糖尿病是一种多因素疾病,影响全世界越来越多的患者。糖尿病分为1型和2型。2型糖尿病(T2DM)是一种代谢功能紊乱疾病,其特征是胰岛敏感性受损,胰岛素分泌相对不足;1型糖尿病(T1DM)是年轻患者中最常见的自身免疫性疾病,其特征是胰腺β细胞的功能损坏,胰岛素分泌绝对不足,身体变得高血糖。外源性给药不能模拟健康胰腺分泌的内源性胰岛素。同种异体胰岛移植已成为长期重建患者血糖正常调节的疗方法。但是这存在很多问题,供体严重不足、移植细胞体内无法长期存活、移植后需长期服用免疫抑制剂。干细胞诱导分化成β细胞成为可解决上述问题的有效方法之一,用于1型糖尿病的治疗。然而,要想干细胞在临床上治疗糖尿病,在这之前仍需要解决许多未解决的问题。在这里,我们讨论了从不同前体细胞中得到胰岛素生成细胞(IPCs)的方式以及干细胞的糖尿病疗法的当前研究进展和面临的问题和挑战。 Diabetes is a multifactorial disease affecting an increasing number of patients worldwide. Diabetes is divided into type 1 and type 2. Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by impaired islet sensitivity and relatively insufficient insulin secretion. Type 1 diabetes mellitus (T1DM), the most common autoimmune disease in young patients, is characterized by functional impairment of beta cells in the pancreas, absolute deficiency of insulin secretion, and the body becoming hyperglycemic. Exogenous administration does not mimic endogenous insulin produced by a healthy pancreas. Islet allotransplantation has become a therapy for long-term reconstruction of normal glycemic regulation in patients. However, there are many problems, such as the serious shortage of donors, the inability of the transplanted cells to survive in vivo for a long time, and the need to take immunosuppressants for a long time after transplantation. The induction differentiation of stem cells into β cells is one of the effective methods to solve the above problems and is used in the treatment of type 1 diabetes. However, there are still many unanswered questions that need to be addressed before stem cells can be used to treat diabetes in the clinic. Here, we discuss the ways in which insulin-producing cells (IPCs) can be derived from different precursor cells, as well as the current research progress and problems and challenges facing stem cell therapies for diabetes.
Application and Progress of Stem Cells in the Treatment of Diabetes
Jiachen Zhu1, Jue Ling1, Yan Huang2, Yumin Yang1
1Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong Jiangsu
2Medical School of Nantong University, Nantong Jiangsu
Diabetes is a multifactorial disease affecting an increasing number of patients worldwide. Diabetes is divided into type 1 and type 2. Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by impaired islet sensitivity and relatively insufficient insulin secretion. Type 1 diabetes mellitus (T1DM), the most common autoimmune disease in young patients, is characterized by functional impairment of beta cells in the pancreas, absolute deficiency of insulin secretion, and the body becoming hyperglycemic. Exogenous administration does not mimic endogenous insulin produced by a healthy pancreas. Islet allotransplantation has become a therapy for long-term reconstruction of normal glycemic regulation in patients. However, there are many problems, such as the serious shortage of donors, the inability of the transplanted cells to survive in vivo for a long time, and the need to take immunosuppressants for a long time after transplantation. The induction differentiation of stem cells into β cells is one of the effective methods to solve the above problems and is used in the treatment of type 1 diabetes. However, there are still many unanswered questions that need to be addressed before stem cells can be used to treat diabetes in the clinic. Here, we discuss the ways in which insulin-producing cells (IPCs) can be derived from different precursor cells, as well as the current research progress and problems and challenges facing stem cell therapies for diabetes.
朱家臣,凌 珏,黄 龑,杨宇民. 干细胞在治疗糖尿病的应用和进展 Application and Progress of Stem Cells in the Treatment of Diabetes[J]. 生物过程, 2021, 11(04): 109-122. https://doi.org/10.12677/BP.2021.114013
参考文献References
Mathers, C.D. and Loncar, D. (2006) Projections of Global Mortality and Burden of Disease from 2002 to 2030. PLoS Medicine, 3, Article No. e442. https://doi.org/10.1371/journal.pmed.0030442
Stokes, A. and Preston, S.H. (2017) Deaths Attributable to Diabetes in the United States: Comparison of Data Sources and Estimation Approaches. PLoS ONE, 12, Article ID: e0170219. https://doi.org/10.1371/journal.pone.0170219
Flannick, J. and Florez, J.C. (2016) Type 2 Diabetes: Genetic Data Sharing to Advance Complex Disease Research. Nature Reviews Genetics, 17, 535-549. https://doi.org/10.1038/nrg.2016.56
Butler, A.E., Janson, J., Bonner-Weir, S., Ritzel, R., Rizza, R.A. and Butler, P.C. (2003) Beta-Cell Deficit and Increased Beta-Cell Apoptosis in Humans with Type 2 Diabetes. Diabetes, 52, 102-110. https://doi.org/10.2337/diabetes.52.1.102
Rahier, J., Guiot, Y., Goebbels, R.M., Sempoux, C. and Henquin, J.C. (2008) Pancreatic Beta-Cell Mass in European Subjects with Type 2 Diabetes. Diabetes, Obesity and Metabolism, 10, 32-42. https://doi.org/10.1111/j.1463-1326.2008.00969.x
Mitchell, J.D. (2021) Personalizing Risk Assess-ment in Diabetes Mellitus and Metabolic Syndrome. JACC: Cardiovascular Imaging, 14, 230-232. https://doi.org/10.1016/j.jcmg.2020.11.002
Forbes, J.M. and Cooper, M.E. (2013) Mechanisms of Diabetic Complications. Physiological Reviews, 93, 137-188. https://doi.org/10.1152/physrev.00045.2011
Karter, A.J., Laiteerapong, N., Chin, M.H., Moffet, H.H., Parker, M.M., Sudore, R., Adams, A.S., Schillinger, D., Adler, N.S., Whitmer, R.A., Piette, J.D. and Huang, E.S. (2015) Ethnic Differences in Geriatric Conditions and Diabetes Complications among Older, Insured Adults with Diabetes: The Diabe-tes and Aging Study. Journal of Aging and Health, 27, 894-918. https://doi.org/10.1177/0898264315569455
Shapiro, A.M., Pokrywczynska, M. and Ricordi, C. (2017) Clin-ical Pancreatic Islet Transplantation. Nature Reviews Endocrinology, 13, 268-277. https://doi.org/10.1038/nrendo.2016.178
Vantyghem, M.C., de Koning, E.J.P., Pattou, F. and Rickels, M.R. (2019) Advances in β-Cell Replacement Therapy for the Treatment of Type 1 Diabetes. Lancet, 394, 1274-1285. https://doi.org/10.1016/S0140-6736(19)31334-0
Gruessner, R.W. and Gruessner, A.C. (2013) The Current State of Pancreas Transplantation. Nature Reviews Endocrinology, 9, 555-562. https://doi.org/10.1038/nrendo.2013.138
Lombardo, C., Perrone, V.G., Amorese, G., Vistoli, F., Baronti, W., Marchetti, P. and Boggi, U. (2017) Update on Pancreatic Transplantation on the Management of Diabetes. Minerva Medica, 108, 405-418. https://doi.org/10.23736/S0026-4806.17.05224-7
Shapiro, A.M., Lakey, J.R., Ryan, E.A., Korbutt, G.S., Toth, E., Warnock, G.L., Kneteman, N.M. and Rajotte, R.V. (2000) Islet Transplantation in Seven Patients with Type 1 Diabetes Mellitus Using a Glucocorticoid-Free Immunosuppressive Regimen. New England Journal of Medicine, 343, 230-238. https://doi.org/10.1056/NEJM200007273430401
Fournier, B., Andereggen, E., Bühler, L., Oberholzer, J., Mage, R., Sinigaglia, C., Mentha, G. and Morel, P. (1998) Evaluation à long-terme de 9 autotransplantations d'îlots de Langerhans après résection du pancréas (Long-term follow-up of 9 islets of Langerhans autografts after resection of the pancreas). Schweiz Med Wochenschr, 128, 856-859.
Dean, P.G., Kukla, A., Stegall, M.D. and Kudva, Y.C. (2017) Pancreas Transplantation. BMJ, 357, Article No. j1321. https://doi.org/10.1136/bmj.j1321
Rickels, M.R. and Robertson, R.P. (2019) Pancreatic Islet Transplantation in Humans: Recent Progress and Future Directions. Endocrine Reviews, 40, 631-668. https://doi.org/10.1210/er.2018-00154
Calne, R. (2005) Cell Transplantation for Diabetes. Philosophical Transactions of the Royal Society B: Biological Sciences, 360, 1769-1774. https://doi.org/10.1098/rstb.2005.1707
Woodward, K.B., Zhao, H., Shrestha, P., Batra, L., Tan, M., Gri-many-Nuno, O., Bandura-Morgan, L., Askenasy, N., Shirwan, H. and Yolcu, E.S. (2020) Pancreatic Islets Engineered with a FasL Protein Induce Systemic Tolerance at the Induction Phase That Evolves into Long-Term Graft-Localized Immune Privilege. American Journal of Transplantation, 20, 1285-1295. https://doi.org/10.1111/ajt.15747
Al-Qaoud, T.M., Odorico, J.S. and Redfield 3rd., R.R. (2018) Pancreas Transplantation in Type 2 Diabetes: Expanding the Criteria. Current Opinion in Organ Transplantation, 23, 454-460. https://doi.org/10.1097/MOT.0000000000000553
Pagliuca, F.W., Millman, J.R., Gürtler, M., Segel, M., Van Dervort, A., Ryu, J.H., Peterson, Q.P., Greiner, D. and Melton, D.A. (2014) Generation of Functional Human Pancreatic β Cells in Vitro. Cell, 159, 428-439. https://doi.org/10.1016/j.cell.2014.09.040
Shahjalal, H.M., Abdal Dayem, A., Lim, K.M., Jeon, T.I. and Cho, S.G. (2018) Generation of Pancreatic β Cells for Treatment of Diabetes: Advances and Challenges. Stem Cell Research & Therapy, 9, Article No. 355. https://doi.org/10.1186/s13287-018-1099-3
Päth, G., Perakakis, N., Mantzoros, C.S. and Seufert, J. (2019) Stem Cells in the Treatment of Diabetes Mellitus—Focus on Mesenchymal Stem Cells. Metabolism, 90, 1-15. https://doi.org/10.1016/j.metabol.2018.10.005
Balboa, D., Saarimäki-Vire, J. and Otonkoski, T. (2019) Con-cise Review: Human Pluripotent Stem Cells for the Modeling of Pancreatic β-Cell Pathology. Stem Cells, 37, 33-41. https://doi.org/10.1002/stem.2913
Blyszczuk, P., Asbrand, C., Rozzo, A., Kania, G., St-Onge, L., Rupnik, M. and Wobus, A.M. (2004) Embryonic Stem Cells Differentiate into Insulin-Producing Cells without Selection of Nes-tin-Expressing Cells. International Journal of Developmental Biology, 48, 1095-104. https://doi.org/10.1387/ijdb.041904pb
Lumelsky, N., Blondel, O., Laeng, P., Velasco, I., Ravin, R. and McKay, R. (2001) Differentiation of Embryonic Stem Cells to Insulin-Secreting Structures Similar to Pancreatic Islets. Science, 292, 1389-1394. https://doi.org/10.1126/science.1058866
Solter, D. (2006) From Teratocarcinomas to Embryonic Stem Cells and Beyond: A History of Embryonic Stem Cell Research. Nature Reviews Genetics, 7, 319-327. https://doi.org/10.1038/nrg1827
Thomson, J.A., Kalishman, J., Golos, T.G., Durning, M., Harris, C.P., Becker, R.A. and Hearn, J.P. (1995) Isolation of a Primate Embryonic Stem Cell Line. Proceedings of the National Academy of Sciences of the United States of America, 92, 7844-7848. https://doi.org/10.1073/pnas.92.17.7844
Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S. and Jones, J.M. (1998) Embryonic Stem Cell Lines Derived from Human Blastocysts. Science, 282, 1145-1147. https://doi.org/10.1126/science.282.5391.1145
D’Amour, K.A., Bang, A.G., Eliazer, S., Kelly, O.G., Agulnick, A.D., Smart, N.G., Moorman, M.A., Kroon, E., Carpenter, M.K. and Baetge, E.E. (2006) Production of Pan-creatic Hormone-Expressing Endocrine Cells from Human Embryonic Stem Cells. Nature Biotechnology, 24, 1392-1401. https://doi.org/10.1038/nbt1259
Baetge, E.E. (2008) Production of Beta-Cells from Human Embryonic Stem Cells. Diabetes, Obesity and Metabolism, 10, 186-194. https://doi.org/10.1111/j.1463-1326.2008.00956.x
Shim, J.H., Kim, S.E., Woo, D.H., Kim, S.K., Oh, C.H., McKay, R. and Kim, J.H. (2007) Directed Differentiation of Human Embryonic Stem Cells towards a Pancreatic Cell Fate. Diabetologia, 50, 1228-1238. https://doi.org/10.1007/s00125-007-0634-z
Rezania, A., Bruin, J.E., Arora, P., Rubin, A., Batushansky, I., Asadi, A., O’Dwyer, S., Quiskamp, N., Mojibian, M., Albrecht, T., Yang, Y.H., Johnson, J.D. and Kieffer, T.J. (2014) Reversal of Diabetes with Insulin-Producing Cells Derived in Vitro from Human Pluripotent Stem Cells. Nature Bio-technology, 32, 1121-1133. https://doi.org/10.1038/nbt.3033
Vegas, A.J., Veiseh, O., Gürtler, M., Millman, J.R., Pagliuca, F.W., Bader, A.R., Doloff, J.C., Li, J., Chen, M., Olejnik, K., Tam, H.H., Jhunjhunwala, S., Langan, E., Aresta-Dasilva, S., Gandham, S., McGarrigle, J.J., Bochenek, M.A., Hollister-Lock, J., Oberholzer, J., Greiner, D.L., Weir, G.C., Melton, D.A., Lang-er, R. and Anderson, D.G. (2016) Long-Term Glycemic Control Using Polymer-Encapsulated Human Stem Cell-Derived Beta Cells in Immune-Competent Mice. Nature Medicine, 22, 306-311. https://doi.org/10.1038/nm.4030
Zhang, D., Jiang, W., Liu, M., Sui, X., Yin, X., Chen, S., Shi, Y. and Deng, H. (2009) Highly Efficient Differentiation of Human ES Cells and iPS Cells into Mature Pancreatic Insulin-Producing Cells. Cell Research, 19, 429-438. https://doi.org/10.1038/cr.2009.28
Tuch, B.E. (1991) Reversal of Diabetes by Human Fetal Pancreas. Opti-mization of Requirements in the Hyperglycemic Nude Mouse. Transplantation, 51, 557-562. https://doi.org/10.1097/00007890-199103000-00002
Hayek, A. and Beattie, G.M. (1997) Experimental Transplantation of Human Fetal and Adult Pancreatic Islets. Journal of Clinical Endocrinology & Metabolism, 82, 2471-2475. https://doi.org/10.1210/jc.82.8.2471
Kroon, E., Martinson, L.A, Kadoya, K., Bang, A.G., Kelly, O.G., Eliazer, S., Young, H., Richardson, M., Smart, N.G., Cunningham, J., Agulnick, A.D., D’Amour, K.A, Carpenter, M.K. and Baetge, E.E. (2008) Pancreatic Endoderm Derived from Human Embryonic Stem Cells Generates Glu-cose-Responsive Insulin-Secreting Cells in Vivo. Nature Biotechnology, 26, 443-452. https://doi.org/10.1038/nbt1393
Veres, A., Faust, A.L., Bushnell, H.L., Engquist, E.N., Kenty, J.H., Harb, G., Poh, Y.C., Sintov, E., Gürtler, M., Pagliuca, F.W., Peterson, Q.P. and Melton, D.A. (2019) Charting Cellular Identity during Human in Vitro β-Cell Differentiation. Nature, 569, 368-373. https://doi.org/10.1038/s41586-019-1168-5
Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K. and Yamanaka, S. (2007) Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell, 131, 861-872. https://doi.org/10.1016/j.cell.2007.11.019
Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L., Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., Stewart, R., Slukvin, I.I. and Thomson, J.A. (2007) Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells. Science, 318, 1917-1920. https://doi.org/10.1126/science.1151526
Lanza, R. (2007) Stem Cell Breakthrough: Don’t Forget Ethics. Sci-ence, 318, 1865. https://doi.org/10.1126/science.318.5858.1865a
Tateishi, K., He, J., Taranova, O., Liang, G., D’Alessio, A.C. and Zhang, Y. (2008) Generation of Insulin-Secreting Islet-Like Clusters from Human Skin Fibroblasts. Journal of Bio-logical Chemistry, 283, 31601-31607. https://doi.org/10.1074/jbc.M806597200
Chen, S., Borowiak, M., Fox, J.L., Maehr, R., Osafune, K., Da-vidow, L., Lam, K., Peng, L.F., Schreiber, S.L., Rubin, L.L. and Melton, D. (2009) A Small Molecule That Directs Dif-ferentiation of Human ESCs into the Pancreatic Lineage. Nature Chemical Biology, 5, 258-265. https://doi.org/10.1038/nchembio.154
Yang, Y.P. and Wright, C. (2009) Chemicals Turn Human Embryonic Stem Cells towards Beta Cells. Nature Chemical Biology, 5, 195-196. https://doi.org/10.1038/nchembio0409-195
Bose, B., Shenoy, S.P., Konda, S. and Wangikar, P. (2012) Hu-man Embryonic Stem Cell Differentiation into Insulin Secreting β-Cells for Diabetes. Cell Biology International, 36, 1013-1020. https://doi.org/10.1042/CBI20120210
Stepniewski, J., Kachamakova-Trojanowska, N., Ogrocki, D., Szopa, M., Matlok, M., Beilharz, M., Dyduch, G., Malecki, M.T., Jozkowicz, A. and Dulak, J. (2015) Induced Plu-ripotent Stem Cells as a Model for Diabetes Investigation. Scientific Reports, 5, Article No. 8597. https://doi.org/10.1038/srep08597
Millman, J.R., Xie, C., Van Dervort, A., Gürtler, M., Pagliuca, F.W. and Melton, D.A. (2016) Generation of Stem Cell-Derived β-Cells from Patients with Type 1 Diabetes. Nature Communica-tions, 7, Article No. 11463. https://doi.org/10.1038/ncomms11463
Manzar, G.S., Kim, E.M. and Zavazava, N. (2017) Demethylation of Induced Pluripotent Stem Cells from Type 1 Diabetic Patients Enhances Differentiation into Functional Pancreatic β Cells. Journal of Biological Chemistry, 292, 14066-14079. https://doi.org/10.1074/jbc.M117.784280
Rajaei, B., Shamsara, M., Amirabad, L.M., Massumi, M. and Sanati, M.H. (2017) Pancreatic Endoderm-Derived from Diabetic Pa-tient-Specific Induced Pluripotent Stem Cell Generates Glucose-Responsive Insulin-Secreting Cells. Journal of Cellular Physiology, 232, 2616-2625. https://doi.org/10.1002/jcp.25459
Zhang, Y., Xu, J., Ren, Z., Meng, Y., Liu, W., Lu, L., Zhou, Z. and Chen, G. (2021) Nicotinamide Promotes Pancreatic Differentiation through the Dual Inhibition of CK1 and ROCK Kinases in Human Embryonic Stem Cells. Stem Cell Research & Therapy, 12, 362.
Ghazizadeh, Z., Kao, D.I., Amin, S., Cook, B., Rao, S., Zhou, T., Zhang, T., Xiang, Z., Kenyon, R., Kaymakcalan, O., Liu, C., Evans, T. and Chen, S. (2017) ROCKII Inhibition Promotes the Maturation of Human Pancreatic Beta-Like Cells. Nature Communications, 8, Article No. 298. https://doi.org/10.1038/s41467-017-00129-y
Nair, G.G., Liu, J.S., Russ, H.A., Tran, S., Saxton, M.S., Chen, R., Juang, C., Li, M.L., Nguyen, V.Q., Giacometti, S., Puri, S., Xing, Y., Wang, Y., Szot, G.L., Oberholzer, J., Bhushan, A. and Hebrok, M. (2019) Recapitulating Endocrine Cell Clustering in Culture Promotes Maturation of Human Stem-Cell-Derived β Cells. Nature Cell Biology, 21, 263-274. https://doi.org/10.1038/s41556-018-0271-4
Velazco-Cruz, L., Song, J., Maxwell, K.G., Goedegebuure, M.M., Augsornworawat, P., Hogrebe, N.J. and Millman, J.R. (2019) Acquisition of Dynamic Function in Human Stem Cell-Derived β Cells. Stem Cell Reports, 12, 351-365. https://doi.org/10.1016/j.stemcr.2018.12.012
Yoshihara, E., O’Connor, C., Gasser, E., Wei, Z., Oh, T.G., Tseng, T.W., Wang, D., Cayabyab, F., Dai, Y., Yu, R.T., Liddle, C., Atkins, A.R., Downes, M. and Evans, R.M. (2020) Immune-Evasive Human Islet-Like Organoids Ameliorate Diabetes. Nature, 586, 606-611. https://doi.org/10.1038/s41586-020-2631-z
Ben-Ami, E., Berrih-Aknin, S. and Miller, A. (2011) Mesenchy-mal Stem Cells as an Immunomodulatory Therapeutic Strategy for Autoimmune Diseases. Autoimmunity Reviews, 10, 410-415. https://doi.org/10.1016/j.autrev.2011.01.005
Chamberlain, G., Fox, J., Ashton, B. and Middleton, J. (2007) Concise Review: Mesenchymal Stem Cells: Their Phenotype, Differentiation Capacity, Immunological Features, and Potential for Homing. Stem Cells, 25, 2739-2749. https://doi.org/10.1634/stemcells.2007-0197
Mohammadian, M., Shamsasenjan, K., Lotfi Nezhad, P., Talebi, M., Jahedi, M., Nickkhah, H., Minayi, N. and Movassaghpour, A. (2013) Mesenchymal Stem Cells: New Aspect in Cell-Based Regenerative Therapy. Advanced Pharmaceutical Bulletin, 3, 433-437. https://doi.org/10.5681/apb.2013.070
Vasanthan, J., Gurusamy, N., Rajasingh, S., Sigamani, V., Kirankumar, S., Thomas, E.L. and Rajasingh, J. (2020) Role of Human Mesenchymal Stem Cells in Regenerative Therapy. Cells, 10, Article No. 54. https://doi.org/10.3390/cells10010054
Moriscot, C., de Fraipont, F., Richard, M.J., Marchand, M., Savatier, P., Bosco, D., Favrot, M. and Benhamou, P.Y. (2005) Human Bone Marrow Mesenchymal Stem Cells Can Express In-sulin and Key Transcription Factors of the Endocrine Pancreas Developmental Pathway upon Genetic and/or Microenvi-ronmental Manipulation in Vitro. Stem Cells, 23, 594-603. https://doi.org/10.1634/stemcells.2004-0123
Krampera, M., Pasini, A., Pizzolo, G., Cosmi, L., Romagnani, S. and Annunziato, F. (2006) Regenerative and Immunomodulatory Potential of Mesenchymal Stem Cells. Current Opinion in Pharmacology, 6, 435-441. https://doi.org/10.1016/j.coph.2006.02.008
Mishra, V.K., Shih, H.H., Parveen, F., Lenzen, D., Ito, E., Chan, T.F. and Ke, L.Y. (2020) Identifying the Therapeutic Significance of Mesenchymal Stem Cells. Cells, 9, Article No. 1145. https://doi.org/10.3390/cells9051145
Wu, X.H., Liu, C.P., Xu, K.F., Mao, X.D., Zhu, J., Jiang, J.J., Cui, D., Zhang, M., Xu ,Y. and Liu, C. (2007) Reversal of Hyperglycemia in Diabetic Rats by Portal Vein Transplantation of Is-let-Like Cells Generated from Bone Marrow Mesenchymal Stem Cells. World Journal of Gastroenterology, 13, 3342-3349. https://doi.org/10.3748/wjg.v13.i24.3342
Xin, Y., Jiang, X., Wang, Y., Su, X., Sun, M., Zhang, L., Tan, Y., Wintergerst, K.A., Li, Y. and Li, Y. (2016) Insulin-Producing Cells Differentiated from Human Bone Marrow Mesen-chymal Stem Cells in Vitro Ameliorate Streptozotocin-Induced Diabetic Hyperglycemia. PLoS ONE, 11, Article ID: e0145838. https://doi.org/10.1371/journal.pone.0145838
Wu, L.F., Wang, N.N., Liu, Y.S. and Wei, X. (2009) Differen-tiation of Wharton’s Jelly Primitive Stromal Cells into Insulin-Producing Cells in Comparison with Bone Marrow Mes-enchymal Stem Cells. Tissue Engineering Part A, 15, 2865-2873. https://doi.org/10.1089/ten.tea.2008.0579
Si, Y., Zhao, Y., Hao, H., Liu, J., Guo, Y., Mu, Y., Shen, J., Cheng, Y., Fu, X. and Han, W. (2012) Infusion of Mesen-chymal Stem Cells Ameliorates Hyperglycemia in Type 2 Diabetic Rats: Identification of a Novel Role in Improving In-sulin Sensitivity. Diabetes, 61, 1616-1625. https://doi.org/10.2337/db11-1141
Hao, H., Liu, J., Shen, J., Zhao, Y., Liu, H., Hou, Q., Tong, C., Ti, D., Dong, L., Cheng, Y., Mu, Y., Liu, J., Fu, X. and Han, W. (2013) Multiple Intra-venous Infusions of Bone Marrow Mesenchymal Stem Cells Reverse Hyperglycemia in Experimental Type 2 Diabetes Rats. Biochemical and Biophysical Research Communications, 436, 418-423. https://doi.org/10.1016/j.bbrc.2013.05.117
Dazzi, F. and Horwood, N.J. (2007) Potential of Mesenchymal Stem Cell Therapy. Current Opinion in Oncology, 19, 650-655. https://doi.org/10.1097/CCO.0b013e3282f0e116
De Miguel, M.P., Fuentes-Julián, S., Blázquez-Martínez, A., Pascual, C.Y., Aller, M.A., Arias, J. and Arnalich-Montiel, F. (2012) Immunosuppressive Properties of Mesenchymal Stem Cells: Advances and Applications. Current Molecular Medicine, 12, 574-591. https://doi.org/10.2174/156652412800619950
Selmani, Z., Naji, A., Zidi, I., Favier, B., Gaiffe, E., Obert, L., Borg, C., Saas, P., Tiberghien, P., Rouas-Freiss, N., Carosella, E.D. and Deschaseaux, F. (2008) Human Leukocyte An-tigen-G5 Secretion by Human Mesenchymal Stem Cells Is Required to Suppress T Lymphocyte and Natural Killer Func-tion and to Induce CD4+CD25highFOXP3+ Regulatory T Cells. Stem Cells, 26, 212-222. https://doi.org/10.1634/stemcells.2007-0554
Corcione, A., Benvenuto, F., Ferretti, E., Giunti, D., Cappiello, V., Cazzanti, F., Risso, M., Gualandi, F., Mancardi, G.L., Pistoia, V. and Uccelli, A. (2006) Human Mesenchymal Stem Cells Modulate B-Cell Functions. Blood, 107, 367-372. https://doi.org/10.1182/blood-2005-07-2657
Cho, J., D’Antuono, M., Glicksman, M., Wang, J. and Jonklaas, J. (2018) A Review of Clinical Trials: Mesenchymal Stem Cell Transplant Therapy in Type 1 and Type 2 Diabetes Mellitus. American Journal of Stem Cells, 7, 82-93.
Tritschler, S., Theis, F.J., Lickert, H. and Böttcher, A. (2017) Systematic Single-Cell Analysis Provides New Insights into Hetero-geneity and Plasticity of the Pancreas. Molecular Metabolism, 6, 974-990. https://doi.org/10.1016/j.molmet.2017.06.021
Fujitani, Y. (2017) Transcriptional Regulation of Pancreas De-velopment and β-Cell Function [Review]. Endocrine Journal, 64, 477-486. https://doi.org/10.1507/endocrj.EJ17-0098
Peshavaria, M., Larmie, B.L., Lausier, J., Satish, B., Habibovic, A., Roskens, V., Larock, K., Everill, B., Leahy, J.L. and Jetton, T.L. (2006) Regulation of Pancreatic Beta-Cell Regeneration in the Normoglycemic 60% Partial-Pancrea- tectomy Mouse. Diabetes, 55, 3289-3298. https://doi.org/10.2337/db06-0017
Bock, T. (2004) The Source(s) for New Pancreatic Beta Cells in Adult Life. BioEssays, 26, 1156-1159. https://doi.org/10.1002/bies.20143
Kopp, J.L., Dubois, C.L., Hao, E., Thorel, F., Herrera, P.L. and Sander, M. (2011) Progenitor Cell Domains in the Developing and Adult Pancreas. Cell Cycle, 10, 1921-1927. https://doi.org/10.4161/cc.10.12.16010
Sharon, N., Chawla, R., Mueller, J., Vanderhooft, J., Whitehorn, L.J., Rosenthal, B., Gürtler, M., Estanboulieh, R.R., Shvartsman, D., Gifford, D.K., Trapnell, C. and Melton, D. (2019) A Peninsular Structure Coordinates Asynchronous Differentiation with Morphogenesis to Generate Pancreatic Islets. Cell, 176, 790-804.e13. https://doi.org/10.1016/j.cell.2018.12.003
Lysy, P.A., Weir, G.C. and Bonner-Weir, S. (2012) Concise Re-view: Pancreas Regeneration: Recent Advances and Perspectives. Stem Cells Translational Medicine, 1, 150-159. https://doi.org/10.5966/sctm.2011-0025
Bonner-Weir, S., Inada, A., Yatoh, S., Li, W.C., Aye, T., Toschi, E. and Sharma, A. (2008) Transdifferentiation of Pancreatic Ductal Cells to Endocrine Beta-Cells. Biochemical Society Transactions, 36, 353-356. https://doi.org/10.1042/BST0360353
Wang, Y., Lanzoni, G., Carpino, G., Cui, C.B., Dominguez-Bendala, J., Wauthier, E., Cardinale, V., Oikawa, T., Pileggi, A., Gerber, D., Furth, M.E., Alvaro, D., Gaudio, E., Inverardi, L. and Reid, L.M. (2013) Biliary Tree Stem Cells, Precursors to Pancreatic Committed Progenitors: Evidence for Possible Life-Long Pancreatic Organogenesis. Stem Cells, 31, 1966-1979. https://doi.org/10.1002/stem.1460
Katdare, M.R., Bhonde, R.R. and Parab, P.B. (2004) Analysis of Morphological and Functional Maturation of Neoislets Gener-ated in Vitro from Pancreatic Ductal Cells and Their Suitability for Islet Banking and Transplantation. Journal of Endo-crinology, 182, 105-112. https://doi.org/10.1677/joe.0.1820105
Hao, E., Tyrberg, B., Itkin-Ansari, P., Lakey, J.R., Geron, I., Monosov, E.Z., Barcova, M., Mercola, M., and Levine, F. (2006) Beta-Cell Differentiation from Nonen-docrine Epithelial Cells of the Adult Human Pancreas. Nature Medicine, 12, 310-316. https://doi.org/10.1038/nm1367
Lendahl, U., Zimmerman, L.B. and McKay, R.D. (1990) CNS Stem Cells Express a New Class of Intermediate Filament Protein. Cell, 60, 585-595. https://doi.org/10.1016/0092-8674(90)90662-X
Wiese, C., Rolletschek, A., Kania, G., Blyszczuk, P., Tarasov, K.V., Tarasova, Y., Wersto, R.P., Boheler, K.R. and Wobus, A.M. (2004) Nestin Expression—A Property of Mul-ti-Lineage Progenitor Cells? Cellular and Molecular Life Sciences CMLS, 61, 2510-2522. https://doi.org/10.1007/s00018-004-4144-6
Bernal, A. and Arranz, L. (2018) Nestin-Expressing Progenitor Cells: Function, Identity and Therapeutic Implications. Cellular and Molecular Life Sciences, 75, 2177-2195. https://doi.org/10.1007/s00018-018-2794-z
Scharenberg, C.W., Harkey, M.A. and Torok-Storb, B. (2002) The ABCG2 Transporter Is an Efficient Hoechst 33342 Efflux Pump and Is Preferentially Expressed by Immature Hu-man Hematopoietic Progenitors. Blood, 99, 507-512. https://doi.org/10.1182/blood.V99.2.507
Sapir, T., Shternhall, K., Meivar-Levy, I, Blumenfeld, T., Cohen, H., Skutelsky, E, Eventov-Friedman, S., Barshack, I., Goldberg, I., Pri-Chen, S., Ben-Dor, L., Polak-Charcon, S., Karasik, A., Shimon, I., Mor, E. and Ferber, S. (2005) Cell-Replacement Therapy for Diabetes: Generating Functional Insu-lin-Producing Tissue from Adult Human Liver Cells. Proceedings of the National Academy of Sciences of the United States of America, 102, 7964-7969. https://doi.org/10.1073/pnas.0405277102
Shternhall-Ron, K., Quintana, F.J., Perl, S., Meivar-Levy, I., Bar-shack, I., Cohen, I.R. and Ferber, S. (2007) Ectopic PDX-1 Expression in Liver Ameliorates Type 1 Diabetes. Journal of Autoimmunity, 28, 134-142. https://doi.org/10.1016/j.jaut.2007.02.010
Lee, Y.N., Yi, H.J., Seo, E.H., Oh, J., Lee, S., Ferber, S., Okano, T., Shim, I.K. and Kim, S.C. (2021) Improvement of the Therapeutic Capacity of Insulin-Producing Cells Trans-Differentiated from Human Liver Cells Using Engineered Cell Sheet. Stem Cell Research & Therapy, 12, Article No. 3. https://doi.org/10.1186/s13287-020-02080-0
Wild, S.L. and Tosh, D. (2021) Molecular Mechanisms of Transcription Factor Mediated Cell Reprogramming: Conversion of Liver to Pancreas. Biochemical Society Transac-tions, 49, 579-590. https://doi.org/10.1042/BST20200219
Herrera, M.B., Bruno, S., Buttiglieri, S., Tetta, C., Gatti, S., Deregibus, M.C., Bussolati, B. and Camussi, G. (2006) Isolation and Characterization of a Stem Cell Popula-tion from Adult Human Liver. Stem Cells, 24, 2840-2850. https://doi.org/10.1634/stemcells.2006-0114
Ahmed, E.M. (2015) Hydrogel: Preparation, Characterization, and Applications: A Review. Journal of Advanced Research, 6, 105-121. https://doi.org/10.1016/j.jare.2013.07.006
Knobeloch, T., Abadi, S.E.M., Bruns, J., Zustiak, S.P. and Kwon, G. (2017) Injectable Polyethylene Glycol Hydrogel for Islet Encapsulation: An in Vitro and in Vivo Characterization. Bi-omedical Physics & Engineering Express, 3, Article ID: 035022. https://doi.org/10.1088/2057-1976/aa742b
Zhi, Z.L., Khan, F. and Pickup, J.C. (2013) Multilayer Nanoen-capsulation: A Nanomedicine Technology for Diabetes Research and Management. Diabetes Research and Clinical Practice, 100, 162-169. https://doi.org/10.1016/j.diabres.2012.11.027
Kozlovskaya, V., Zavgorodnya, O., Chen, Y., Ellis, K., Tse, H.M., Cui, W., Thompson, J.A. and Kharlampieva, E. (2012) Ultrathin Polymeric Coatings Based on Hydrogen-Bonded Polyphenol for Protection of Pancreatic Islet Cells. Advanced Functional Materials, 22, 3389-3398. https://doi.org/10.1002/adfm.201200138
Syed, F., Bugliani, M., Novelli, M., Olimpico, F., Suleiman, M., Marselli, L., Boggi, U., Filipponi, F., Raffa, V., Krol, S., Campani, D., Masiello, P., De Tata, V. and Marchetti, P. (2018) Conformal Coating by Multilayer Nano-Encapsulation for the Protection of Human Pancreatic Islets: In-Vitro and in-Vivo Studies. Nanomedicine, 14, 2191-2203. https://doi.org/10.1016/j.nano.2018.06.013
Krol, S., del Guerra, S., Grupillo, M., Diaspro, A., Gliozzi, A. and Marchetti, P. (2006) Multilayer Nanoencapsulation. New Approach for Immune Protection of Human Pancreatic Islets. Nano Letters, 6, 1933-1939. https://doi.org/10.1021/nl061049r
Pickup, J.C., Zhi, Z.L., Khan, F., Saxl, T. and Birch, D.J. (2008) Nano-medicine and Its Potential in Diabetes Research and Practice. Diabetes/Metabolism Research and Reviews, 24, 604-610. https://doi.org/10.1002/dmrr.893
Miura, S., Teramura, Y. and Iwata, H. (2006) Encapsulation of Islets with Ultra-Thin Polyion Complex Membrane through Poly(Ethylene Glycol)-Phospholipids Anchored to Cell Membrane. Biomaterials, 27, 5828-5835. https://doi.org/10.1016/j.biomaterials.2006.07.039
Pérez-Luna, V.H. and González-Reynoso, O. (2018) En-capsulation of Biological Agents in Hydrogels for Therapeutic Applications. Gels, 4, Article No. 61. https://doi.org/10.3390/gels4030061
Vaithilingam, V. and Tuch, B.E. (2011) Islet Transplantation and En-capsulation: An Update on Recent Developments. The Review of Diabetic Studies, 8, 51-67. https://doi.org/10.1900/RDS.2011.8.51
Omami, M., McGarrigle, J.J., Reedy, M., Isa, D., Ghani, S., Mar-chese, E., Bochenek, M.A., Longi, M., Xing, Y., Joshi, I., Wang, Y. and Oberholzer, J. (2017) Islet Microencapsulation: Strategies and Clinical Status in Diabetes. Current Diabetes Reports, 17, Article No. 47. https://doi.org/10.1007/s11892-017-0877-0
Shimoda, M. and Matsumoto, S. (2017) Microencapsulation in Clinical Islet Xenotransplantation. In: Opara, E., Ed., Cell Microencapsulation, Vol. 1479, Humana Press, New York, 335-345. https://doi.org/10.1007/978-1-4939-6364-5_25
de Vos, P., Faas, M.M., Strand, B. and Calafiore, R. (2006) Alginate-Based Microcapsules for Immunoisolation of Pancreatic Islets. Biomaterials, 27, 5603-5617. https://doi.org/10.1016/j.biomaterials.2006.07.010
Gungor-Ozkerim, P.S., Inci, I., Zhang, Y.S., Khademhos-seini, A. and Dokmeci, M.R. (2018) Bioinks for 3D Bioprinting: An Overview. Biomaterials Science, 6, 915-946. https://doi.org/10.1039/C7BM00765E
Rider, P., Kačarević, Ž.P., Alkildani, S., Retnasingh, S. and Barbeck, M. (2018) Bioprinting of tissue engineering scaffolds. Journal of Tissue Engineering, 9, Article ID: 2041731418802090. https://doi.org/10.1177/2041731418802090
Boyd-Moss, M., Fox, K., Brandt, M., Nisbet, D. and Williams, R. (2017) Bioprinting and Biofabrication with Peptide and Protein Biomaterials. In: Sunna, A., Care, A. and Bergquist, P., Eds., Peptides and Peptide-Based Biomaterials and Their Biomedical Applications, Vol. 1030, Springer, Cham, 95-129. https://doi.org/10.1007/978-3-319-66095-0_5
Kim, J., Kang, K., Drogemuller, C.J., Wallace, G.G. and Coates, P.T. (2019) Bioprinting an Artificial Pancreas for Type 1 Diabetes. Current Diabetes Reports, 19, Article No. 53. https://doi.org/10.1007/s11892-019-1166-x
Liu, X., Carter, S.D., Renes, M.J., Kim, J., Rojas-Canales, D.M., Penko, D., Angus, C., Beirne, S., Drogemuller, C.J., Yue, Z., Coates, P.T. and Wallace, G.G. (2019) Development of a Coaxial 3D Printing Platform for Biofabrication of Implantable Islet-Containing Constructs. Advanced Healthcare Mate-rials, 8, Article ID: 1801181. https://doi.org/10.1002/adhm.201801181
Duin, S., Schütz, K., Ahlfeld, T., Lehmann, S., Lode, A., Ludwig, B. and Gelinsky, M. (2019) 3D Bioprinting of Functional Islets of Langerhans in an Alginate/Methylcellulose Hydrogel Blend. Advanced Healthcare Materials, 8, Article ID: 1801631. https://doi.org/10.1002/adhm.201801631
Song, S. and Roy, S. (2016) Progress and Challenges in Macroen-capsulation Approaches for Type 1 Diabetes (T1D) Treatment: Cells, Biomaterials, and Devices. Biotechnology and Bio-engineering, 113, 1381-1402. https://doi.org/10.1002/bit.25895
Goswami, D., Domingo-Lopez, D.A., Ward, N.A., Millman, J.R., Duffy, G.P., Dolan, E.B. and Roche, E.T. (2021) Design Considerations for Macroencapsulation Devices for Stem Cell Derived Islets for the Treatment of Type 1 Diabetes. Advanced Science, 8, Article ID: 2100820. https://doi.org/10.1002/advs.202100820
Skrzypek, K., Groot Nibbelink, M., Liefers-Visser, J., Smink, A.M., Stoimenou, E., Engelse, M.A., de Koning, E.J.P., Karperien, M., de Vos, P., van Apeldoorn, A. and Stamatialis, D. (2020) A High Cell-Bearing Capacity Multibore Hollow Fiber Device for Macroencapsulation of Islets of Langerhans. Macromolecular Bioscience, 20, Article ID: 2000021. https://doi.org/10.1002/mabi.202000021
Barkai, U., Rotem, A. and de Vos, P. (2016) Survival of Encapsu-lated Islets: More than a Membrane Story. World Journal of Transplantation, 6, 69-90. https://doi.org/10.5500/wjt.v6.i1.69
Ludwig, B., Reichel, A., Steffen, A., Zimerman, B., Schally, A.V., Block, N.L., Colton, C.K., Ludwig, S., Kersting, S., Bonifacio, E., Solimena, M., Gendler, Z., Rotem, A., Barkai, U. and Born-stein, S.R. (2013) Transplantation of Human Islets without Immunosuppression. Proceedings of the National Academy of Sciences of the United States of America, 110, 19054-19058. https://doi.org/10.1073/pnas.1317561110
Gholipourmalekabadi, M., Zhao, S., Harrison, B.S., Mozafari, M. and Seifalian, A.M. (2016) Oxygen-Generating Biomaterials: A New, Viable Paradigm for Tissue Engineering? Trends in Biotechnology, 34, 1010-1021. https://doi.org/10.1016/j.tibtech.2016.05.012
Bertuzzi, F., Marzorati, S. and Secchi, A. (2006) Islet Cell Transplantation. Current Molecular Medicine, 6, 369-374. https://doi.org/10.2174/156652406777435453
Ryan, E.A., Paty, B.W., Senior, P.A. and Shapiro, A.M. (2004) Risks and Side Effects of Islet Transplantation. Current Diabetes Reports, 4, 304-309. https://doi.org/10.1007/s11892-004-0083-8
Katta, S., Desimone, M.E. and Weinstock, R.S. (2021) Pancreatic Islet Function Tests. In: Feingold, K.R., Anawalt, B., Boyce, A., Chrousos, G., de Herder, W.W., Dhatariya, K., Dungan, K., Grossman, A., Hershman, J.M., Hofland, J., Kalra, S., Kaltsas, G., Koch, C., Kopp, P., Korbonits, M., Kovacs, C.S., Kuohung, W., Laferrère, B., McGee, E.A., McLachlan, R., Morley, J.E., New, M., Purnell, J., Sahay, R., Singer, F., Stratakis, C.A., Trence, D.L., Wilson, D.P., Eds., Endotext. MDText.com, Inc.; South Dartmouth, MA.
Taylor, C.J., Peacock, S., Chaudhry, A.N., Bradley, J.A. and Bolton, E.M. (2012) Generating an iPSCs Bank for HLA-Matched Tis-sue Transplantation Based on Known Donor and Recipient HLA Types. Cell Stem Cell, 11, 147-152. https://doi.org/10.1016/j.stem.2012.07.014
Taylor, C.J., Bolton, E.M. and Bradley, J.A. (2011) Immunologi-cal Considerations for Embryonic and Induced Pluripotent Stem Cell Banking. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 2312-2322. https://doi.org/10.1098/rstb.2011.0030
Morishima, Y., Azuma, F., Kashiwase, K., Matsumoto, K., Orihara, T., Yabe, H., Kato, S., Kato, K., Kai, S., Mori, T., Nakajima, K., Morishima, S., Satake, M., Takanashi, M. and Yabe, T. (2018) Japanese Cord Blood Transplantation Histocompatibility Research Group. Risk of HLA Homozygous Cord Blood Transplantation: Implications for Induced Pluripotent Stem Cell Banking and Transplantation. Stem Cells Transla-tional Medicine, 7, 173-179. https://doi.org/10.1002/sctm.17-0169
Marek-Trzonkowska, N., Mysliwiec, M., Dobyszuk, A., Grabowska, M., Techmanska, I., Juscinska, J., Wujtewicz, M.A., Witkowski, P., Mlynarski, W., Balcerska, A., Mysliwska, J. and Trzonkowski, P. (2012) Administration of CD4+CD25highCD127−Regulatory T Cells Preserves β-Cell Function in Type 1 Diabetes in Children. Diabetes Care, 35, 1817-1820. https://doi.org/10.2337/dc12-0038
Ma-rek-Trzonkowska, N., Myśliwiec, M., Dobyszuk, A., Grabowska, M., Derkowska, I., Juścińska, J., Owczuk, R., Szadkowska, A., Witkowski, P., Młynarski, W., Jarosz-Chobot, P., Bossowski, A., Siebert, J. and Trzonkowski, P. (2014) Therapy of Type 1 Diabetes with CD4+CD25highCD127-Regulatory T Cells Prolongs Survival of Pancreatic Is-lets—Results of One Year Follow-Up. Clinical Immunology, 153, 23-30. https://doi.org/10.1016/j.clim.2014.03.016
Longoni, B., Szilagyi, E., Quaranta, P., Paoli, G.T., Tripodi, S., Urbani, S., Mazzanti, B., Rossi, B., Fanci, R., Demontis, G.C., Marzola, P., Saccardi, R., Cintorino, M. and Mosca, F. (2010) Mesenchymal Stem Cells Prevent Acute Rejection and Prolong Graft Function in Pancreatic Islet Transplantation. Diabetes Technology & Therapeutics, 12, 435-446. https://doi.org/10.1089/dia.2009.0154
Berman, D.M., Willman, M.A., Han, D., Kleiner, G., Kenyon, N.M., Cabrera, O., Karl, J.A., Wiseman, R.W., O’Connor, D.H., Bartholomew, A.M. and Kenyon, N.S. (2010) Mesenchymal Stem Cells Enhance Allogeneic Islet Engraftment in Nonhuman Primates. Diabetes, 59, 2558-2568. https://doi.org/10.2337/db10-0136
Hematti, P., Kim, J., Stein, A.P. and Kaufman, D. (2013) Potential Role of Mesenchymal Stromal Cells in Pancreatic Islet Transplantation. Transplantation Reviews, 27, 21-29. https://doi.org/10.1016/j.trre.2012.11.003
Reading, J.L., Sabbah, S., Busch, S. and Tree. T.I. (2013) Mesen-chymal Stromal Cells as a Means of Controlling Pathological T-Cell Responses in Allogeneic Islet Transplantation. Cur-rent Opinion in Organ Transplantation, 18, 59-64. https://doi.org/10.1097/MOT.0b013e32835c2adf
Xu, D.M., Yu, X.F., Zhang, D., Zhang, M.X., Zhou, J.F., Tan, P.H. and Ding, Y.C. (2012) Mesenchymal Stem Cells Differentially Mediate Regulatory T Cells and Conventional Effector T Cells to Protect Fully Allogeneic Islet Grafts in Mice. Diabetologia, 55, 1091-1102. https://doi.org/10.1007/s00125-011-2433-9
Duffy, M.M., Ritter, T., Ceredig, R. and Griffin, M.D. (2011) Mesenchymal Stem Cell Effects on T-Cell Effector Pathways. Stem Cell Research & Therapy, 2, 34. https://doi.org/10.1186/scrt75
Mandal, P.K., Ferreira, L.M., Collins, R., Meissner, T.B., Boutwell, C.L., Friesen, M., Vrbanac, V., Garrison, B.S., Stortchevoi, A., Bryder, D., Musunuru, K., Brand, H., Tager, A.M., Allen, T.M., Talkowski, M.E., Rossi, D.J. and Cowan, C.A. (2014) Efficient Ablation of Genes in Human Hematopoietic Stem and Effector Cells Using CRISPR/ Cas9. Cell Stem Cell, 15, 643-652. https://doi.org/10.1016/j.stem.2014.10.004
Ye, Q., Sung, T.C., Yang, J.M., Ling, Q.D., He, Y. and Higuchi, A. (2020) Generation of Universal and Hypoimmunogenic Human Pluripotent Stem Cells. Cell Proliferation, 53, Article No. e12946. https://doi.org/10.1111/cpr.12946
Wang, W., Xu, S., Ren, Z., Jiang, J. and Zheng, S. (2015) Gut Microbiota and Allogeneic Transplantation. Journal of Translational Medicine, 13, Article No. 275. https://doi.org/10.1186/s12967-015-0640-8
Saleem, M., Sabir, S., Akhtar, M.F., Zahid, S., Niazi, S.G., Naeem, M., Saleem, U. and Saleem, A. (2019) Stem Cell Therapy for Diabetes Mellitus: Recent Progress and Hurdles. Critical Reviews™ in Eukaryotic Gene Expression, 29, 471-482. https://doi.org/10.1615/CritRevEukaryotGeneExpr.2019025723
Hwang, G., Jeong, H., Yang, H.K., Kim, H.S., Hong, H., Kim, N.J., Oh, I.H. and Yim, H.W. (2019) Efficacies of Stem Cell Therapies for Functional Improve-ment of the β Cell in Patients with Diabetes: A Systematic Review of Controlled Clinical Trials. International Journal of Stem Cells, 12, 195-205. https://doi.org/10.15283/ijsc18076
Chen, S., Du, K. and Zou, C. (2020) Current Progress in Stem Cell Therapy for Type 1 Diabetes Mellitus. Stem Cell Research & Therapy, 11, Article No. 275. https://doi.org/10.1186/s13287-020-01793-6
Volarevic, V., Markovic, B.S., Gazdic, M., Volarevic, A., Jovi-cic, N., Arsenijevic, N., Armstrong, L., Djonov, V., Lako, M. and Stojkovic, M. (2018) Ethical and Safety Issues of Stem Cell-Based Therapy. International Journal of Medical Sciences, 15, 36-45. https://doi.org/10.7150/ijms.21666
Chan, S. and Harris, J. (2008) Adam’s Fibroblast? The (Pluri)Potential of IPCs. Journal of Medical Ethics, 34, 64-66. https://doi.org/10.1136/jme.2007.023937
Romano, G. (2008) Artificial Reprogramming of Human Somatic Cells to Generate Pluripotent Stem Cells: A Possible Alternative to the Controversial Use of Human Embryonic Stem Cells. Drug News & Perspectives, 21, 440-445.
Zweigerdt, R. (2009) Large Scale Production of Stem Cells and Their Derivatives. In: Martin, U., Ed., Engineering of Stem Cells, Vol. 114, Springer, Berlin, Heidelberg, 201-235. https://doi.org/10.1007/10_2008_27
Tavassoli, H., Alhosseini, S.N., Tay, A., Chan, P.P.Y., Weng, Oh.S.K. and Warkiani, M.E. (2018) Large-Scale Production of Stem Cells Utilizing Microcarriers: A Biomaterials Engineering Perspective from Academic Research to Commercialized Products. Biomaterials, 181, 333-346. https://doi.org/10.1016/j.biomaterials.2018.07.016