ASS Advances in Social Sciences 2169-2556 Scientific Research Publishing 10.12677/ASS.2022.113104 ASS-49299 ASS20220300000_42067310.pdf 人文社科 情绪障碍及其气质特征的神经机制的研究现状 Research Status of the Neural Mechanisms of Mood Disorders and Its Temperament Characteristics 婷婷 1 * 西南大学心理学部,重庆 07 03 2022 11 03 728 734 © Copyright 2014 by authors and Scientific Research Publishing Inc. 2014 This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/

在人格理论中,气质代表个体先天的对危险性、新颖性和奖赏性环境刺激的自发行为倾向,在个体的一生中相对稳定,且在情绪障碍诊断前后,以及临床症状的恢复后都倾向于一个稳定水平。更重要的是,气质特征的神经机制的研究中发现,气质得分和负责调节唤醒水平、注意力管理、情绪体验和情感表达的脑区有显著相关。关于情绪障碍的神经机制的研究发现,杏仁核、额叶、小脑等脑区的异常和症状存在显著的相关性。本研究通过系统回顾关于气质特征和情绪障碍的神经机制的研究现状,总结二者神经机制的耦合性,以及耦合的脑区参与的心理加工活动。希望未来考虑到气质评估的便利性,在临床中加入气质特征的评估,提高临床诊断的准确性。 In personality theory, temperament represents an individual’s innate tendency to behave spontaneously to dangerous, novel, and rewarding environmental stimuli, is relatively stable throughout an individual’s life, which tends to be associated with a stable level. More importantly, many studies found that temperament scores were significantly associated with brain regions responsible for mediating levels of arousal, attention management, emotional experience, and emotional expression. Studies on the neural mechanisms of mood disorders have found that abnormalities in brain regions such as the amygdala, prefrontal, and cerebellum are associated with symptoms. This study systematically reviewed the research status of the neural mechanisms of temperament characteristics and mood disorders, and summarized the coupling of the two neural mechanisms, as well as the psychological processing activities involved in the coupled brain regions. It is hoped that in the future, considering the convenience of temperament assessment, the evaluation of temperament characteristics will be added in clinical practice to improve the accuracy of clinical diagnosis.

气质特征,情绪障碍,抑郁症,焦虑症, Temperament Traits Mood Disorders Depression Anxiety Disorders
摘要

在人格理论中,气质代表个体先天的对危险性、新颖性和奖赏性环境刺激的自发行为倾向,在个体的一生中相对稳定,且在情绪障碍诊断前后,以及临床症状的恢复后都倾向于一个稳定水平。更重要的是,气质特征的神经机制的研究中发现,气质得分和负责调节唤醒水平、注意力管理、情绪体验和情感表达的脑区有显著相关。关于情绪障碍的神经机制的研究发现,杏仁核、额叶、小脑等脑区的异常和症状存在显著的相关性。本研究通过系统回顾关于气质特征和情绪障碍的神经机制的研究现状,总结二者神经机制的耦合性,以及耦合的脑区参与的心理加工活动。希望未来考虑到气质评估的便利性,在临床中加入气质特征的评估,提高临床诊断的准确性。

关键词

气质特征,情绪障碍,抑郁症,焦虑症

Research Status of the Neural Mechanisms of Mood Disorders and Its Temperament Characteristics<sup> </sup>

Tingting Weng

Faculty of Psychology, Southwest University, Chongqing

Received: Feb. 21st, 2022; accepted: Mar. 7th, 2022; published: Mar. 14th, 2022

ABSTRACT

In personality theory, temperament represents an individual’s innate tendency to behave spontaneously to dangerous, novel, and rewarding environmental stimuli, is relatively stable throughout an individual’s life, which tends to be associated with a stable level. More importantly, many studies found that temperament scores were significantly associated with brain regions responsible for mediating levels of arousal, attention management, emotional experience, and emotional expression. Studies on the neural mechanisms of mood disorders have found that abnormalities in brain regions such as the amygdala, prefrontal, and cerebellum are associated with symptoms. This study systematically reviewed the research status of the neural mechanisms of temperament characteristics and mood disorders, and summarized the coupling of the two neural mechanisms, as well as the psychological processing activities involved in the coupled brain regions. It is hoped that in the future, considering the convenience of temperament assessment, the evaluation of temperament characteristics will be added in clinical practice to improve the accuracy of clinical diagnosis.

Keywords:Temperament Traits, Mood Disorders, Depression, Anxiety Disorders

Copyright © 2022 by author(s) and beplay安卓登录

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 研究背景

气质特征反映个体与生俱来的情感,唤醒水平和注意特质以及对环境的反应性,随着时间的推移相对稳定地呈现,也就是说,在患者诊断出患有疾病的前后,以及得到治疗后临床症状得以改善,均保持在一个稳定的水平。气质特征的4个维度的个体差异均体现在不同脑区的结构和功能中 [ 1 ] [ 2 ]。无创脑影像技术的成熟运用后发现,情绪障碍患者的神经机制的异常模式可作为诊断和预后的有效评估标准 [ 3 ] [ 4 ],但由于磁共振影像的数据采集成本高而在临床没有广泛运用;因此,通过系统回顾气质特征的神经机制和情绪障碍的神经机制,发现二者在神经机制方面的耦合性;侧面反映在疾病发生早期个体的气质特征异常先于症状的表征,可以预测个体可能会随着年龄增长患有情绪障碍等疾病的可能性。由于气质特征评估的便利性和低成本,在其神经机制和情绪障碍的神经机制有耦合性的前提下,我们可以将气质特征作为患病的易感因子,在临床中对患者加入气质特征的评估,对疾病的初期进行一些行为干预,以预防疾病的发生或者减轻相应的疾病症状。

随着结构影像和功能影像的运用,结构磁共振成像可以很好地分析情绪障碍对患者脑区的结构性缺陷的影响 [ 3 ];功能磁共振成像可以了解到脑区功能性病变;功能性成像研究可以基于任务态(taskfMRI, t-fMRI)和静息态(resting-state, rs-fMRI)扫描神经元活动的时间信号 [ 5 ]。任务态的研究要求被试完成某些特定任务的同时配合磁共振扫描,由于疾病在一定程度上影响被试的认知执行控制功能,这会影响被试在任务执行期间注意力的集中,从而影响实验的准确性;因此,更多的研究集中在静息态的扫描,静息态顾名思义,要求被试在休息的状态下,保持清醒,观察大脑自发的神经元活动情况。目前,已有大量研究表明,情绪障碍患者的脑区产生广泛的结构和功能连接异常模式;在健康被试中也发现了当个体的气质得分分布在正态分布的正常取值范围时,气质分数与多种神经生物指标具有显著相关;因此有必要深入研究二者神经机制的耦合性。

2. 情绪障碍的神经机制

情绪障碍(mood disorder, MD)包括抑郁症和焦虑症,2010年世界卫生组织将其归于与压力相关的神经类躯体形式的疾病障碍。情绪障碍患者的一大明显行为特征是关于情绪刺激的错误评估,造成情绪管理的功能异常,有效的情绪管理依赖于不同脑区之间神的功能连接的平衡性和结构连接的完整性 [ 6 ]。

2.1. 抑郁症的神经机制

全世界的抑郁症患者高达300百万,这一疾病的社会经济压力会在接下来几十年的时间里将不断增加。重度抑郁症(major mental disorder, MDD)已经成为是最常见的情感障碍之一,其显著特征是情绪低落、动机降低、快感缺失、满意度丧生。抗抑郁药作为目前最常见的治疗措施,仍面临超过50%的患者在最初的治疗中没有达到缓解 [ 7 ],因此,通过回顾前人关于抑郁症的神经生理机制的研究,以发现其与气质特征的神经机制的耦合性,从而在临床上改善患者的抑郁症情况,提高其生活质量。

在功能影像的研究中发现,重度抑郁症的脑神经环路受损,元分析的结果显示 [ 8 ],静息态下执行控制网络(execution control network, ECN,负责自上而下的目标指导的认知加工和行为倾向)低连接性,默认网络(default mode network, DMN,负责调节内在意识状态、自我相关的情绪加工)超连接性;ECN-DMN,DMN-腹内侧注意网络(ventral attention network, VAN,负责监测突显刺激/事件)网络间的连接水平异常 [ 8 ];前扣带皮层、胼骶体–前额叶皮层脑区间连接水平异常 [ 9 ];另外基于机器学习,在抑郁症的亚型分类模型中发现,杏仁核、前扣带皮层、海马旁回、海马的功能连接提供有效的判别力水平 [ 10 ];多站点的机器学习构建的预测模型,发现内侧前额叶皮层、颞–顶–枕皮层的灰质体积的减少,小脑、背外侧前额叶皮层的灰质体积的增加在CHR (临床高危状态 clinical high-risk states)中有预测作用 [ 11 ];内侧颞叶灰质体积的减少,前额叶–外侧裂周区灰质体积的增加对ROD新近抑郁症患者(recent-onset depression)有预测作用。在CHR中发现预后效果不佳、伴随其他精神类并发症。通过对个体神经标记物的评估可以有效提供不同的诊断措施 [ 7 ] [ 12 ]。

2.2. 焦虑症的神经机制

与抑郁症并存的焦虑症(anxiety disorder)是单独的一类疾病,具有长期性和周期性,自杀风险颇高 [ 13 ]。当前关于焦虑症的诊断标准并不清晰,生物学研究还未实现焦虑症和恐慌症(phobia/fear)的区分,也未实现焦虑症与恐慌症亚型(panic,simple phobia, social anxiety, agoraphobia)的区分。关于焦虑特征的神经标记物的研究中发现,前扣带皮层、前额叶皮层与恐惧、焦虑刺激的感知、加工以及对应的信号管理有显著的关系 [ 14 ];杏仁核接收来自前扣带皮层、前额叶皮层的信息(代表危险的刺激通过前扣带皮层、前额叶皮层构成的神经网络传递到杏仁核),产生对危险/惩罚刺激的自发反应 ;在自我报告的焦虑水平中发现额叶、前扣带皮层的灰质体积与焦虑水平呈负相关 [ 15 ];在焦虑症患者的研究中发现前扣带皮层、额叶皮层的灰质形态异常 [ 16 ];与杏仁核同侧的海马旁回在功能上与杏仁核具有很强的耦合性,负责恐惧/危险的感知和情绪管理 [ 6 ] [ 14 ] [ 17 ] [ 18 ];焦虑症患者注意资源分配的异常,对焦虑/危险信号的过度关注反映在杏仁核长期超活跃,前额叶/前扣带皮层的低活跃 [ 19 ] [ 20 ]。

3. 气质特征的神经机制

1987年Cloninger教授提出了气质性格理论(The Temperament and Character Inventory,TCI)探索人格精神生物模型 [ 21 ],用以解释先天或遗传因素以及社会环境对人格形成的影响。其中“气质特征指的是对经验的情绪化反应,受遗传因素的影响,且在个体的一生中相对稳定”;“性格特征是后天教育和环境共同作用形成的,体现个体自我概念、价值观和目标上的差异”。组成气质特征的4个因子为新异寻求(novelty-seeking, NS)、伤害回避(harm-avoidance, HA)、回报依赖/报酬依存(reward-dependence, RD)、执着/坚持/固执(persistent, P);组成性格特征的3个因子为自我指向(self-directedness, SD)、协调/合作(cooperativeness, C)和自我超越(self-transcendence, ST) [ 22 ]。

相应地,TCI中的HA,NS,RD和PS分别反映了个体如下的行为倾向:1) 抑制行为以避免惩罚;2) 发起针对新颖性刺激的行为,3)产生与奖励相关的行为,以及4)在没有奖励的情况下保持正在进行的行为 [ 23 ]。

当个体的气质得分分布在正态分布的正常取值范围时,气质分数与多种神经生物指标具有显著相关 [ 24 ],包括:1) 特定大脑区域的神经递质代谢物(神经影像标记物),尤其是皮质–边缘回路的新陈代谢速率,HA与血清素激活系统正相关(serotonergic system),NS与多巴胺能系统负相关(dopaminergic activity),RD与基地神经节的去甲肾上腺素激活系统相关(basal noradrenergic activity) [ 21 ]。2) 功能影像研究发现,气质分数与特定脑区随时间变化的BOLD信号的显著相关性,静息态下,寻求新颖(NS)和背外侧眶额叶(OFC)活动水平呈正相关,任务态下,避免伤害(HA)与海马旁和壳核的活动水平呈正相关 [ 25 ]。关于奖赏依赖(RD)和坚持性PS的功能成像研究发现了眶额叶皮层–纹状体构成的神经网络在奖励处理和坚持性行为中发挥关键作用 [ 26 ];3) 关于DTI研究表明,寻求新颖NS,奖赏依赖RD和坚持性PS与纹状体和内侧前额叶皮层(mPFC)之间的白质纤维束的数量相关,而避免伤害HA与纹状体和背侧前额叶皮层之间的白质纤维束数量相关,这说明了前额叶–皮层下脑区组成的神经网络影响着气质特征的个体差异 [ 27 ]。避免伤害得分偏高与皮层–边缘皮层构成的神经网络的高MD (mean diffusion)低FA (fractional anisotropy),主要由前额叶、顶叶、枕叶、海马旁构成的神经网络 [ 28 ];4) 形态学分析发现健康被试不同脑区的灰质体积与他们的气质得分之间存在显着的相关性,避免伤害HA与杏仁核灰质体积呈正相关,与眶额叶皮层、枕叶皮层、顶叶皮层的灰质体积呈负相关,寻求新颖NS与额叶皮层、后扣带回皮层、尾状核、壳核的灰质体积呈正相关,奖赏依赖RD与尾状核、额叶肠回皮层的灰质体积呈正相关,坚持性PS和楔前叶、中央旁小叶、海马旁回的灰质体积呈正相关 [ 1 ] [ 2 ]。

在健康被试中发现,伤害回避得分偏高增加患有焦虑症、情绪障碍的风险(将气质维度作为疾病易感性的行为特征),在负性情绪特征得分偏高的健康被试中发现左内侧眶额叶到舌状前扣带皮层的灰质体积减少,而左侧杏仁核至前侧海马旁回的灰质体积增加 [ 29 ] [ 30 ] [ 31 ];在预测疾病的易感性中发现,高HA、低SD (评估气质和性格特征)的被试患有情绪障碍的准确性显著提高 [ 32 ],这说明了未来的认知神经研究可以联系人格特征和神经精神类疾病的病理机制/神经机制,通过神经影像技术获取个体的神经指标,从而通过神经指标提高气质的评估准确性,为临床疾病诊断提供更准确的数据、产生更有效的预后结果。

4. 情绪障碍神经机制和气质特征神经机制的耦合性 4.1. 杏仁核

杏仁核参与情绪加工,特别是在情绪性学习和情绪性记忆中发挥了关键作用;关于杏仁核的脑区形态和新异寻求的气质特征有显著相关。神经质特征的个体,具有伤害回避特征的个体、具有特质焦虑个体、较高的BIS水平的杏仁核灰质体积显著增加 [ 33 ] [ 34 ]。

另外一些关于人格特征和功能连接的相关性的文献也集中关注杏仁核,例如,在高神经质的个体中发现,杏仁核与中额额回的连接性增加以及杏仁核与颞极和岛突的连接性下降。颞区和左侧杏仁核的节点之间的连接水平预测神经疾病的症状严重程度呈负相关;边缘–前额叶皮层的连接水平和神经疾病症状的严重程度呈正相关,边缘–脑岛的连接水平和症状严重程度呈负相关 [ 35 ] [ 36 ]。

4.2. 小脑

解剖临床分析表明,小脑是智力和情绪的关键神经调节,并揭示了小脑蚓体的后部,即所谓的边缘小脑,主要参与情绪和情感的调节。受后叶和小脑蚓体病变引起的小脑认知情感综合症影响的受试者表现出执行功能障碍,情感钝化以及非适应性行为。受不同病因影响的小脑疾病的患者的心理病理学特征叶不同,包括冲动,强迫,活动过度,反刍和刻板行为,这些行为特征会影响其人格特征。例如,小脑的功能和结构调节着新异寻求气质维度,在面对新颖刺激和陌生刺激,High-NS的个体对新颖刺激的信息加工速度更快并且产生适应性行为,但是当新信息没有找到与内部匹配的模型时,小脑会向前额叶皮层发射信号,以生成新的与常规思维模型相匹配的内部模型 [ 37 ]。小脑和基底神经节的脑网络连接,影响奖励驱动的行为、加工与动机效价相关的信息传递,这些信息又与新颖性探测和寻求相关 [ 38 ] [ 39 ]。关于小脑的形态学指标和气质维度的关系的研究,发现小脑的体积和NS维度呈正相关;和HA维度呈负相关 [ 40 ] [ 41 ]。另外,小脑系统和趋近系统的行为表现型相关(探索性行为):具体而言,通过整合环境、感知的信息到寻求性的动作行为,形成sensory-motor系统;发现了探索行为障碍和空间定位困难的小脑结构异常 [ 42 ]。除了人类的小脑和气质特征的关系研究中发现显著关系,在小鼠小脑形态也发现了小脑和探索行为的相关的性:经半脑切除的大鼠在任务执行中的探索行为减少,而小脑突变的小鼠表现出小脑皮质的退化(齿状核、选择性浦肯野细胞受损),导致探索行为减少 [ 43 ]。

4.3. 前额叶皮层

大量研究发现产生更多负性情绪的个体的前额叶皮层(prefrontal cortex,PFC)区域的灰质体积、灰质厚度、灰质面积显著减少,尤其是在眶额叶的内侧和前侧中。通过前额叶皮层的结构和功能上的差异性可以分为两个相关连接的子区域:内侧前额区和外侧前额区,内侧前额区负责情绪加工和社交认知,外侧前额区负责工作记忆和认知、感知等行为调控 [ 44 ]。对内侧前额区进一步划分 [ 45 ],可以分成两个部分:眶额区即眶额叶,和更内侧的前额叶皮层;眶额叶更多的参与到社交认知、情绪感知中,且眶额叶和杏仁核、颞叶皮层的连接更紧密,已知杏仁核和颞叶在情绪加工中发挥着重要的作用;,显示出与社交情感网络(OFC)的连接可能性更高,颞极,杏仁核);而更多的内侧部分显示出与默认模式网络连接更紧密,默认网络包括了前扣带回皮层、楔前叶,默认模式网络的激活涉及更多的自我内部关注,例如自我导向的思维模式和自传体记忆检索并展望未来 [ 46 ]。所以,有大量文献发现,产生大量负性情绪的个体(包括高HA特征者、BIS特征者)眶额叶的灰质体积减少,杏仁核的灰质体积增加 [ 45 ]。

5. 评述

前人的研究可以发现气质特征的神经标记物和情绪障碍的神经标记物有很高的耦合性,如果在临床实践中加入对个体气质特征的评估,可能可以实现情绪障碍诊断的有效性,从而提供适应的预防干预措施,另外,社会和职业方面的障碍可能成为患有情绪障碍的风险因子,而个体先天对压力的唤醒水平也会影响个人采取的行为措施,这些都可以通过气质特征的评估得以提早采取相应的行为干预,所以通过这样耦合性的研究为社会群体情绪障碍的易感性提供风险分层模型,提高个体的幸福指数和生活质量。

文章引用

翁婷婷. 情绪障碍及其气质特征的神经机制的研究现状Research Status of the Neural Mechanisms of Mood Disorders and Its Temperament Characteristics[J]. 社会科学前沿, 2022, 11(03): 728-734. https://doi.org/10.12677/ASS.2022.113104

参考文献 References Iidaka, T., et al. (2006) Volume of Left Amygdala Subregion Predicted Temperamental Trait of Harm Avoidance in Female Young Subjects. A Voxel-Based Morphometry Study. Brain Research, 1125, 85-93.
https://doi.org/10.1016/j.brainres.2006.09.015
Gardini, S., Cloninger, C.R. and Venneri, A. (2009) Individual Differences in Personality Traits Reflect Structural Variance in Specific Brain Regions. Brain Research Bulletin, 79, 265-270.
https://doi.org/10.1016/j.brainresbull.2009.03.005
Brambilla, P., et al. (2002) Anatomical MRI Findings in Mood and Anxiety Disorders. Epidemiologia e Psichiatria Sociale, 11, 88-99.
https://doi.org/10.1017/S1121189X00005558
Kim, Y.K. and Na, K.S. (2018) Application of Machine Learning Classification for Structural Brain MRI in Mood Disorders: Critical Review from a Clinical Perspective. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 80, 71-80.
https://doi.org/10.1016/j.pnpbp.2017.06.024
Osuch, E., et al. (2018) Complexity in Mood Disorder Diagnosis: fMRI Connectivity Networks Predicted Medication-Class of Response in Complex Patients. Acta Psychiatrica Scandinavica, 138, 472-482.
https://doi.org/10.1111/acps.12945
Kim, M.J., et al. (2011) The Structural and Functional Connectivity of the Amygdala: From Normal Emotion to Pathological Anxiety. Behavioural Brain Research, 223, 403-410.
https://doi.org/10.1016/j.bbr.2011.04.025
Cui, Z. and Gong, G. (2018) The Effect of Machine Learning Regression Algorithms and Sample Size on Individualized Behavioral Prediction with Functional Connectivity Features. Neuroimage, 178, 622-637.
https://doi.org/10.1016/j.neuroimage.2018.06.001
Kaiser, R.H., et al. (2015) Large-Scale Network Dysfunction in Major Depressive Disorder: A Meta-Analysis of Resting-State Functional Connectivity. JAMA Psychiatry, 72, 603-611.
https://doi.org/10.1001/jamapsychiatry.2015.0071
Chen, Y., et al. (2017) The Effects of Life Review on Psycho-Spiritual Well-Being among Patients with Life-Threatening Illness: A Systematic Review and Meta-Analysis. Journal of Advanced Nursing, 73, 1539-1554.
https://doi.org/10.1111/jan.13208
Drysdale, A.T., et al. (2017) Resting-State Connectivity Biomarkers Define Neurophysiological Subtypes of Depression. Nature Medicine, 23, 28-38.
https://doi.org/10.1038/nm.4246
Koutsouleris, N., et al. (2018) Prediction Models of Functional Outcomes for Individuals in the Clinical High-Risk State for Psychosis or with Recent-Onset Depression: A Multimodal, Multisite Machine Learning Analysis. JAMA Psychiatry, 75, 1156-1172.
https://doi.org/10.1001/jamapsychiatry.2018.2165
Clark, L., Chamberlain, S.R. and Sahakian, B.J. (2009) Neurocognitive Mechanisms in Depression: Implications for Treatment. Annual Review of Neuroscience, 32, 57-74.
https://doi.org/10.1146/annurev.neuro.31.060407.125618
Roy-Byrne, P.P., et al. (2000) Lifetime Pan-ic-Depression Comorbidity in the National Comorbidity Survey. Association with Symptoms, Impairment, Course and Help-Seeking. The British Journal of Psychiatry, 176, 229-235.
https://doi.org/10.1192/bjp.176.3.229
LeDoux, J.E. (1995) Emotion: Clues from the Brain. Annual Review of Psychology, 46, 209-235.
https://doi.org/10.1146/annurev.ps.46.020195.001233
Spampinato, M.V., et al. (2009) Neural Correlates of Anxiety in Healthy Volunteers: A Voxel-Based Morphometry Study. The Journal of Neuropsychiatry and Clinical Neurosciences, 21, 199-205.
https://doi.org/10.1176/jnp.2009.21.2.199
Ferrari, M.C., et al. (2008) Structural Magnetic Resonance Imaging in Anxiety Disorders: An Update of Research Findings. Brazilian Journal of Psychiatry, 30, 251-264.
https://doi.org/10.1590/S1516-44462008000300013
Gottfried, J.A. and Dolan, R.J. (2004) Human Orbitofrontal Cortex Mediates Extinction Learning While Accessing Conditioned Representations of Value. Nature Neuroscience, 7, 1144-1152.
https://doi.org/10.1038/nn1314
Morris, J.S. and Dolan, R.J. (2004) Dissociable Amygdala and Orbitofrontal Responses during Reversal Fear Conditioning. Neuroimage, 22, 372-380.
https://doi.org/10.1016/j.neuroimage.2004.01.012
Radua, J., et al. (2010) Meta-Analytical Comparison of Voxel-Based Morphometry Studies in Obsessive-Compulsive Disorder vs Other Anxiety Disorders. Archives of General Psychiatry, 67, 701-711.
https://doi.org/10.1001/archgenpsychiatry.2010.70
Sehlmeyer, C., et al. (2011) Neural Correlates of Trait Anxiety in Fear Extinction. Psychological Medicine, 41, 789-798.
https://doi.org/10.1017/S0033291710001248
Cloninger, C.R. (1987) A Systematic Method for Clinical Description and Classification of Personality Variants. A Proposal. Archives of General Psychiatry, 44, 573-588.
https://doi.org/10.1001/archpsyc.1987.01800180093014
Cloninger, C.R., Svrakic, D.M. and Przybeck, T.R. (1993) A Psychobiological Model of Temperament and Character. Archives of General Psychiatry, 50, 975-990.
https://doi.org/10.1001/archpsyc.1993.01820240059008
Van Schuerbeek, P., et al. (2011) Individual Differences in Local Gray and White Matter Volumes Reflect Differences in Temperament and Character: A Voxel-Based Morphometry Study in Healthy Young Females. Brain Research, 1371, 32-42.
https://doi.org/10.1016/j.brainres.2010.11.073
Jiang, R., et al. (2018) Connectome-Based Individualized Prediction of Temperament Trait Scores. Neuroimage, 183, 366-374.
https://doi.org/10.1016/j.neuroimage.2018.08.038
Hu, J., et al. (2016) Individual Variation in the Neural Processes of Motor Decisions in the Stop Signal Task: The Influence of Novelty Seeking and Harm Avoidance Personality Traits. Brain Structure & Function, 221, 2607-2618.
https://doi.org/10.1007/s00429-015-1061-4
Krebs, R.M., Schott, B.H. and Düzel, E. (2009) Personality Traits Are Differentially Associated with Patterns of Reward and Novelty Processing in the Human Substantia Ni-gra/Ventral Tegmental Area. Biological Psychiatry, 65, 103-110.
https://doi.org/10.1016/j.biopsych.2008.08.019
Lei, X., et al. (2014) Fiber Connectivity between the Striatum and Cortical and Subcortical Regions Is Associated with Temperaments in Chinese Males. Neuroimage, 89, 226-234.
https://doi.org/10.1016/j.neuroimage.2013.04.043
Wei, L., et al. (2011) The Synchronization of Spontaneous BOLD Activity Predicts Extraversion and Neuroticism. Brain Research, 1419, 68-75.
https://doi.org/10.1016/j.brainres.2011.08.060
Andrews, G., et al. (1990) Evidence for a General Neurotic Syndrome. The British Journal of Psychiatry, 157, 6-12.
https://doi.org/10.1192/bjp.157.1.6
Cloninger, C.R., Svrakic, N.M. and Svrakic, D.M. (1997) Role of Personality Self-Organization in Development of Mental Order and Disorder. Development and Psychopathology, 9, 881-906.
https://doi.org/10.1017/S095457949700148X
Bienvenu, O.J., et al. (2001) Phobic, Panic, and Major Depressive Disorders and the Five-Factor Model of Personality. The Journal of Nervous and Mental Disease, 189, 154-161.
https://doi.org/10.1097/00005053-200103000-00003
Cortés, M.J., et al. (2009) Psychopathology and Personality Traits in Psychotic Patients and Their First-Degree Relatives. European Psychiatry, 24, 476-482.
https://doi.org/10.1016/j.eurpsy.2009.06.002
Koelsch, S., Skouras, S. and Jentschke, S. (2013) Neural Correlates of Emotional Personality: A Structural and Functional Magnetic Resonance Imaging Study. PLoS ONE, 8, e77196.
https://doi.org/10.1371/journal.pone.0077196
Kyeong, S., et al. (2014) Functional Network Organizations of Two Contrasting Temperament Groups in Dimensions of Novelty Seeking and Harm Avoidance. Brain Research, 1575, 33-44.
https://doi.org/10.1016/j.brainres.2014.05.037
Pang, Y., et al. (2016) Extraversion and Neuroticism Related to the Resting-State Effective Connectivity of Amygdala. Scientific Reports, 6, Article No. 35484.
https://doi.org/10.1038/srep35484
Aghajani, M., et al. (2014) Neuroticism and Extraversion Are Associated with Amygdala Resting-State Functional Connectivity. Cognitive, Affective, & Behavioral Neuroscience, 14, 836-848.
https://doi.org/10.3758/s13415-013-0224-0
Ito, M. (2008) Control of Mental Activities by Internal Models in the Cerebellum. Nature Reviews Neuroscience, 9, 304-313.
https://doi.org/10.1038/nrn2332
Hoshi, E., et al. (2005) The Cerebellum Communicates with the Basal Ganglia. Nature Neuroscience, 8, 1491-1493.
https://doi.org/10.1038/nn1544
Bostan, A.C. and Strick, P.L. (2010) The Cerebellum and Basal Ganglia Are Interconnected. Neuropsychology Review, 20, 261-270.
https://doi.org/10.1007/s11065-010-9143-9
Picerni, E., et al. (2013) New Evidence for the Cerebellar Involvement in Personality Traits. Frontiers in Behavioral Neuroscience, 7, Article No. 133.
https://doi.org/10.3389/fnbeh.2013.00133
Laricchiuta, D., et al. (2014) Linking Novelty Seeking and Harm Avoidance Personality Traits to Basal Ganglia: Volumetry and Mean Diffusivity. Brain Structure & Function, 219, 793-803.
https://doi.org/10.1007/s00429-013-0535-5
Molinari, M., et al. (2004) Visuospatial Abilities in Cerebellar Disorders. Journal of Neurology, Neurosurgery and Psychiatry, 75, 235-240. Jacquelin, C., et al. (2013) Neurobehavioral Performances and Brain Regional Metabolism in Dab1 (scm) (Scrambler) Mutant Mice. Behavioural Brain Research, 252, 92-100.
https://doi.org/10.1016/j.bbr.2013.05.024
Kringelbach, M.L., de Araujo, I.E. and Rolls, E.T. (2004) Taste-Related Activity in the Human Dorsolateral Prefrontal Cortex. Neuroimage, 21, 781-788.
https://doi.org/10.1016/j.neuroimage.2003.09.063
Liu, H., et al. (2014) Differentiating Patterns of Amygdala-Frontal Functional Connectivity in Schizophrenia and Bipolar Disorder. Schizophrenia Bulletin, 40, 469-477.
https://doi.org/10.1093/schbul/sbt044
Schacter, D.L. and Addis, D.R. (2007) The Cognitive Neuroscience of Constructive Memory: Remembering the Past and Imagining the Future. Philosophical Transactions of the Royal Society B: Biological Sciences, 362, 773-786.
https://doi.org/10.1098/rstb.2007.2087
Baidu
map