虫草素为虫草属所特有的主要生物活性成分。研究表明,虫草素具有多种生理药理作用,如调节免疫、抗病毒、抗氧化、降血脂、抗炎、抗肿瘤、抗菌和促进类固醇激素分泌等。本文综述了虫草素提高雄性动物繁殖性能及机制的研究进展。 Cordycepin is the main bioactive component unique to Cordyceps. Studies have shown that cordycepin has a variety of physiological and pharmacological effects, such as regulating immunity, antiviral, antioxidant, hypolipidemic, anti-inflammatory, anti-tumor, anti-bacterial and promoting steroid hormone secretion. This paper reviews the research progress of cordycepin on improving reproduction and mechanism in male animals.
虫草素,雄性动物,繁殖性能,间质细胞,睾酮, Cordycepin
Male Animals
Reproduction
Leydig Cell
Testosterone
摘要
Cordycepin is the main bioactive component unique to Cordyceps. Studies have shown that cordycepin has a variety of physiological and pharmacological effects, such as regulating immunity, antiviral, antioxidant, hypolipidemic, anti-inflammatory, anti-tumor, anti-bacterial and promoting steroid hormone secretion. This paper reviews the research progress of cordycepin on improving reproduction and mechanism in male animals.
Keywords:Cordycepin, Male Animals, Reproduction, Leydig Cell, Testosterone
黄炜乾,金明昌,赵 颖,唐谢芳. 虫草素提高雄性动物繁殖性能及机制研究进展 Research Progress of Cordycepin on Improving Reproduction and Mechanism in Male Animals[J]. 生物过程, 2021, 11(04): 146-154. https://doi.org/10.12677/BP.2021.114017
参考文献References
Hawley, S.A., Ross, F.A., Russell, F.M., et al. (2020) Mechanism of Activation of AMPK by Cordycepin. Cell Chemi-cal Biology, 27, 214-222.E4. https://doi.org/10.1016/j.chembiol.2020.01.004
Cunningham, K.G., Manson, W., Spring, F.S., et al. (1950) Cordycepin, a Metabolic Product Isolated from Cultures of Cordyceps militaris (Linn.) Link. Nature, 166, 949. https://doi.org/10.1038/166949a0
Chen, Y.C., Chen, Y.H., Pan, B.S., et al. (2017) Func-tional Study of Cordyceps sinensis and Cordycepin in Male Reproduction: A Review. Journal of Food and Drug Analy-sis, 25,197-205. https://doi.org/10.1016/j.jfda.2016.10.020
Zhou, X.X., Luo, L.P., Dressel, W., et al. (2008) Cordycepin Is an Immunoregulatory Active Ingredient of Cordyceps sinensis. The American Journal of Chinese Medi-cine, 36, 967-980. https://doi.org/10.1142/S0192415X08006387
Xiong, Y., Zhang, S., Xu, L., et al. (2013) Suppression of T-Cell Activation in Vitro and in Vivo by Cordycepin from Cordyceps militaris. Journal of Surgical Re-search, 185, 912-922. https://doi.org/10.1016/j.jss.2013.06.057
Ryu, E.H., Son, M.K., Lee, M.J., et al. (2014) Cordycepin Is a Novel Chemical Suppressor of Epstein-Barr Virus Replication. Oncoscience, 1, 866-881. https://doi.org/10.18632/oncoscience.110
Clercq, E.D. (2015) Curious (Old and New) Antiviral Nucleoside Analogues with Intriguing Therapeutic Potential. Current Medicinal Chemistry, 22, 3866-3880. https://doi.org/10.2174/0929867322666150625094705
Lei, J., Wei, Y., Song, P., et al. (2018) Cordycepin Inhibits LPS-Induced Acute Lung Injury by Inhibiting Inflammation and Oxidative Stress. European Journal of Phar-macology, 818, 110-114. https://doi.org/10.1016/j.ejphar.2017.10.029
Park, E.S., Kang, D.H., Yang, M.K., et al. (2014) Cordycepin, 3′-Deoxyadenosine, Prevents Rat Hearts from Ischemia/Reperfusion Injury via Activation of Akt/GSK-3β/p70S6K Sig-naling Pathway and HO-1 Expression. Cardiovascular Toxicology, 14, 1-9. https://doi.org/10.1007/s12012-013-9232-0
Guo, P., Kai, Q., Gao, J., et al. (2010) Cordycepin Prevents Hy-perlipidemia in Hamsters Fed a High-Fat Diet via Activation of AMP-Activated Protein Kinase. Journal of Pharmaco-logical Sciences, 113, 395-403.
Gong, X.B., Li, T.J., Wan, R.Z., et al. (2021) Cordycepin Attenuates High-Fat Di-et-Induced Non-Alcoholic Fatty Liver Disease via Down-Regulation of Lipid Metabolism and Inflammatory Responses. International Immunopharmacology, 91, Article ID: 107173. https://doi.org/10.1016/j.intimp.2020.107173
Tan, L., Song, X.M.T., Ren, Y.L., et al. (2020) An-ti-Inflammatory Effects of Cordycepin: A Review. Phytotherapy Research, 35, 1284-1297. https://doi.org/10.1002/ptr.6890
Govindula, A., Pai, A., Baghel, S., et al. (2021) Molecular Mechanisms of Cordycepin Emphasizing Its Potential against Neuroinflammation: An Update. European Journal of Pharmacology, 908, Article ID: 174364. https://doi.org/10.1016/j.ejphar.2021.174364
Jeong, J.W. and Choi, Y.H. (2015) Anti-Cancer Properties and Relevant Mechanisms of Cordycepin, an Active Ingredient of the Insect Fungus Cordyceps spp. Journal of Life Science, 25, 607-614. https://doi.org/10.5352/JLS.2015.25.5.607
Özenver, N., Boulos, J.C. and Efferth, T. (2021) Activity of Cordycepin from Cordyceps sinensis against Drug-Resistant Tumor Cells as Determined by Gene Expression and Drug Sensitivity Profiling. Natural Product Communications, 16, 1-12. https://doi.org/10.1177/1934578X21993350
Ahn, Y.J., Park, S.J., Lee, S.G., et al. (2000) Cordycepin: Selec-tive Growth Inhibitor Derived from Liquid Culture of Cordyceps militaris against Clostridium spp. Journal of Agricul-tural and Food Chemistry, 48, 2744-2748. https://doi.org/10.1021/jf990862n
高苏, 马婕馨, 刘警鞠, 等. 虫草素的抑菌活性及机理研究[J]. 生物技术通报, 2021, 37(8): 137-144.
Wang, Y., Pei, Z.J., Lou, Z.X., et al. (2021) Evaluation of Anti-Biofilm Capability of Cordycepin against Candida albicans. Infection and Drug Resistance, 14, 435-448.
Wang, S.M., Lee, L.J., Lin, W.W., et al. (1998) Effects of a Water-Soluble Extract of Cordyceps sinensis on Steroidogenesis and Capsular Mor-phology of Lipid Droplets in Cultured Rat Adrenocortical Cells. Journal of Cellular Biochemistry, 69, 483-489. https://doi.org/10.1002/(SICI)1097-4644(19980615)69:4%3C483::AID-JCB9%3E3.0.CO;2-J
Leu, S.F., Song, L.P., Pao, H.Y., et al. (2011) The in Vivo and in Vitro Stimulatory Effects of Cordycepin on Mouse Leydig Cell Steroidogenesis. Bioscience Biotechnology and Biochemistry, 75, 723-731. https://doi.org/10.1271/bbb.100853
Lin, W.H., Tsai, M.T., Chen, Y.S., et al. (2007) Improvement of Sperm Production in Subfertile Boars by Cordyceps militaris Supplement. American Journal of Chinese Medicine, 35, 631-641. https://doi.org/10.1142/S0192415X07005120
Chang, Y., Jeng, K.C., Huang, K.F., et al. (2008) Effect of Cordyceps Militaris Supplementation on Sperm Production, Sperm Motility and Hormones in Sprague-Dawley Rats. American Journal of Chinese Medicine, 36, 849-859. https://doi.org/10.1142/S0192415X08006296
Sohn, S.H., Lee, S.C., Hwang, S.Y., et al. (2012) Effect of Long-Term Administration of Cordycepin from Cordyceps militaris on Testicular Function in Middle-Aged Rats. Planta Medica, 78, 1620-1625.
Kopalli, S.R., Cha, K.M., Lee, S.H., et al. (2019) Cordycepin, an Active Constituent of Nutrient Powerhouse and Potential Medicinal Mushroom Cordyceps militaris Linn., Ameliorates Age-Related Testicular Dysfunction in Rats. Nutrients, 11, Article No. 906. https://doi.org/10.3390/nu11040906
Hong, I.P., Choi, Y.S., Woo, S.O., et al. (2011) Effect of Cordyceps militaris on Testosterone Production in Sprague-Dawley Rats. Inter-national Journal of Industrial Entomology, 23, 143-146. https://doi.org/10.7852/ijie.2011.23.1.143
张阳海, 李永, 曹迪, 等. 睾酮对动物生殖和生长发育影响的研究进展[J]. 家畜生态学报, 2018, 39(1): 1-7.
Saez, J.M. (1994) Leydig Cells: Endocrine, Paracrine, and Auto-crine Regulation. Endocrine Reviews, 15, 574-626. https://doi.org/10.1210/edrv-15-5-574
刘建中, 郭海彬, 邓春华, 等. 大鼠睾丸Leydig细胞的培养和鉴定[J]. 中华男科学杂志, 2006, 12(1): 14-17.
Nguyen, T.V., Chumnanpuen, P., Parunyakul, K., et al. (2021) A Study of the Aphrodisiac Properties of Cordyceps militaris in Streptozotocin-Induced Diabetic Male Rats. Veterinary World, 14, 537-544. https://doi.org/10.14202/vetworld.2021.537-544
Oyola, M.G. and Handa, R.J. (2017) Hypothalam-ic-Pituitary-Adrenal and Hypothalamic-Pituitary-Gonadal Axes: Sex Differences in Regulation of Stress Responsivity. Stress, 20, 476-494. https://doi.org/10.1080/10253890.2017.1369523
Richards, J.S. (2001) New Signaling Pathways for Hormones and Cyclic Adenosine 3’,5’-Monophosphate Action in Endocrine Cells. Molecular Endocrinol-ogy, 15, 209-218.
Stocco, D.M. and Clark, B.J. (1996) Regulation of the Acute Production of Steroids in Steroidogenic Cells. Endocrine Reviews, 17, 221-244. https://doi.org/10.1210/edrv-17-3-221
Strauss, J.F., Kishida, T., Christenson, L.K., et al. (2003) START Domain Proteins and the Intracellular Trafficking of Cholesterol in Steroidogenic Cells. Molecular and Cellular Endocrinology, 202, 59-65. https://doi.org/10.1016/S0303-7207(03)00063-7
Stocco, D.M. (2001) Tracking the Role of a StAR in the Sky of the New Millennium. Molecular Endocrinology, 15, 1245-1254. https://doi.org/10.1210/mend.15.8.0697
Zirkin, B.R. and Papadopoulos, V. (2018) Leydig Cells: Formation, Function, and Regulation. Biology of Reproduction, 99, 101-111. https://doi.org/10.1093/biolre/ioy059
朱清玉, 郭乐薇, 刘红羽, 等. 睾丸间质细胞睾酮合成机制的研究进展[J]. 中国畜牧杂志, 2021, 57(5): 28-33.
Londos, C., Cooper, D. and Wolff, J. (1980) Subclasses of External Adenosine Receptors. Proceedings of the National Academy of Sciences of the United States of America, 77, 2551-2554. https://doi.org/10.1073/pnas.77.5.2551
Jacobson, K.A. and Gao, Z.G. (2006) Adenosine Receptors as Thera-peutic Targets. Nature Reviews Drug Discovery, 5, 247-264. https://doi.org/10.1038/nrd1983
He, M.T., Lee, A.Y., Cho, E.J., et al. (2019) Protective Effect of Cordyceps Militaris against Hydrogen Peroxide-Induced Oxidative Stress in Vitro. Nutrition Research and Practice, 13, 279-285. https://doi.org/10.4162/nrp.2019.13.4.279
Ryan, M.J., Dudash, H.J., Docherty, M., et al. (2008) Ag-ing-Dependent Regulation of Antioxidant Enzymes and Redox Status in Chronically Loaded Rat Dorsiflexor Muscles. Journals of Gerontology, 63, 1015-1026. https://doi.org/10.1093/gerona/63.10.1015
Koeberle, A., Shindou, H., Harayama, T., et al. (2012) Polyun-saturated fatty acids are incorporated into maturating male mouse germ cells by lysophosphatidic acid acyltransferase 3. The FASEB Journal, 26, 169-180. https://doi.org/10.1096/fj.11-184879
Asadi, N., Bahmani, M., Kheradmand, A., et al. (2017) The Impact of Oxidative Stress on Testicular Function and the Role of Antioxidant in Improving It: A Review. Journal of Clinical and Diagnostic Research, 11, IE01-IE05. https://doi.org/10.7860/JCDR/2017/23927.9886
Suresh, S., Prithiviraj, E., Lakshmi, N.V., et al. (2013) Effect of Mucuna pruriens (Linn.) on Mitochondrial Dysfunction and DNA Damage in Epididymal Sperm of Streptozoto-cin-Induced Diabetic Rat. Journal of Ethnopharmacology, 145, 32-41. https://doi.org/10.1016/j.jep.2012.10.030
孟雪莲, 陈长兰, 孔维娟, 等. 虫草素抑制脂多糖诱导的小胶质细胞活化及神经保护作用[J]. 食品科学, 2014, 35(19): 224-230.
Han, F., Dou, M., Wang, Y.X., et al. (2020) Cordycepin Protects Renal Ischemia/Reperfusion Injury through Regulating Inflammation, Apoptosis, and Oxidative Stress. Acta Biochimica et Biophysica Sinica, 52, 125-132. https://doi.org/10.1093/abbs/gmz145
Ramesh, T., Yoo, S.K., Kim, S.W., et al. (2012) Cordycepin (3′-Deoxyadenosine) Attenuates Age-Related Oxidative Stress and Ameliorates Antioxidant Capacity in Rats. Experi-mental Gerontology, 47, 979-987. https://doi.org/10.1016/j.exger.2012.09.003
Iuchi, Y., Okada, F., Tsunoda, S., et al. (2009) Peroxiredoxin 4 Knockout Results in Elevated Spermatogenic Cell Death Via Oxidative Stress. Biochemical Journal, 419, 149-158. https://doi.org/10.1042/BJ20081526
Rao, A.V. and Shaha, C. (2000) Role of Glutathione S-Transferases in Oxidative Stress-Induced Male Germ Cell Apoptosis. Free Radical Biology & Medicine, 29, 1015-1027. https://doi.org/10.1016/S0891-5849(00)00408-1
Hemachand, T., Gopalakrishnan, B., Salunke, D.M., et al. (2002) Sperm Plasma-Membrane-Associated Glutathione S-Transferases as Gamete Recognition Molecules. Journal of Cell Science, 115, 2053-2065. https://doi.org/10.1242/jcs.115.10.2053
Ursini, F., Kiess, M., Maiorino, M., et al. (1999) Dual Function of the Selenoprotein PHGPx during Sperm Maturation. Science, 285, 1393-1396. https://doi.org/10.1126/science.285.5432.1393
Muralidhara, B.S. (2007) Occurrence of Oxidative Impair-ments Response of Antioxidant Defences and Associated Biochemical Perturbations in Male Reproductive Milieu in the Streptozotocin-Diabetic Rat. International Journal of Andrology, 30, 508-518. https://doi.org/10.1111/j.1365-2605.2007.00748.x
Aguirre-Arias, M.V., Velarde, V. and Moreno, R.D. (2017) Effects of Ascorbic Acid on Spermatogenesis and Sperm Parameters in Diabetic Rats. Cell and Tissue Research, 370, 305-317. https://doi.org/10.1007/s00441-017-2660-6
Karimi, J., Goodarzi, M.T., Tavilani, H., et al. (2011) Relationship between Advanced Glycation End Products and Increased Lipid Peroxidation in Semen of Diabetic Men. Diabetes Research and Clinical Practice, 91, 61-66. https://doi.org/10.1016/j.diabres.2010.09.024
Muralidhara, B.S. (2007) Early Oxidative Stress in Testis and Epididymal Sperm in Streptozotocin-Induced Diabetic Mice: Its Progression and Genotoxic Consequences. Reproductive Toxicology, 23, 578-587. https://doi.org/10.1016/j.reprotox.2007.02.001