J., Yuan, F., Guo, Y., et al. (2017) Deletion of ATF4 in AgRP Neu-rons Promotes Fat Loss Mainly via Increasing Energy Expenditure. Diabetes, 66, 640-650. https://doi.org/10.2337/db16-0954
Dodd, G.T., Andrews, Z.B., Simonds, S.E., et al. (2017) A Hypothalamic Phosphatase Switch Coordinates Energy Expenditure with Feeding. Cell Metabolism, 26, 375-393.E7. https://doi.org/10.1016/j.cmet.2017.07.013
Berglund, E.D., Liu, C., Sohn, J.W., et al. (2013) Serotonin 2C Receptors in Pro-Opiomelanocortin Neurons Regulate Energy and Glucose Homeostasis. The Journal of Clinical Inves-tigation, 123, 5061-5070. https://doi.org/10.1172/JCI70338
Zhang, X., Wang, X., Yin, H., et al. (2019) Functional Inactivation of Mast Cells Enhances Subcutaneous Adipose Tissue Browning in Mice. Cell Reports, 28, 792-803.E4. https://doi.org/10.1016/j.celrep.2019.06.044
Lim, S., Honek, J., Xue, Y., et al. (2012) Cold-Induced Activa-tion of Brown Adipose Tissue and Adipose Angiogenesis in Mice. Nature protocols, 7, 606-615. https://doi.org/10.1038/nprot.2012.013
Lee, Y.H., Petkova, A.P., Mottillo, E.P., et al. (2012) In Vivo Identi-fication of Bipotential Adipocyte Progenitors Recruited by β3-Adrenoceptor Activation and High-Fat Feeding. Cell Me-tabolism, 15, 480-491. https://doi.org/10.1016/j.cmet.2012.03.009
Roh, H.C., Tsai, L.T.Y., Shao, M., et al. (2018) Warming Induces Significant Reprogramming of Beige, but Not Brown, Adipocyte Cellular Identity. Cell Metabolism, 27, 1121-1137.E5. https://doi.org/10.1016/j.cmet.2018.03.005
Hellman, B., Larsson, S. and Westman, S. (1963) Mast Cell Con-tent and fatty Acid Metabolism in the Epididymal Fat Pad of Obese Mice. Acta Physiologica Scandinavica, 58, 255-262. https://doi.org/10.1111/j.1748-1716.1963.tb02647.x
Divoux, A., Moutel, S., Poitou, C., et al. (2012) Mast Cells in Human Adipose Tissue: Link with Morbid Obesity, Inflammatory Status, and Diabetes. The Journal of Clinical Endocrinology and Metabolism, 97, E1677-E1685. https://doi.org/10.1210/jc.2012-1532
Oh, C.M., Namkung, J., Go, Y., et al. (2015) Regulation of Systemic Energy Homeostasis by Serotonin in Adipose Tissues. Nature Communications, 6, Article No. 6794. https://doi.org/10.1038/ncomms7794
Yabut, J.M., Desjardins, E.M., Chan, E.J., et al. (2020) Genetic Dele-tion of Mast Cell Serotonin Synthesis Prevents the Development of Obesity and Insulin Resistance. Nature Communica-tions, 11, Article No. 463. https://doi.org/10.1038/s41467-019-14080-7
Younossi, Z., Anstee, Q.M., Marietti, M., et al. (2018) Global Burden of NAFLD and NASH: Trends, Predictions, Risk Factors and Prevention. Nature Reviews Gastroenterology & Hepatology, 15, 11-20. https://doi.org/10.1038/nrgastro.2017.109
Musso, G., Gambino, R. and Cassader, M. (2009) Recent Insights into Hepatic Lipid Metabolism in Non-Alcoholic Fatty Liver Disease (NAFLD). Progress in Lipid Research, 48, 1-26. https://doi.org/10.1016/j.plipres.2008.08.001
Pais, R., Barritt, A.S.T., Calmus, Y., et al. (2016) NAFLD and Liver Transplantation: Current Burden and Expected Challenges. Journal of Hepatology, 65, 1245-1257. https://doi.org/10.1016/j.jhep.2016.07.033
Michelotti, G.A., Machado, M.V. and Diehl, A.M. (2013) NAFLD, NASH and Liver Cancer. Nature Reviews Gastroenterology & Hepatology, 10, 656-665. https://doi.org/10.1038/nrgastro.2013.183
Namkung, J., Shong, K.E., Kim, H., et al. (2018) Inhibition of Ser-otonin Synthesis Induces Negative Hepatic Lipid Balance. Diabetes & Metabolism Journal, 42, 233-243. https://doi.org/10.4093/dmj.2017.0084
Choi, W., Namkung, J., Hwang, I., et al. (2018) Serotonin Signals through a Gut-Liver Axis to Regulate Hepatic Steatosis. Nature Communications, 9, Article No. 4824. https://doi.org/10.1038/s41467-018-07287-7
Osawa, Y., Kanamori, H., Seki, E., et al. (2011) L-tryptophan-Mediated Enhancement of Susceptibility to Nonalcoholic Fatty Liver Disease Is Dependent on the Mamma-lian Target of Rapamycin. The Journal of Biological Chemistry, 286, 34800-34808. https://doi.org/10.1074/jbc.M111.235473
Haub, S., Ritze, Y., Ladel, I., et al. (2011) Serotonin Receptor Type 3 Antagonists Improve Obesity-Associated Fatty Liver Disease in Mice. The Journal of Pharmacology and Experimental Therapeutics, 339, 790-798. https://doi.org/10.1124/jpet.111.181834
Kim, M., Hwang, I., Pagire, H.S., et al. (2020) Design, Synthesis, and Biological Evaluation of New Peripheral 5HT(2A) Antagonists for Nonalcoholic Fatty Liver Disease. Journal of Medicinal Chemistry, 63, 4171-4182. https://doi.org/10.1021/acs.jmedchem.0c00002
Coates, M.D., Johnson, A.C., Greenwood-Van Meerveld, B., et al. (2006) Effects of Serotonin Transporter Inhibition on Gastrointestinal Motility and Colonic Sensitivity in the Mouse. Neurogastroenterology and Motility: The Official Journal of the European Gastrointestinal Motility Society, 18, 464-471. https://doi.org/10.1111/j.1365-2982.2006.00792.x